Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

New Trends in 1,4-Dipolar Cycloaddition Reactions. Thermodynamic Control Synthesis of Model 2'-(isoquinolin-1-yl)-spiro[oxindole-3,3'-pyrrolines]

Author(s): Areej M. Jaber, Jalal A. Zahra*, Salim S. Sabri, Monther A. Khanfar, Firas F. Awwadi and Mustafa M. El-Abadelah*

Volume 26, Issue 5, 2022

Published on: 05 April, 2022

Page: [542 - 549] Pages: 8

DOI: 10.2174/1385272826666220221141306

Price: $65

Abstract

Background: A direct synthesis of functionalized spiro[oxindole-3,3'-pyrrolines] is achieved via thermodynamic control (~60 oC), three-component 1,4-dipolar cycloaddition reaction involving 3-phenylimidazo[5,1-a]isoquinoline, dimethyl acetylenedicarboxylate, and N-alkylisatins.

Methods: Conversely, this one-pot reaction furnished, upon conduction at 25-38 oC, the expected 1,3-oxazepino[7,6-b]indoles as the main kinetic control products. The calculated energy of the optimized molecular structures of model spiro-oxindole and its isomeric oxazepinoindole indicate that spiro-oxindole is more stable by 76.1 kJ/mol.

Results: The structures of the synthesized spiro adducts were evidenced from NMR and MS spectral data and further confirmed by single-crystal X-ray diffraction. Characteristic features of the spiro-oxindoles are displaced in their 13C-spectra as diagnostic signals at ~53 and ~70 ppm assigned, respectively, to the spiro carbon-3 and sp3 CH-2' of the pyrroline ring.

Conclusion: This unprecedented thermally induced pathway in 1,4-dipolar cycloaddition, utilizing imidazo[5,1- a]isoquinoline and related congeners, would serve as a new route towards the synthesis of spiro[oxindole-3,3'- pyrrolines], a class of diverse biological activities. An insight into the thermodynamic control pathway is presented.

Keywords: N-alkylisatins, cascade reactions, dimethyl acetylenedicarboxylate, kinetic vs. thermodynamic control, 3-phenylimidazo[5, 1- a]isoquinoline, NMR.

« Previous
Graphical Abstract

[1]
Huisgen, R. Synthese von heterocyclen mit 1,4-Dipolaren cycloadditionen. Zeitschriff fur Chemie., 1968, (8), 290-298.
[http://dx.doi.org/10.1002/zfch.19680080803]
[2]
Huisgen, R.; Morikawa, M.; Herbig, K.; Brunn, E. Dreikomponenten-reaktionen des isochinolins mit acetylendicarbonsäureester und verschiedenen dipolarophilen. Chem. Ber., 1967, 100, 1094-1106.
[http://dx.doi.org/10.1002/cber.19671000406]
[3]
Huisgen, R. In Topics Heterocyclic Chemistry; John Wiley and Sons: New York, 1969, p. 233.
[4]
Nair, V.; Sreekanth, A.; Abhilash, N.; Biju, A.; Devi, B.R.; Menon, R.S.; Rath, N.P.; Srinivas, R. Novel pyridine-catalyzed reaction of dimethyl acetylenedicarboxylate with aldehydes and N-tosylimines: efficient synthesis of 2-benzoylfumarates and 1-azadienes. Synthesis, 2003, 2003, 1895-1902.
[http://dx.doi.org/10.1055/s-2003-41000]
[5]
Nair, V.; Devipriya, S.; Eringathodi, S. Efficient synthesis of [1,3]oxazino[2,3-a]quinoline derivatives by a novel 1,4-dipolar cycloaddition involving a quinoline–DMAD zwitterion and carbonyl compounds. Tetrahedron Lett., 2007, 48, 3667-3670.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.123]
[6]
Nair, V.; Devipriya, S.; Suresh, E. Construction of heterocycles via 1,4-dipolar cycloaddition of quinolinee DMAD zwitterion with various dipolarophiles. Tetrahedron, 2008, 64, 3567-3577.
[http://dx.doi.org/10.1016/j.tet.2008.01.106]
[7]
Yavari, I.; Hossaini, Z.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Efficient synthesis of highly substituted thiophenes from acetylenic esters, ethyl bromopyruvate, and tetramethylthiourea. Monatsh. Chem., 2007, 138, 677-681.
[http://dx.doi.org/10.1007/s00706-008-0918-0]
[8]
Nair, V.; Sreekanth, A.R.; Narayana Pillai Abhilash, A.; Biju, T.N.; Varma, L.; Viji, S.; Mathew, S. 1,4-Dipolar cycloaddition in organic synthesis: a facile route to isoquinoline fused heterocycles. ARKIVOC, 2005, 11, 178-188.
[http://dx.doi.org/10.3998/ark.5550190.0006.b15]
[9]
Alizadeh, A.; Sadeghi, V.; Bayat, F.; Zhu, L.G. An approach to the synthesis of spiro[indene-pyridoisoquinoline] derivatives via 1,4-dipolar cycloaddition of isoquinoline and acetylene esters, and (1,3-dihydro-1,3-dioxo-2H-inden-2-ylidene)malononitrile. Helv. Chim. Acta, 2014, 97, 1383-1387.
[http://dx.doi.org/10.1002/hlca.201300459]
[10]
Nair, V.; Deepthi, A.; Ashok, D.; Raveendran, A.E.; Paul, R.R. 1,4-Dipolar cycloadditions and related reactions. Tetrahedron, 2014, 19, 3085-3105.
[http://dx.doi.org/10.1016/j.tet.2014.03.014]
[11]
Sammor, M.S.; Hussein, A.Q.; Awwadi, F.F.; El-Abadelah, M.M. One-pot synthesis of novel 3,10-dihydro-2H-1,3-oxazepino[7,6-b]indoles via 1,4- dipolar cycloaddition reaction. Tetrahedron, 2018, 74, 42-48.
[http://dx.doi.org/10.1016/j.tet.2017.11.031]
[12]
Jaber, A.M.; Zahra, J.A.; El-Abadelah, M.M.; Sabri, S.S.; Khanfar, M.A.; Voelter, W. Utilization of 1-phenylimidazo[1,5-a]quinoline as partner in 1,4-dipolar cycloaddition reactions. Z. Naturforsch. B, 2020, 75, 259-267.
[http://dx.doi.org/10.1515/znb-2019-0150]
[13]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B. Gaussian 09, Revision D.01, Gaussian Inc, CT Wallingford; Gaussian: Pittsburgh, PA, 2004.
[14]
Mondal, A.; Mukhopadhyay, C. Silver-induced Cα(sp3)-H activation of benzylamines followed by [1,5]- versus [1,3]-rearrangement: A strategy towards the regioselective synthesis of spiro-dihydropyrroles. Eur. J. Org. Chem., 2017, 2017, 6299-6313.
[http://dx.doi.org/10.1002/ejoc.201701103]
[15]
Deppermann, N.; Thomanek, H.; Prenzel, A.H.; Maison, W. Pd-Catalyzed Assembly of Spirooxindole Natural Products: A short synthesis of horsfiline. J. Org. Chem., 2010, 75, 5994-6000.
[http://dx.doi.org/10.1021/jo101401z]
[16]
Jossang, A.; Jossang, P.; Hadi, H.A.; Sevenet, T.; Bodo, B. Horsfiline, an oxindole alkaloid from Horsfieldia superba. J. Org. Chem., 1991, 56, 6527-6530.
[http://dx.doi.org/10.1021/jo00023a016]
[17]
Kornet, M.J.; Thio, A.P. Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity. J. Med. Chem., 1976, 19, 892-898.
[http://dx.doi.org/10.1021/jm00229a007]
[18]
Cui, C-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phased. Tetrahedron, 1996, 52, 12651-12666.
[http://dx.doi.org/10.1016/0040-4020(96)00737-5]
[19]
James, M.; Williams, G. The molecular and crystal structure of an oxindole alkaloid (6-hydroxy-2′-(2-methylpropyl)-3,3′-spirotetrahydropyrroIidino-oxindole). Can. J. Chem., 1972, 50, 2407-2412.
[http://dx.doi.org/10.1139/v72-386]
[20]
Yu, B.; Yu, D-Q.; Liu, H-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97, 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056]
[21]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20, 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8]
[22]
Saraswat, P.; Jeyabalan, G.; Hassan, M.Z.; Rahman, M.U.; Nyola, N.K. A review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth. Commun., 2016, 46, 1643-1664.
[http://dx.doi.org/10.1080/00397911.2016.1211704]
[23]
Marti, C.; Carreira, E.M. Construction of spiro[pyrrolidine-3,3′-oxindoles] - recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 2003, 2209-2219.
[http://dx.doi.org/10.1002/ejoc.200300050]
[24]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46, 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342]
[25]
Xia, M.; Ma, R.Z. Recent progress on routes to spirooxindole systems derived from isatin. J. Heterocycl. Chem., 2014, 51, 539-554.
[http://dx.doi.org/10.1002/JHET.1114]
[26]
Yan, L.J.; Wang, Y.C. Recent advances in green synthesis of 3,3′-spirooxindoles via isatin–based one–pot multicomponent cascade reactions in aqueous medium. ChemistrySelect, 2016, 1, 6948-6960.
[http://dx.doi.org/10.1002/slct.201601534]
[27]
Deepthi, A.; Thomas, N.V.; Sathi, V. Green protocols for the synthesis of 3,3′-spirooxindoles – 2016- mid 2019. Curr. Green Chem., 2019, 6, 210-225.
[http://dx.doi.org/10.2174/2213346106666191019144116]
[28]
Maiuolo, L.; Algieri, V.; Olivito, F.; De Nino, A. Recent developments on 1,3-dipolar cycloaddition reactions by catalysis in green solvents. Catalysts, 2020, 10, 65-81.
[http://dx.doi.org/10.3390/catal10010065]
[29]
Saranya, P.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Adv, 2021, 11, 7146-7717.
[http://dx.doi.org/10.1039/D1RA00139F]
[30]
Nasri, S.; Bayat, M.; Mirzaei, F. Recent strategies in the synthesis of spiroindole and spirooxindole scafolds. Top. Curr. Chem., 2021, 379(4), article no. 25, 1-37.
[http://dx.doi.org/10.1007/s41061-021-00337-7]
[31]
Auria-Luna, F.; Marqués-López, E.; Mohammadi, S.; Heiran, R.; Herrera, R.P. New Organocatalytic Asymmetric Synthesis of Highly Substituted Chiral 2-Oxospiro-[indole-3,4′ - (1′,4′-dihydropyridine)] Derivatives. Molecules, 2015, 20, 15807-15826.
[http://dx.doi.org/10.3390/molecules200915807]
[32]
Banerjee, P.; Pandey, A.K. Synthesis of functionalized dispiro-oxindoles through azomethine ylide dimerization and mechanistic studies to explain the diastereoselectivity. RSC Advances, 2014, 4, 33236-33244.
[http://dx.doi.org/10.1039/C4RA01492H]
[33]
Beauchard, A.; Ferandin, Y.; Frère, S.; Lozach, O.; Blairvacq, M.; Meijer, L.; Thiéry, V.; Besson, T. Synthesis of novel 5-substituted indirubins as protein kinases inhibitors. Bioorg. Med. Chem., 2006, 14, 6434-6443.
[http://dx.doi.org/10.1016/j.bmc.2006.05.036]
[34]
Wang, Y.; Cheng, X.; Zhan, Z.; Ma, X.; Nie, R.; Hai, L.; Wu, Y. IBX-promoted domino reaction of a-hydroxy amides: a facile one-pot synthesis of isatins. RSC Advances, 2016, 6, 2870-2874.
[http://dx.doi.org/10.1039/C5RA25036F]
[35]
Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. Iodine-mediated C-H functionalization of sp, sp2 and sp3 carbon: A unified multi-substrate domino approach for isatin synthesis. J. Org. Chem., 2015, 80, 5167-5175.
[http://dx.doi.org/10.1021/acs.joc.5b00581]
[36]
Wu, Y-L.; Chuang, C-P.; Lin, P-Y. Free radical cyclization reactions of alkylsulfonyl and alkylthio substituted aromatic amide derivatives. Tetrahedron, 2000, 56, 6209-6217.
[http://dx.doi.org/10.1016/S0040-4020(00)00580-9]
[37]
Jiang, H.; Hu, Q.; Cai, J.; Cui, Z.; Zheng, J.; Chen, W. Synthesis and dyeing properties of indophenine dyes for polyester fabrics. Dyes and Pigments, 2019, 166, 130-139.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.025]
[38]
El-Faham, A.; Hozzein, W.N.; Wadaan, M.A.; Khattab, S.N.; Ghabbour, H.A.; Fun, H.-K.; Siddiqui, M.R. Microwave synthesis, characterization, and antimicrobial activity of some novel isatin derivatives. J. Chem, 2015, 2015
[http://dx.doi.org/10.1155/2015/716987]
[39]
Sharmila, N.; Sundar, T.; Satish, G.; Ilangovan, A.; Venkatesan, P. Two new isatin derivatives: 1-benzyl-4,5,6- trimethoxyindoline-2,3-dione and 1-benzyl-5-fluoroindoline-2,3-dione. Acta Cryst. Sec. C, 2015, 71, 975-978.
[http://dx.doi.org/10.1107/S2053229615018422]
[40]
Wang, Q.; Zhang, S.; Guo, F.; Zhang, B.; Hu, P.; Wang, Z. Natural α amino acids applied in the synthesis of imidazo[1,5 a]N-heterocycles under mild conditions. J. Org. Chem., 2012, 77, 11161-11166.
[http://dx.doi.org/10.1021/jo302299u]
[41]
CRYSALIS PRO Software system (version 1.171.35.11), intelligent Data Collection and Processing software for small Molecule and Protin Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire, U.K., 2011.
[42]
Sheldrick, G.M. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. Sec. A: Found. Adv., 2015, 71, 3-8.
[http://dx.doi.org/10.1107/S2053273314026370]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy