Abstract
Background: A direct synthesis of functionalized spiro[oxindole-3,3'-pyrrolines] is achieved via thermodynamic control (~60 oC), three-component 1,4-dipolar cycloaddition reaction involving 3-phenylimidazo[5,1-a]isoquinoline, dimethyl acetylenedicarboxylate, and N-alkylisatins.
Methods: Conversely, this one-pot reaction furnished, upon conduction at 25-38 oC, the expected 1,3-oxazepino[7,6-b]indoles as the main kinetic control products. The calculated energy of the optimized molecular structures of model spiro-oxindole and its isomeric oxazepinoindole indicate that spiro-oxindole is more stable by 76.1 kJ/mol.
Results: The structures of the synthesized spiro adducts were evidenced from NMR and MS spectral data and further confirmed by single-crystal X-ray diffraction. Characteristic features of the spiro-oxindoles are displaced in their 13C-spectra as diagnostic signals at ~53 and ~70 ppm assigned, respectively, to the spiro carbon-3 and sp3 CH-2' of the pyrroline ring.
Conclusion: This unprecedented thermally induced pathway in 1,4-dipolar cycloaddition, utilizing imidazo[5,1- a]isoquinoline and related congeners, would serve as a new route towards the synthesis of spiro[oxindole-3,3'- pyrrolines], a class of diverse biological activities. An insight into the thermodynamic control pathway is presented.
Keywords: N-alkylisatins, cascade reactions, dimethyl acetylenedicarboxylate, kinetic vs. thermodynamic control, 3-phenylimidazo[5, 1- a]isoquinoline, NMR.
Graphical Abstract
[http://dx.doi.org/10.1002/zfch.19680080803]
[http://dx.doi.org/10.1002/cber.19671000406]
[http://dx.doi.org/10.1055/s-2003-41000]
[http://dx.doi.org/10.1016/j.tetlet.2007.03.123]
[http://dx.doi.org/10.1016/j.tet.2008.01.106]
[http://dx.doi.org/10.1007/s00706-008-0918-0]
[http://dx.doi.org/10.3998/ark.5550190.0006.b15]
[http://dx.doi.org/10.1002/hlca.201300459]
[http://dx.doi.org/10.1016/j.tet.2014.03.014]
[http://dx.doi.org/10.1016/j.tet.2017.11.031]
[http://dx.doi.org/10.1515/znb-2019-0150]
[http://dx.doi.org/10.1002/ejoc.201701103]
[http://dx.doi.org/10.1021/jo101401z]
[http://dx.doi.org/10.1021/jo00023a016]
[http://dx.doi.org/10.1021/jm00229a007]
[http://dx.doi.org/10.1016/0040-4020(96)00737-5]
[http://dx.doi.org/10.1139/v72-386]
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056]
[http://dx.doi.org/10.1007/s11030-015-9629-8]
[http://dx.doi.org/10.1080/00397911.2016.1211704]
[http://dx.doi.org/10.1002/ejoc.200300050]
[http://dx.doi.org/10.1002/anie.200701342]
[http://dx.doi.org/10.1002/JHET.1114]
[http://dx.doi.org/10.1002/slct.201601534]
[http://dx.doi.org/10.2174/2213346106666191019144116]
[http://dx.doi.org/10.3390/catal10010065]
[http://dx.doi.org/10.1039/D1RA00139F]
[http://dx.doi.org/10.1007/s41061-021-00337-7]
[http://dx.doi.org/10.3390/molecules200915807]
[http://dx.doi.org/10.1039/C4RA01492H]
[http://dx.doi.org/10.1016/j.bmc.2006.05.036]
[http://dx.doi.org/10.1039/C5RA25036F]
[http://dx.doi.org/10.1021/acs.joc.5b00581]
[http://dx.doi.org/10.1016/S0040-4020(00)00580-9]
[http://dx.doi.org/10.1016/j.dyepig.2019.03.025]
[http://dx.doi.org/10.1155/2015/716987]
[http://dx.doi.org/10.1107/S2053229615018422]
[http://dx.doi.org/10.1021/jo302299u]
[http://dx.doi.org/10.1107/S2053273314026370]