Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Antihypertrophic Effect of Menthol from Mentha x Piperita Concerning Cardiac Hypertrophy: A Review

Author(s): Anitha Nagarajan and Victor Arokia Doss*

Volume 13, Issue 2, 2023

Published on: 01 September, 2022

Article ID: e290422204272 Pages: 15

DOI: 10.2174/2210315512666220429110704

Price: $65

Abstract

Background: The abnormal enlargement or thickening of the heart muscle leads to the diminishment of ventricular wall tension, which helps the heart to keep up the outstanding task at hand in terms of capacity and effectiveness. There are two kinds of hypertrophy: physiological and pathological. Initially, what evolves as an adaptive reaction, advances to heart failure. Different cellular signaling pathways control each type of hypertrophy. Peppermint, Mentha x piperita, a hybrid of Mentha spicata and Mentha aquatica, belongs to the family of Lamiaceae. Peppermint oil has high menthol content and many useful targets in cardiovascular disorders, such as hypertension, coronary heart disease, etc.

Objective: The objective of this review article is to investigate the antihypertrophic activity of Mentha x Piperita, which is not yet established.

Methods: For manuscript preparation, we used all accessible international databases, traditional books (regular books in English), electronic resources (Google Scholar, PubMed, Science Direct, Springer, Wiley, etc.), and unpublished data (thesis, R&D reports, and dissertations).

Results: Menthol may activate transient receptor potential cation channel subfamily M (melastatin) member 8 (TRMP8) channels, resulting in increased cytosolic calcium concentration and vasorelaxation activity. Menthol is known to stimulate the elevation of TRPM8 protein in the endothelium, vascular smooth muscle (VSM), and vascular afferent nerve strands while obstructing VSM L-type calcium channels (LCC), contributing to both the cardiovascular and vasoactive properties of peppermint. In vivo experiments proved that glucagon plays a significant role in the preventive effect of menthol (as TRPM8 modulator) against a high-fat diet (HFD) induced weight gain and related complications.

Conclusion: Due to the efficacy of menthol (Mentha x piperita) in its cardioprotective properties, understanding the actual mechanisms related to the efficacy of menthol on CVD can be the subject of future studies.

Keywords: CVD, Cardiac Hypertrophy, Mentha x piperita, Menthol, Cardioprotective.

Graphical Abstract

[1]
World Health Organisation. 2021. Available from: who.int/cardiovascular_diseases/about_cvd/en/ Accessed May 2021.
[2]
Paul, A.H.; Justin, G.T.; Olga, A.K.; Javed, B.; Kathleen, D.; Michael, D.E. Forecasting the future of cardiovascular disease in the United States. A policy statement from the American Heart Association. Circulation, 2011, 123(8), 933-944.
[3]
Mackay, J.; Mensah, G. The Future of CVD. Part five: The future andthe past. The Atlas of Heart Disease and Stroke; World Health Organization. Marketing & Dissemination: 1211 Geneva 27, Switzerland, 2004, p. 112.
[4]
Indian Pharmacopoeia. Monograph of peppermint oil; American Botanical Council, 1996.
[5]
Agrawal, V.K. Techniques of Mentha species cultivation. Medicinal and Aromatic Plants. Directorate of extention services; Indira Gandhi Agricultural University: Chhattisgarh, 2015, p. 33.
[6]
Hoffman, D. The complete illustrated holistic herbal; Element Books Limited: United Kingdom, 1996.
[7]
Bove, M. An encyclopedia of natural healing for children & infants; Keats Publishing Limited: New Canaan, United States of America, 1996.
[8]
Kannel, W.B.; Gordon, T.; Offutt, D. Left ventricular hypertrophy by electrocardiogram. Prevalence, incidence, and mortality in the Framingham study. Ann. Intern. Med., 1969, 71(1), 89-105.
[http://dx.doi.org/10.7326/0003-4819-71-1-89] [PMID: 4239887]
[9]
Levy, D.; Garrison, R.J.; Savage, D.D.; Kannel, W.B.; Castelli, W.P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med., 1990, 322(22), 1561-1566.
[http://dx.doi.org/10.1056/NEJM199005313222203] [PMID: 2139921]
[10]
Vakili, B.A.; Okin, P.M.; Devereux, R.B. Prognostic implications of left ventricular hypertrophy. Am. Heart J., 2001, 141(3), 334-341.
[http://dx.doi.org/10.1067/mhj.2001.113218] [PMID: 11231428]
[11]
Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol., 2018, 15(7), 387-407.
[http://dx.doi.org/10.1038/s41569-018-0007-y] [PMID: 29674714]
[12]
Shah, S.M.A.; Akram, M.; Riaz, M.; Munir, N.; Rasool, G. Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose Response, 2019, 17(2), 1559325819852243.
[http://dx.doi.org/10.1177/1559325819852243] [PMID: 31205459]
[13]
Clapham, D.E.; Julius, D.; Montell, C.; Schultz, G. International union of pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol. Rev., 2005, 57(4), 427-450.
[http://dx.doi.org/10.1124/pr.57.4.6] [PMID: 16382100]
[14]
Andersen, H.H.; Olsen, R.V.; Møller, H.G.; Eskelund, P.W.; Gazerani, P.; Arendt-Nielsen, L. A review of topical high-concentration L-menthol as a translational model of cold allodynia and hyperalgesia. Eur. J. Pain, 2014, 18(3), 315-325.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00380.x] [PMID: 23963768]
[15]
Olsen, R.V.; Andersen, H.H.; Møller, H.G.; Eskelund, P.W.; Arendt-Nielsen, L. Somatosensory and vasomotor manifestations of individual and combined stimulation of TRPM8 and TRPA1 using topical L-menthol and trans-cinnamaldehyde in healthy volunteers. Eur. J. Pain, 2014, 18(9), 1333-1342.
[http://dx.doi.org/10.1002/j.1532-2149.2014.494.x] [PMID: 24664788]
[16]
Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Stucky, C.L.; Jordt, S.E.; Julius, D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007, 448(7150), 204-208.
[http://dx.doi.org/10.1038/nature05910] [PMID: 17538622]
[17]
Almeida, M.C.; Hew-Butler, T.; Soriano, R.N.; Rao, S.; Wang, W.; Wang, J.; Tamayo, N.; Oliveira, D.L.; Nucci, T.B.; Aryal, P.; Garami, A.; Bautista, D.; Gavva, N.R.; Romanovsky, A.A. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci., 2012, 32(6), 2086-2099.
[http://dx.doi.org/10.1523/JNEUROSCI.5606-11.2012] [PMID: 22323721]
[18]
Gavva, N.R.; Davis, C.; Lehto, S.G.; Rao, S.; Wang, W.; Zhu, D.X. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol. Pain, 2012, 8, 36-44.
[http://dx.doi.org/10.1186/1744-8069-8-36] [PMID: 22571355]
[19]
Khare, P.; Mangal, P.; Baboota, R.K.; Jagtap, S.; Kumar, V.; Singh, D.P.; Boparai, R.K.; Sharma, S.S.; Khardori, R.; Bhadada, S.K.; Kondepudi, K.K.; Chopra, K.; Bishnoi, M. Involvement of glucagon in preventive effect of menthol against high fat diet induced obesity in mice. Front. Pharmacol., 2018, 9, 1244.
[http://dx.doi.org/10.3389/fphar.2018.01244] [PMID: 30505271]
[20]
Tajino, K.; Matsumura, K.; Kosada, K.; Shibakusa, T.; Inoue, K.; Fushiki, T.; Hosokawa, H.; Kobayashi, S. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(5), R2128-R2135.
[http://dx.doi.org/10.1152/ajpregu.00377.2007] [PMID: 17761510]
[21]
Masamoto, Y.; Kawabata, F.; Fushiki, T. Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice. Biosci. Biotechnol. Biochem., 2009, 73(5), 1021-1027.
[http://dx.doi.org/10.1271/bbb.80796] [PMID: 19420725]
[22]
Latorre, R.; Brauchi, S.; Orta, G.; Zaelzer, C.; Vargas, G. Thermo-TRP channels as modular proteins with allosteric gating. Cell Calcium, 2007, 42(4-5), 427-438.
[http://dx.doi.org/10.1016/j.ceca.2007.04.004] [PMID: 17499848]
[23]
Rossato, M.; Granzotto, M.; Macchi, V.; Porzionato, A.; Petrelli, L.; Calcagno, A.; Vencato, J.; De Stefani, D.; Silvestrin, V.; Rizzuto, R.; Bassetto, F.; De Caro, R.; Vettor, R. Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Mol. Cell. Endocrinol., 2014, 383(1-2), 137-146.
[http://dx.doi.org/10.1016/j.mce.2013.12.005] [PMID: 24342393]
[24]
Hawthorn, M.; Ferrante, J.; Luchowski, E.; Rutledge, A.; Wei, X.Y.; Triggle, D.J. The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Aliment. Pharmacol. Ther., 1988, 2(2), 101-118.
[http://dx.doi.org/10.1111/j.1365-2036.1988.tb00677.x] [PMID: 2856502]
[25]
Robbers, J.E.; Tyler, V.E. Tyler’s Herbs of choice: The therapeutic use of phytomedicinals; Haworth Herbal Press: New York, 1999, p. 287.
[26]
Silva, H. Current knowledge on the vascular effects of menthol. Front. Physiol., 2020, 11, 298.
[http://dx.doi.org/10.3389/fphys.2020.00298] [PMID: 32317987]
[27]
Gerthoffer, W.T. Regulation of the contractile element of airway smooth muscle. Am. J. Physiol., 1991, 261(2 Pt 1), L15-L28.
[PMID: 1872409]
[28]
Ito, S.; Kume, H.; Honjo, H.; Kodama, I.; Katoh, H.; Hayashi, H.; Shimokata, K. ML-9, a myosin light chain kinase inhibitor, reduces intracellular Ca2+ concentration in guinea pig trachealis. Eur. J. Pharmacol., 2004, 486(3), 325-333.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.013] [PMID: 14985055]
[29]
Haeseler, G.; Maue, D.; Grosskreutz, J.; Bufler, J.; Nentwig, B.; Piepenbrock, S.; Dengler, R.; Leuwer, M. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur. J. Anaesthesiol., 2002, 19(8), 571-579.
[http://dx.doi.org/10.1017/S0265021502000923] [PMID: 12200946]
[30]
Baylie, R.L.; Cheng, H.; Langton, P.D.; James, A.F. Inhibition of the cardiac L-type calcium channel current by the TRPM8 agonist, (-)-menthol. J. Physiol. Pharmacol., 2010, 61(5), 543-550.
[PMID: 21081797]
[31]
Swandulla, D.; Carbone, E.; Schäfer, K.; Lux, H.D. Effect of menthol on two types of Ca currents in cultured sensory neurons of vertebrates. Pflugers Arch., 1987, 409(1-2), 52-59.
[http://dx.doi.org/10.1007/BF00584749] [PMID: 2441355]
[32]
Cheang, W.S.; Lam, M.Y.; Wong, W.T.; Tian, X.Y.; Lau, C.W.; Zhu, Z.; Yao, X.; Huang, Y. Menthol relaxes rat aortae, mesenteric and coronary arteries by inhibiting calcium influx. Eur. J. Pharmacol., 2013, 702(1-3), 79-84.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.028] [PMID: 23380688]
[33]
Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8), a003947.
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[34]
Lee, C.H.; Poburko, D.; Sahota, P.; Sandhu, J.; Ruehlmann, D.O.; van Breemen, C. The mechanism of phenylephrine-mediated [Ca2+](i) oscillations underlying tonic contraction in the rabbit inferior vena cava. J. Physiol., 2001, 534(Pt 3), 641-650.
[http://dx.doi.org/10.1111/j.1469-7793.2001.t01-1-00641.x] [PMID: 11483697]
[35]
Macpherson, L.J.; Hwang, S.W.; Miyamoto, T.; Dubin, A.E.; Patapoutian, A.; Story, G.M. More than cool: Promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci., 2006, 32(4), 335-343.
[http://dx.doi.org/10.1016/j.mcn.2006.05.005] [PMID: 16829128]
[36]
Johnson, C.D.; Melanaphy, D.; Purse, A.; Stokesberry, S.A.; Dickson, P.; Zholos, A.V. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(6), H1868-H1877.
[http://dx.doi.org/10.1152/ajpheart.01112.2008] [PMID: 19363131]
[37]
Davis, R.E.; Wachholz, J.H.; Jassir, D.; Perlyn, C.A.; Agrama, M.H. Comparison of topical anti-ischemic agents in the salvage of failing random-pattern skin flaps in rats. Arch. Facial Plast. Surg., 1999, 1(1), 27-32.
[http://dx.doi.org/10.1001/archfaci.1.1.27] [PMID: 10937072]
[38]
Komorowska-Timek, E.; Chen, S.G.; Zhang, F.; Dogan, T.; Lineaweaver, W.C.; Buncke, H.J. Prolonged perivascular use of verapamil or lidocaine decreases skin flap necrosis. Ann. Plast. Surg., 1999, 43(3), 283-288.
[http://dx.doi.org/10.1097/00000637-199909000-00010] [PMID: 10490180]
[39]
Namer, B.; Seifert, F.; Handwerker, H.O.; Maihöfner, C. TRPA1 and TRPM8 activation in humans: Effects of cinnamaldehyde and menthol. Neuroreport, 2005, 16(9), 955-959.
[http://dx.doi.org/10.1097/00001756-200506210-00015] [PMID: 15931068]
[40]
Olive, J.L.; Hollis, B.; Mattson, E.; Topp, R. Vascular conductance is reduced after menthol or cold application. Clin. J. Sport Med., 2010, 20(5), 372-376.
[PMID: 20818196]
[41]
Topp, R.; Ledford, E.R.; Jacks, D.E. Topical menthol, ice, peripheral blood flow, and perceived discomfort. J. Athl. Train., 2013, 48(2), 220-225.
[http://dx.doi.org/10.4085/1062-6050-48.1.19] [PMID: 23672386]
[42]
Topp, R.; Winchester, L.J.; Schilero, J.; Jacks, D. Effect of topical menthol on ipsilateral and contralateral superficial blood flow following a bout of maximum voluntary muscle contraction. Int. J. Sports Phys. Ther., 2011, 6(2), 83-91.
[PMID: 21713232]
[43]
Green, D.J.; OʼDriscoll, G.; Blanksby, B.A.; Taylor, R.R. Control of skeletal muscle blood flow during dynamic exercise. Sports Med., 1996, 21(2), 119-146.
[http://dx.doi.org/10.2165/00007256-199621020-00004] [PMID: 8775517]
[44]
Chotani, M.A.; Flavahan, S.; Mitra, S.; Daunt, D.; Flavahan, N.A. Silent α(2C)-adrenergic receptors enable cold-induced vasoconstriction in cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2000, 278(4), H1075-H1083.
[http://dx.doi.org/10.1152/ajpheart.2000.278.4.H1075] [PMID: 10749700]
[45]
Mani Badal, R.; Badal, D.; Badal, P.; Khare, A.; Shrivastava, J.; Kumar, V. Pharmacological action of Mentha piperita on lipid profile in fructose-fed rats. Iran. J. Pharm. Res., 2011, 10(4), 843-848.
[PMID: 24250421]
[46]
Herrmann, E.C., Jr; Kucera, L.S. Antiviral substances in plants of the mint family (labiatae). 3. Peppermint (Mentha piperita) and other mint plants. Proc. Soc. Exp. Biol. Med., 1967, 124(3), 874-878.
[http://dx.doi.org/10.3181/00379727-124-31874] [PMID: 4290278]
[47]
Alarcon-Aguilara, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Aguilar-Contreras, A.; Contreras-Weber, C.C.; Flores-Saenz, J.L. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethnopharmacol., 1998, 61(2), 101-110.
[http://dx.doi.org/10.1016/S0378-8741(98)00020-8] [PMID: 9683340]
[48]
Samarth, R.M.; Goyal, P.K.; Kumar, A. Modulatory effect of Mentha piperita (Linn.) on serum phosphatases activity in Swiss albino mice against gamma irradiation. Indian J. Exp. Biol., 2001, 39(5), 479-482.
[PMID: 11510134]
[49]
Samarth, R.M.; Goyal, P.K.; Kumar, A. Modulation of serum phosphatases activity in Swiss albino mice against gamma irradiation by Mentha piperita Linn. Phytother. Res., 2002, 16(6), 586-589.
[http://dx.doi.org/10.1002/ptr.984] [PMID: 12237821]
[50]
Samarth, R.M.; Saini, M.R.; Maharwal, J.; Dhaka, A.; Kumar, A. Mentha piperita (Linn) leaf extract provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice. Indian J. Exp. Biol., 2002, 40(11), 1245-1249.
[PMID: 13677626]
[51]
Minami, M.; Kita, M.; Nakaya, T.; Yamamoto, T.; Kuriyama, H.; Imanishi, J. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol. Immunol., 2003, 47(9), 681-684.
[http://dx.doi.org/10.1111/j.1348-0421.2003.tb03431.x] [PMID: 14584615]
[52]
Samarth, R.M.; Kumar, A. Mentha piperita (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J. Exp. Biol., 2003, 41(3), 229-237.
[PMID: 15267153]
[53]
Schuhmacher, A.; Reichling, J.; Schnitzler, P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine, 2003, 10(6-7), 504-510.
[http://dx.doi.org/10.1078/094471103322331467] [PMID: 13678235]
[54]
Samarth, R.M.; Goyal, P.K.; Kumar, A. Protection of swiss albino mice against whole-body gamma irradiation by Mentha piperita (Linn.). Phytother. Res., 2004, 18(7), 546-550.
[http://dx.doi.org/10.1002/ptr.1483] [PMID: 15305314]
[55]
Kumar, A.; Samarth, R.M.; Yasmeen, S.; Sharma, A.; Sugahara, T.; Terado, T.; Kimura, H. Anticancer and radioprotective potentials of Mentha piperita. Biofactors, 2004, 22(1-4), 87-91.
[http://dx.doi.org/10.1002/biof.5520220117] [PMID: 15630259]
[56]
Narendhirakannan, R.T.; Subramanian, S.; Kandaswamy, M. Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin-induced diabetes in experimental rats. Clin. Exp. Pharmacol. Physiol., 2006, 33(12), 1150-1157.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04507.x] [PMID: 17184494]
[57]
Nolkemper, S.; Reichling, J.; Stintzing, F.C.; Carle, R.; Schnitzler, P. Antiviral effect of aqueous extracts from species of the Lamiaceae family against Herpes simplex virus type 1 and type 2 in vitro. Planta Med., 2006, 72(15), 1378-1382.
[http://dx.doi.org/10.1055/s-2006-951719] [PMID: 17091431]
[58]
Sharma, A.; Sharma, M.K.; Kumar, M. Protective effect of Mentha piperita against arsenic-induced toxicity in liver of Swiss albino mice. Basic Clin. Pharmacol. Toxicol., 2007, 100(4), 249-257.
[http://dx.doi.org/10.1111/j.1742-7843.2006.00030.x] [PMID: 17371529]
[59]
Samarth, R.M. Protection against radiation induced hematopoietic damage in bone marrow of Swiss albino mice by Mentha piperita (Linn). J. Radiat. Res. (Tokyo), 2007, 48(6), 523-528.
[http://dx.doi.org/10.1269/jrr.07052] [PMID: 17938557]
[60]
Büyükbalci, A.; El, S.N. Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum. Nutr., 2008, 63(1), 27-33.
[http://dx.doi.org/10.1007/s11130-007-0065-5] [PMID: 18183488]
[61]
Reichling, J.; Nolkemper, S.; Stintzing, F.C.; Schnitzler, P. Impact of ethanolic lamiaceae extracts on herpesvirus infectivity in cell culture. Forsch. Komplement. Med., 2008, 15(6), 313-320.
[PMID: 19142040]
[62]
Samarth, R.M.; Samarth, M. Protection against radiation-induced testicular damage in Swiss albino mice by Mentha piperita (Linn.). Basic Clin. Pharmacol. Toxicol., 2009, 104(4), 329-334.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00384.x] [PMID: 19320637]
[63]
Sharafi, S.M.; Rasooli, I.; Owlia, P.; Taghizadeh, M.; Astaneh, S.D.A. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacogn. Mag., 2010, 6(23), 147-153.
[http://dx.doi.org/10.4103/0973-1296.66926] [PMID: 20931070]
[64]
Barbalho, S.M.; Damasceno, D.C.; Spada, A.P.; da Silva, V.S.; Martuchi, K.A.; Oshiiwa, M.; Machado, F.M.; Mendes, C.G. Metabolic profile of offspring from diabetic wistar rats treated with Mentha piperita (Peppermint). Evid. Based Complement. Alternat. Med., 2011, 2011, 430237.
[http://dx.doi.org/10.1155/2011/430237] [PMID: 21647314]
[65]
Yucharoen, R.; Meepowpan, P.; Tragoolpua, Y. Inhibitory effect of peppermint extracts and menthol against Herpes Simplex Virus infection. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2012, 39(1), 97-110.
[66]
Omidian, J.; Sheikhi-Shooshtari, F.; Fazeli, M. Inhibitory effect of Mentha piperita extracts against herpes simplex virus isolated from eye infection. Iran. J. Virol., 2014, 8(1), 35-41.
[http://dx.doi.org/10.21859/isv.8.1.35]
[67]
Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS One, 2014, 9(12), e114767.
[http://dx.doi.org/10.1371/journal.pone.0114767] [PMID: 25493616]
[68]
Yen, H.F.; Hsieh, C.T.; Hsieh, T.J.; Chang, F.R.; Wang, C.K. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. J. Food Drug Anal., 2015, 23(1), 124-129.
[http://dx.doi.org/10.1016/j.jfda.2014.02.004] [PMID: 28911435]
[69]
Mesbahzadeh, B.; Akbari, M.; Kor, N.M.; Zadeh, J.B. The effects of different levels of peppermint alcoholic extract on body-weight gain and blood biochemical parameters of adult male Wistar rats. Electron. Physician, 2015, 7(6), 1376-1380.
[PMID: 26516445]
[70]
Dhanarasu, S.; Selvam, M.; Abdullah Al-Shammari, N.K. Evaluating the pharmacological dose (Oral LD50) and antibacterial activity of leaf extracts of Mentha piperita Linn. grown in Kingdom of Saudi Arabia: A pilot study for nephrotoxicity. Int. J. Pharmacol., 2016, 12, 195-200.
[http://dx.doi.org/10.3923/ijp.2016.195.200]
[71]
Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci. Biotechnol., 2017, 26(6), 1675-1683.
[http://dx.doi.org/10.1007/s10068-017-0217-9] [PMID: 30263705]
[72]
Mogosan, C.; Vostinaru, O.; Oprean, R.; Heghes, C.; Filip, L.; Balica, G.; Moldovan, R.I. A comparative analysis of the chemical composition, anti-inflammatory and antinociceptive effects of the essential oils from three species of Mentha cultivated in Romania. Molecules, 2017, 22(2), 263.
[http://dx.doi.org/10.3390/molecules22020263] [PMID: 28208614]
[73]
Abdellatief, S.A.; Beheiry, R.R.; El-Mandrawy, S.A.M. Peppermint essential oil alleviates hyperglycemia caused by streptozotocin- nicotinamide-induced type 2 diabetes in rats. Biomed. Pharmacother., 2017, 95, 990-999.
[http://dx.doi.org/10.1016/j.biopha.2017.09.020] [PMID: 28922713]
[74]
Figueroa-Perez, M.G.; Perez-Ramirez, I.F.; Enciso-Moreno, J.A.; GallegosCorona, M.A.; Salgado, L.M.; Reynoso-Camacho, R. Diabetic nephropathy is ameliorated with peppermint (Mentha piperita) infusions prepared from salicylic acid-elicited plants. J. Funct. Foods, 2018, 43, 55-61.
[http://dx.doi.org/10.1016/j.jff.2018.01.029]
[75]
Bellassoued, K.; Ben Hsouna, A.; Athmouni, K.; van Pelt, J.; Makni Ayadi, F.; Rebai, T.; Elfeki, A. Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats. Lipids Health Dis., 2018, 17(1), 9.
[http://dx.doi.org/10.1186/s12944-017-0645-9] [PMID: 29316974]
[76]
Mahendran, G.; Rahman, L-U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)-A review. Phytother. Res., 2020, 34(9), 2088-2139.
[http://dx.doi.org/10.1002/ptr.6664] [PMID: 32173933]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy