Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

Current Ion Channel-targeted Drugs and Potential of Venom-derived Peptides as a Therapeutic New Modality

Author(s): Toshiaki Okada, Hikaru Taira and Tadashi Kimura*

Volume 2, Issue 2, 2022

Published on: 06 September, 2022

Article ID: e290422204255 Pages: 19

DOI: 10.2174/2666121702666220429095250

Price: $65

Abstract

Ion channel function is essential for maintaining life and is involved in various physiological activities. However, various factors such as heredity, aging, wounding, and diseases can cause abnormalities in ion channel function and expression. Such channel abnormalities can interfere with the healthy activities of the organism and threaten the maintenance of life. There are many types of ion channels, and their roles are diverse. In recent years, it is becoming clear that ion channels are intrinsically involved in various diseases beyond what has been previously thought. Therefore, it is highly desirable to develop more drugs by increasing various channels for drug discovery and various diseases. In this review, we will introduce the ion channels currently targeted for drug discovery and the mechanisms by which these channels are involved in diseases, focusing on information compiled on the internet. Currently, the target ion channels for drug development and treating diseases are becoming more diverse. The drugs under development are not only small molecules, which account for most of the ion channel drugs developed to date, but also different types of drugs, such as antibodies, peptides, and oligonucleotides. Due to low specificity, many existing ion channel drugs have side effect problems. Diversification of drugs may facilitate the resolution of these problems, and venom-derived peptide drugs are a promising class of future agents that can contribute to this end. In the last part of this review, the status of drug development of venom-derived peptides will also be discussed.

Keywords: ion channel, channelopathy, drug targets, ion channel modulators, venom peptide, new modality

Graphical Abstract

[1]
Robertson B. Introduction to the Journal of Physiology’s special issue on neurological channelopathies. J Physiol 2010; 588(Pt 11): 1821-2.
[http://dx.doi.org/10.1113/jphysiol.2010.191114] [PMID: 20516349]
[2]
Nilius B. A Special Issue on channelopathies. Pflugers Arch 2010; 460(2): 221-2.
[http://dx.doi.org/10.1007/s00424-010-0818-0] [PMID: 20238123]
[3]
Imbrici P, Liantonio A, Camerino GM, et al. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 2016; 7: 121.
[http://dx.doi.org/10.3389/fphar.2016.00121] [PMID: 27242528]
[4]
Wallace E, Howard L, Liu M, et al. Long QT Syndrome: genetics and future perspective. Pediatr Cardiol 2019; 40(7): 1419-30.
[http://dx.doi.org/10.1007/s00246-019-02151-x] [PMID: 31440766]
[5]
Koneczny I, Herbst R. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8(7): 671.
[http://dx.doi.org/10.3390/cells8070671] [PMID: 31269763]
[6]
Huda S, Whittam D, Bhojak M, et al. Neuromyelitis optica spectrum disorders. Clin Med 2019; 19(2): 169-76.
[http://dx.doi.org/10.7861/clinmedicine.19-2-169] [PMID: 30872305]
[7]
Peixoto Pinheiro B, Vona B, Löwenheim H, Rüttiger L, Knipper M, Adel Y. Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2021; 473(5): 823-40.
[http://dx.doi.org/10.1007/s00424-020-02496-w] [PMID: 33336302]
[8]
Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 2003; 23(26): 8881-92.
[http://dx.doi.org/10.1523/JNEUROSCI.23-26-08881.2003] [PMID: 14523090]
[9]
Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004; 24(20): 4832-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0300-04.2004] [PMID: 15152043]
[10]
Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37(3): 146-58.
[http://dx.doi.org/10.1016/j.tins.2013.12.002] [PMID: 24461875]
[11]
Jiang H, Tian SL, Zeng Y, Li LL, Shi J. TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation. Brain Res Bull 2008; 76(1-2): 124-30.
[http://dx.doi.org/10.1016/j.brainresbull.2008.01.013] [PMID: 18395621]
[12]
Sun HS, Jackson MF, Martin LJ, et al. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 2009; 12(10): 1300-7.
[http://dx.doi.org/10.1038/nn.2395] [PMID: 19734892]
[13]
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4(147): 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[14]
Ionchannellibrary Ion channel drug candidates in preclinical development and clinical trials Available from: https://www.ionchannellibrary.com/drugs-in-clinical-trials/ (accessed Dec 07, 2021).
[15]
Bayer, Annual report 2019; 2019: 43.
[16]
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12: 600050.
[http://dx.doi.org/10.3389/fneur.2021.600050] [PMID: 33841294]
[17]
Meisler MH. SCN8A encephalopathy: Mechanisms and models. Epilepsia 2019; 60 (Suppl. 3): S86-91.
[18]
Hu W, Tian C, Li T, Yang M, Hou H, Shu Y. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 2009; 12(8): 996-1002.
[http://dx.doi.org/10.1038/nn.2359] [PMID: 19633666]
[19]
Veeramah KR, O’Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012; 90(3): 502-10.
[http://dx.doi.org/10.1016/j.ajhg.2012.01.006] [PMID: 22365152]
[20]
Estacion M, O’Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 2014; 69: 117-23.
[http://dx.doi.org/10.1016/j.nbd.2014.05.017] [PMID: 24874546]
[21]
Neurocrine Biosciences Inc. Commercially Available and Pipeline Candidates Available from: https://www.neurocrine.com/pipeline/pipeline-overview/
[22]
Praxis Precision Medicines. Praxis Precision Medicines receives orphan drug designation for prax-562 for the treatment of scn2a-dee Available from: https://investors.praxismedicines.com/news-releases/news-release-details/praxis-precision-medicines-receives-orphan-drug-designation-0
[23]
Wengert ER, Patel MK. The role of the persistent sodium current in epilepsy. Epilepsy Curr 2021; 21(1): 40-7.
[http://dx.doi.org/10.1177/1535759720973978] [PMID: 33236643]
[24]
Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001; 68(6): 1327-32.
[http://dx.doi.org/10.1086/320609] [PMID: 11359211]
[25]
Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol 2010; 588(Pt 11): 1841-8.
[http://dx.doi.org/10.1113/jphysiol.2010.188482] [PMID: 20351042]
[26]
De Jonghe P. Molecular genetics of Dravet syndrome. Dev Med Child Neurol 2011; 53 (Suppl. 2): 7-10.
[http://dx.doi.org/10.1111/j.1469-8749.2011.03965.x] [PMID: 21504425]
[27]
Parihar R, Ganesh S. The SCN1A gene variants and epileptic encephalopathies. J Hum Genet 2013; 58(9): 573-80.
[http://dx.doi.org/10.1038/jhg.2013.77] [PMID: 23884151]
[28]
Dutton SB, Makinson CD, Papale LA, et al. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiol Dis 2013; 49: 211-20.
[http://dx.doi.org/10.1016/j.nbd.2012.08.012] [PMID: 22926190]
[29]
Du J, Simmons S, Brunklaus A, et al. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders. Eur J Paediatr Neurol 2020; 24: 129-33.
[http://dx.doi.org/10.1016/j.ejpn.2019.12.019] [PMID: 31928904]
[30]
Stoke Therapeutics TANGO. Available from: https://www.stoketherapeutics.com/our-science/tango/ (accessed Dec 10, 2021).
[31]
Sanders SJ, Campbell AJ, Cottrell JR, et al. Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends Neurosci 2018; 41(7): 442-56.
[http://dx.doi.org/10.1016/j.tins.2018.03.011] [PMID: 29691040]
[32]
Wolff M, Johannesen KM, Hedrich UBS, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140(5): 1316-36.
[http://dx.doi.org/10.1093/brain/awx054] [PMID: 28379373]
[33]
Reynolds C, King MD, Gorman KM. The phenotypic spectrum of SCN2A-related epilepsy. Eur J Paediatr Neurol 2020; 24: 117-22.
[http://dx.doi.org/10.1016/j.ejpn.2019.12.016] [PMID: 31924505]
[34]
Praxis Precision Medicines. Current development pipeline Available from: https://praxismedicines.com/ (accessed Dec 03, 2021).
[35]
Soldovieri MV, Miceli F, Taglialatela M. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology 2011; 26(5): 365-76.
[http://dx.doi.org/10.1152/physiol.00009.2011] [PMID: 22013194]
[36]
Berg AT, Mahida S, Poduri A. KCNQ2-DEE: developmental or epileptic encephalopathy? Ann Clin Transl Neurol 2021; 8(3): 666-76.
[http://dx.doi.org/10.1002/acn3.51316] [PMID: 33616268]
[37]
Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol 2009; 156(8): 1185-95.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00111.x] [PMID: 19298256]
[38]
Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83(1): 117-61.
[http://dx.doi.org/10.1152/physrev.00018.2002] [PMID: 12506128]
[39]
Kim D, Song I, Keum S, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 2001; 31(1): 35-45.
[http://dx.doi.org/10.1016/S0896-6273(01)00343-9] [PMID: 11498049]
[40]
Powell KL, Cain SM, Snutch TP, O’Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol 2014; 77(5): 729-39.
[http://dx.doi.org/10.1111/bcp.12205] [PMID: 23834404]
[41]
Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 2007; 62(6): 560-8.
[http://dx.doi.org/10.1002/ana.21169] [PMID: 17696120]
[42]
Chourasia N, Ossó-Rivera H, Ghosh A, Von Allmen G, Koenig MK. Expanding the Phenotypic Spectrum of CACNA1H Mutations. Pediatr Neurol 2019; 93: 50-5.
[http://dx.doi.org/10.1016/j.pediatrneurol.2018.11.017] [PMID: 30686625]
[43]
Eckle VS, Shcheglovitov A, Vitko I, et al. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol 2014; 592(4): 795-809.
[http://dx.doi.org/10.1113/jphysiol.2013.264176] [PMID: 24277868]
[44]
Cavion, Technology & Platform.. Available from: https://cavionpharma.com/technology (accessed Dec 03, 2021).
[45]
CACNA1A Foundation, XEN007 Available from: https://www.cacna1a.org/blog/post1 (accessed Dec 03, 2021).
[46]
Barnard EA, Skolnick P, Olsen RW, et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 1998; 50(2): 291-313.
[PMID: 9647870]
[47]
Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 2008; 60(3): 243-60.
[http://dx.doi.org/10.1124/pr.108.00505] [PMID: 18790874]
[48]
Nakajima K, Yin X, Takei Y, Seog DH, Homma N, Hirokawa N. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 2012; 76(5): 945-61.
[http://dx.doi.org/10.1016/j.neuron.2012.10.012] [PMID: 23217743]
[49]
Ali Rodriguez R, Joya C, Hines RM. Common ribs of inhibitory synaptic dysfunction in the umbrella of neurodevelopmental disorders. Front Mol Neurosci 2018; 11: 132.
[http://dx.doi.org/10.3389/fnmol.2018.00132] [PMID: 29740280]
[50]
Chuang SH, Reddy DS. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther 2018; 364(2): 180-97.
[http://dx.doi.org/10.1124/jpet.117.244673] [PMID: 29142081]
[51]
Ovid Therapeutics Inc. Announces Phase 3 NEPTUNE Clinical Trial of OV101 for the Treatment of Angelman Syndrome Did Not Meet Primary Endpoint. Available from: https://investors.ovidrx.com/news-releases/news-release-details/ovid-therapeutics-announces-phase-3-neptune-clinical-trial-ov101 (accessed Dec 03, 2021).
[52]
Ovid Therapeutics Inc. Provides Update on OV101 Program and the Prioritization of its Resources Available from: https://investors.ovidrx.com/news-releases/news-release-details/ovid-provides-update-ov101-program-and-prioritization-its (accessed Dec 03, 2021).
[53]
Olmos-Alonso A, Schetters ST, Sri S, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 2016; 139(Pt 3): 891-907.
[http://dx.doi.org/10.1093/brain/awv379] [PMID: 26747862]
[54]
Park J, Wetzel I, Marriott I, et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 2018; 21(7): 941-51.
[http://dx.doi.org/10.1038/s41593-018-0175-4] [PMID: 29950669]
[55]
McQuade A, Blurton-Jones M. Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 2019; 431(9): 1805-17.
[http://dx.doi.org/10.1016/j.jmb.2019.01.045] [PMID: 30738892]
[56]
Cojocaru A, Burada E, Bălșeanu AT, et al. Roles of microglial ion channel in neurodegenerative diseases. J Clin Med 2021; 10(6): 1239.
[http://dx.doi.org/10.3390/jcm10061239] [PMID: 33802786]
[57]
Di L, Srivastava S, Zhdanova O, et al. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci USA 2010; 107(4): 1541-6.
[http://dx.doi.org/10.1073/pnas.0910133107] [PMID: 20080610]
[58]
Lee GS, Subramanian N, Kim AI, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012; 492(7427): 123-7.
[http://dx.doi.org/10.1038/nature11588] [PMID: 23143333]
[59]
Rossol M, Pierer M, Raulien N, et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun 2012; 3(1): 1329.
[http://dx.doi.org/10.1038/ncomms2339] [PMID: 23271661]
[60]
Murakami T, Ockinger J, Yu J, et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci 2012; 109(28): 11282-7.
[http://dx.doi.org/10.1073/pnas.1117765109] [PMID: 22733741]
[61]
Jin LW, Lucente JD, Nguyen HM, et al. Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer’s disease. Ann Clin Transl Neurol 2019; 6(4): 723-38.
[http://dx.doi.org/10.1002/acn3.754] [PMID: 31019997]
[62]
Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012; 32(9): 1699-717.
[http://dx.doi.org/10.1038/jcbfm.2012.91] [PMID: 22714048]
[63]
Simard JM, Woo SK, Gerzanich V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch 2012; 464(6): 573-82.
[http://dx.doi.org/10.1007/s00424-012-1166-z] [PMID: 23065026]
[64]
Woo SK, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Gerzanich V, Simard JM. SUR1-TRPM4 channels, not KATP, mediate brain swelling following cerebral ischemia. Neurosci Lett 2020; 718: 134729.
[http://dx.doi.org/10.1016/j.neulet.2019.134729] [PMID: 31899311]
[65]
Gerzanich V, Woo SK, Vennekens R, et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 2009; 15(2): 185-91.
[http://dx.doi.org/10.1038/nm.1899] [PMID: 19169264]
[66]
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 2009; 35(3): 549-62.
[http://dx.doi.org/10.1093/schbul/sbp006] [PMID: 19325164]
[67]
Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr 2018; 23(3): 187-91.
[http://dx.doi.org/10.1017/S1092852918001013] [PMID: 29954475]
[68]
Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther 2020; 205: 107426.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107426] [PMID: 31629007]
[69]
Tarabeux J, Kebir O, Gauthier J, et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 2011; 1(11): e55.
[http://dx.doi.org/10.1038/tp.2011.52] [PMID: 22833210]
[70]
Yu Y, Lin Y, Takasaki Y, et al. Rare loss of function mutations in N-methyl-D-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Transl Psychiatry 2018; 8(1): 12.
[http://dx.doi.org/10.1038/s41398-017-0061-y] [PMID: 29317596]
[71]
XiangWei W. Jiang Y, Yuan H. De Novo Mutations and Rare Variants Occurring in NMDA Receptors. Curr Opin Physiol 2018; 2: 27-35.
[http://dx.doi.org/10.1016/j.cophys.2017.12.013] [PMID: 29756080]
[72]
Mayer ML, Westbrook GL. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987; 28(3): 197-276.
[http://dx.doi.org/10.1016/0301-0082(87)90011-6] [PMID: 2883706]
[73]
Ruppersberg JP, von Kitzing E, Schoepfer R. The mechanism of magnesium block of NMDA receptors. Semin Neurosci 1994; 6(2): 87-96.
[http://dx.doi.org/10.1006/smns.1994.1012]
[74]
Rozov A, Burnashev N. Fast interaction between AMPA and NMDA receptors by intracellular calcium. Cell Calcium 2016; 60(6): 407-14.
[http://dx.doi.org/10.1016/j.ceca.2016.09.005] [PMID: 27707506]
[75]
Schmitt WB, Sprengel R, Mack V, et al. Restoration of spatial working memory by genetic rescue of GluR-A-deficient mice. Nat Neurosci 2005; 8(3): 270-2.
[http://dx.doi.org/10.1038/nn1412] [PMID: 15723058]
[76]
Wiedholz LM, Owens WA, Horton RE, et al. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 2008; 13(6): 631-40.
[http://dx.doi.org/10.1038/sj.mp.4002056] [PMID: 17684498]
[77]
Gulsuner S, Stein DJ, Susser ES, et al. Genetics of schizophrenia in the South African Xhosa. Science 2020; 367(6477): 569-73.
[http://dx.doi.org/10.1126/science.aay8833] [PMID: 32001654]
[78]
Novartis, Novartis builds on commitment to addressing need in neuropsychiatric disorders with Cadent Therapeutics acquisition. Available from: https://www.novartis.com/news/media-releases/novartis-builds-commitment-addressing-need-neuropsychiatric-disorders-cadent-therapeutics-acquisition (accessed Dec 03, 2021).
[79]
Chow A, Erisir A, Farb C, et al. K(+) channel expression distinguishes subpopulations of parvalbumin- and somatostatin-containing neocortical interneurons. J Neurosci 1999; 19(21): 9332-45.
[http://dx.doi.org/10.1523/JNEUROSCI.19-21-09332.1999] [PMID: 10531438]
[80]
Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 2002; 31(3-5): 277-87.
[http://dx.doi.org/10.1023/A:1024126110356] [PMID: 12815247]
[81]
Lien CC, Jonas P. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 2003; 23(6): 2058-68.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02058.2003] [PMID: 12657664]
[82]
Boddum K, Hougaard C, Lin X-YJ, et al. K(v)3.1/K(v)3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons. Neuropharmacology 2017; 118: 102-12.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.024] [PMID: 28242439]
[83]
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97(4): 1431-68.
[http://dx.doi.org/10.1152/physrev.00002.2017] [PMID: 28904001]
[84]
Yanagi M, Joho RH, Southcott SA, Shukla AA, Ghose S, Tamminga CA. Kv3.1-containing K(+) channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs. Mol Psychiatry 2014; 19(5): 573-9.
[http://dx.doi.org/10.1038/mp.2013.49] [PMID: 23628987]
[85]
Autifony Therapeutics, Pipeline. Available from: https://autifony.com/pipeline/ (accessed Dec 03, 2021).
[86]
Dickinson D, Straub RE, Trampush JW, et al. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals. JAMA Psychiatry 2014; 71(6): 647-56.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.157] [PMID: 24718902]
[87]
Fromer M, Pocklington AJ, Kavanagh DH, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506(7487): 179-84.
[http://dx.doi.org/10.1038/nature12929] [PMID: 24463507]
[88]
Li J, Cai T, Jiang Y, et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NP de novo database. Mol Psychiatry 2016; 21(2): 290-7.
[http://dx.doi.org/10.1038/mp.2015.40] [PMID: 25849321]
[89]
Tatsukawa T, Raveau M, Ogiwara I, et al. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism 2019; 10(1): 15.
[http://dx.doi.org/10.1186/s13229-019-0265-5] [PMID: 30962870]
[90]
Shin W, Kweon H, Kang R, et al. Scn2a Haploinsufficiency in mice suppresses hippocampal neuronal excitability, excitatory synaptic drive, and long-term potentiation, and spatial learning and memory. Front Mol Neurosci 2019; 12: 145.
[http://dx.doi.org/10.3389/fnmol.2019.00145] [PMID: 31249508]
[91]
Newron Pharmaceuticals, Pipeline Available from: https://www.newron.com/science#evenamide (accessed Dec 03, 2021).
[92]
Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 1997; 86(4): 903-17.
[http://dx.doi.org/10.1097/00000542-199704000-00021] [PMID: 9105235]
[93]
Aleksandrova LR, Wang YT, Phillips AG. Hydroxynorketamine: implications for the NMDA receptor hypothesis of ketamine’s antidepressant action. Chronic Stress (Thousand Oaks) 2017; 1: 1.
[http://dx.doi.org/10.1177/2470547017743511] [PMID: 30556028]
[94]
Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63(4): 349-52.
[http://dx.doi.org/10.1016/j.biopsych.2007.05.028] [PMID: 17643398]
[95]
Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 2011; 224(1): 107-11.
[http://dx.doi.org/10.1016/j.bbr.2011.05.035] [PMID: 21669235]
[96]
Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology 2016; 100: 17-26.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.028] [PMID: 26211972]
[97]
Mohamad FH, Has ATC. The α5-containing GABAA receptors-a brief summary. J Mol Neurosci 2019; 67(2): 343-51.
[http://dx.doi.org/10.1007/s12031-018-1246-4] [PMID: 30607899]
[98]
Fischell J, Van Dyke AM, Kvarta MD, LeGates TA, Thompson SM. Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABAA receptors. Neuropsychopharmacology 2015; 40(11): 2499-509.
[http://dx.doi.org/10.1038/npp.2015.112] [PMID: 25900119]
[99]
Zanos P, Nelson ME, Highland JN, et al. A negative allosteric modulator for α5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice. eNeuro 2017; 4(1): ENEURO.0285-16.2017.
[http://dx.doi.org/10.1523/ENEURO.0285-16.2017] [PMID: 28275719]
[100]
Xu NZ, Ernst M, Treven M, et al. Negative allosteric modulation of alpha 5-containing GABAA receptors engenders antidepressant-like effects and selectively prevents age-associated hyperactivity in tau-depositing mice. Psychopharmacology 2018; 235(4): 1151-61.
[http://dx.doi.org/10.1007/s00213-018-4832-9] [PMID: 29374303]
[101]
Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 2019; 13: 87.
[http://dx.doi.org/10.3389/fncel.2019.00087] [PMID: 30914923]
[102]
Vollenweider I, Smith KS, Keist R, Rudolph U. Antidepressant-like properties of α2-containing GABA(A) receptors. Behav Brain Res 2011; 217(1): 77-80.
[http://dx.doi.org/10.1016/j.bbr.2010.10.009] [PMID: 20965216]
[103]
Yang LP, Jiang FJ, Wu GS, et al. Acute treatment with a novel TRPC4/C5 channel inhibitor produces antidepressant and anxiolytic-like effects in mice. PLoS One 2015; 10(8): e0136255.
[http://dx.doi.org/10.1371/journal.pone.0136255] [PMID: 26317356]
[104]
Just S, Chenard BL, Ceci A, et al. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. PLoS One 2018; 13(1): e0191225.
[http://dx.doi.org/10.1371/journal.pone.0191225] [PMID: 29385160]
[105]
Riccio A, Li Y, Moon J, et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 2009; 137(4): 761-72.
[http://dx.doi.org/10.1016/j.cell.2009.03.039] [PMID: 19450521]
[106]
Riccio A, Li Y, Tsvetkov E, et al. Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J Neurosci 2014; 34(10): 3653-67.
[http://dx.doi.org/10.1523/JNEUROSCI.2274-13.2014] [PMID: 24599464]
[107]
Boehringer Ingelheim, Our Human Pharma Research and Development Pipeline. Available from: https://www.boehringer-ingelheim.com/science/human-health/research-and-development-pipeline (accessed Dec 07, 2021).
[108]
Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 2006; 176(7): 3877-83.
[http://dx.doi.org/10.4049/jimmunol.176.7.3877] [PMID: 16547218]
[109]
Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 2008; 105(2): 751-6.
[http://dx.doi.org/10.1073/pnas.0708092105] [PMID: 18178625]
[110]
Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 2013; 31: 105-14.
[http://dx.doi.org/10.1016/j.bbi.2012.12.008] [PMID: 23261775]
[111]
Iwata M, Ota KT, Li XY, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry 2016; 80(1): 12-22.
[http://dx.doi.org/10.1016/j.biopsych.2015.11.026] [PMID: 26831917]
[112]
Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015; 97(4): 498-511.
[http://dx.doi.org/10.1016/j.bcp.2015.07.029] [PMID: 26231942]
[113]
Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 1993; 13(2): 596-604.
[http://dx.doi.org/10.1523/JNEUROSCI.13-02-00596.1993] [PMID: 7678857]
[114]
Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A. Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn Mem 1998; 5(4-5): 302-16.
[http://dx.doi.org/10.1101/lm.5.4.302] [PMID: 10454356]
[115]
Pandya AA, Yakel JL. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT₁a receptor antagonist. Neuropharmacology 2013; 70: 35-42.
[http://dx.doi.org/10.1016/j.neuropharm.2013.01.004] [PMID: 23321689]
[116]
Smith KS, Engin E, Meloni EG, Rudolph U. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice. Neuropharmacology 2012; 63(2): 250-8.
[http://dx.doi.org/10.1016/j.neuropharm.2012.03.001] [PMID: 22465203]
[117]
Löw K, Crestani F, Keist R, et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 2000; 290(5489): 131-4.
[http://dx.doi.org/10.1126/science.290.5489.131] [PMID: 11021797]
[118]
Botta P, Demmou L, Kasugai Y, et al. Regulating anxiety with extrasynaptic inhibition. Nat Neurosci 2015; 18(10): 1493-500.
[http://dx.doi.org/10.1038/nn.4102] [PMID: 26322928]
[119]
Behlke LM, Foster RA, Liu J, et al. A Pharmacogenetic ‘restriction-of-function’ approach reveals evidence for anxiolytic-like actions mediated by α5-containing GABAA receptors in mice. Neuropsychopharmacology 2016; 41(10): 2492-501.
[http://dx.doi.org/10.1038/npp.2016.49] [PMID: 27067130]
[120]
Piantadosi SC, French BJ, Poe MM, et al. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator. Front Pharmacol 2016; 7: 446.
[http://dx.doi.org/10.3389/fphar.2016.00446] [PMID: 27920723]
[121]
Frye RE, Casanova MF, Fatemi SH, et al. Neuropathological mechanisms of seizures in autism spectrum disorder. Front Neurosci 2016; 10: 192.
[http://dx.doi.org/10.3389/fnins.2016.00192] [PMID: 27242398]
[122]
Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study. J Autism Dev Disord 2001; 31(6): 537-43.
[http://dx.doi.org/10.1023/A:1013238809666] [PMID: 11814263]
[123]
Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2009; 39(2): 223-30.
[http://dx.doi.org/10.1007/s10803-008-0646-7] [PMID: 18821008]
[124]
Fatemi SH, Reutiman TJ, Folsom TD, Rustan OG, Rooney RJ, Thuras PD. Downregulation of GABAA receptor protein subunits α6, β2, δ ε γ2, θ and ρ2 in superior frontal cortex of subjects with autism. J Autism Dev Disord 2014; 44(8): 1833-45.
[http://dx.doi.org/10.1007/s10803-014-2078-x] [PMID: 24668190]
[125]
Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 2002; 52(8): 805-10.
[http://dx.doi.org/10.1016/S0006-3223(02)01430-0] [PMID: 12372652]
[126]
Cook EH Jr, Courchesne RY, Cox NJ, et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet 1998; 62(5): 1077-83.
[http://dx.doi.org/10.1086/301832] [PMID: 9545402]
[127]
Buxbaum JD, Silverman JM, Smith CJ, et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry 2002; 7(3): 311-6.
[http://dx.doi.org/10.1038/sj.mp.4001011] [PMID: 11920158]
[128]
Shao Y, Cuccaro ML, Hauser ER, et al. Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet 2003; 72(3): 539-48.
[http://dx.doi.org/10.1086/367846] [PMID: 12567325]
[129]
Cellot G, Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr 2014; 2: 70.
[http://dx.doi.org/10.3389/fped.2014.00070] [PMID: 25072038]
[130]
ClinicalTrials.gov. U.S. National Library of Medicine, A Study to Evaluate the Safety and Tolerability of SAGE-718 in Participants With Mild Cognitive Impairment or Mild Dementia Due to Alzheimer's Disease (AD). Available from: https://clinicaltrials.gov/ct2/show/NCT04602624 (Accessed Dec 07, 2021).
[131]
Wu B, Murray JK, Andrews KL, et al. Discovery of Tarantula Venom-Derived NaV1.7-Inhibitory JzTx-V Peptide 5-Br-Trp24 Analogue AM-6120 with Systemic Block of Histamine-Induced Pruritis. J Med Chem 2018; 61(21): 9500-12.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00736] [PMID: 30346167]
[132]
Moyer BD, Murray JK, Ligutti J, et al. Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V. PLoS One 2018; 13(5): e0196791.
[http://dx.doi.org/10.1371/journal.pone.0196791] [PMID: 29723257]
[133]
Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers 2019; 5(1): 30.
[http://dx.doi.org/10.1038/s41572-019-0079-y] [PMID: 31048702]
[134]
Pedersen TH, Riisager A, de Paoli FV, Chen TY, Nielsen OB. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. J Gen Physiol 2016; 147(4): 291-308.
[http://dx.doi.org/10.1085/jgp.201611582] [PMID: 27022190]
[135]
Louis ED. Essential tremor. Lancet Neurol 2005; 4(2): 100-10.
[http://dx.doi.org/10.1016/S1474-4422(05)00991-9] [PMID: 15664542]
[136]
Louis ED. The roles of age and aging in essential tremor: an epidemiological perspective. Neuroepidemiology 2019; 52(1-2): 111-8.
[http://dx.doi.org/10.1159/000492831] [PMID: 30625472]
[137]
Agarwal S, Biagioni MC. Essential tremor.In: StatPearls Treasure Island (FL): StatPearls Publishing, Copyright© 2021, StatPearls Publishing LLC. 2021.
[138]
Louis ED, Faust PL. Essential tremor: the most common form of cerebellar degeneration? Cerebellum Ataxias 2020; 7(1): 12.
[http://dx.doi.org/10.1186/s40673-020-00121-1] [PMID: 32922824]
[139]
Cheron G, Márquez-Ruiz J, Cheron J, et al. Purkinje cell BKchannel ablation induces abnormal rhythm in deep cerebellar nuclei and prevents LTD. Sci Rep 2018; 8(1): 4220.
[http://dx.doi.org/10.1038/s41598-018-22654-6] [PMID: 29523816]
[140]
Imlach WL, Finch SC, Dunlop J, Meredith AL, Aldrich RW, Dalziel JE. The molecular mechanism of “ryegrass staggers,” a neurological disorder of K+ channels. J Pharmacol Exp Ther 2008; 327(3): 657-64.
[http://dx.doi.org/10.1124/jpet.108.143933] [PMID: 18801945]
[141]
Dudem S, Large RJ, Kulkarni S, et al. LINGO1 is a regulatory subunit of large conductance, Ca2+-activated potassium channels. Proc Natl Acad Sci USA 2020; 117(4): 2194-200.
[http://dx.doi.org/10.1073/pnas.1916715117] [PMID: 31932443]
[142]
Kuo SH, Tang G, Louis ED, et al. Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol 2013; 125(6): 879-89.
[http://dx.doi.org/10.1007/s00401-013-1108-7] [PMID: 23543187]
[143]
Todorovic SM, Lingle CJ. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol 1998; 79(1): 240-52.
[http://dx.doi.org/10.1152/jn.1998.79.1.240] [PMID: 9425195]
[144]
Handforth A, Homanics GE, Covey DF, et al. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology 2010; 59(6): 380-7.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.012] [PMID: 20547167]
[145]
Park YG, Kim J, Kim D. The potential roles of T-type Ca2+ channels in motor coordination. Front Neural Circuits 2013; 7: 172.
[http://dx.doi.org/10.3389/fncir.2013.00172] [PMID: 24191148]
[146]
Kralic JE, Criswell HE, Osterman JL, et al. Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice. J Clin Invest 2005; 115(3): 774-9.
[http://dx.doi.org/10.1172/JCI200523625] [PMID: 15765150]
[147]
Chang KY, Park YG, Park HY, Homanics GE, Kim J, Kim D. Lack of CaV3.1 channels causes severe motor coordination defects and an age-dependent cerebellar atrophy in a genetic model of essential tremor. Biochem Biophys Res Commun 2011; 410(1): 19-23.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.082] [PMID: 21621520]
[148]
Paris-Robidas S, Brochu E, Sintes M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain 2012; 135(Pt 1): 105-16.
[http://dx.doi.org/10.1093/brain/awr301] [PMID: 22120148]
[149]
Marin-Lahoz J, Gironell A. Linking essential tremor to the cerebellum: neurochemical evidence. Cerebellum 2016; 15(3): 243-52.
[http://dx.doi.org/10.1007/s12311-015-0735-z] [PMID: 26498765]
[150]
Deng H, Xie WJ, Le WD, Huang MS, Jankovic J. Genetic analysis of the GABRA1 gene in patients with essential tremor. Neurosci Lett 2006; 401(1-2): 16-9.
[http://dx.doi.org/10.1016/j.neulet.2006.02.066] [PMID: 16530959]
[151]
Handforth A, Kadam PA, Kosoyan HP, Eslami P. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor. Tremor Other Hyperkinet Mov 2018; 8(0): 546.
[http://dx.doi.org/10.5334/tohm.407] [PMID: 30191083]
[152]
Sage Therapeutics, Inc. Pipeline. Available from: https://www.sagerx.com/programs-research/pipeline/ (accessed Dec 03, 2021).
[153]
Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003; 424(6950): 778-83.
[http://dx.doi.org/10.1038/nature01786] [PMID: 12917686]
[154]
Inoue K, Tsuda M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol 2021; 187: 114309.
[http://dx.doi.org/10.1016/j.bcp.2020.114309] [PMID: 33130129]
[155]
Ulmann L, Hirbec H, Rassendren F. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 2010; 29(14): 2290-300.
[http://dx.doi.org/10.1038/emboj.2010.126] [PMID: 20562826]
[156]
Trapero C, Martín-Satué M. Purinergic signaling in endometriosis-associated pain. Int J Mol Sci 2020; 21(22): E8512.
[http://dx.doi.org/10.3390/ijms21228512] [PMID: 33198179]
[157]
Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM. Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors. Proc Natl Acad Sci USA 2006; 103(47): 17880-4.
[http://dx.doi.org/10.1073/pnas.0608715103] [PMID: 17101979]
[158]
Ellison M, Haberlandt C, Gomez-Casati ME, et al. Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR. Biochemistry 2006; 45(5): 1511-7.
[http://dx.doi.org/10.1021/bi0520129] [PMID: 16445293]
[159]
Lips KS, Pfeil U, Kummer W. Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience 2002; 115(1): 1-5.
[http://dx.doi.org/10.1016/S0306-4522(02)00274-9] [PMID: 12401316]
[160]
Mohammadi SA, Christie MJ. Conotoxin Interactions with α9α10-nAChRs: Is the α9α10-Nicotinic Acetylcholine Receptor an Important Therapeutic Target for Pain Management? Toxins 2015; 7(10): 3916-32.
[http://dx.doi.org/10.3390/toxins7103916] [PMID: 26426047]
[161]
Richter K, Mathes V, Fronius M, et al. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors. Sci Rep 2016; 6(1): 28660.
[http://dx.doi.org/10.1038/srep28660] [PMID: 27349288]
[162]
Mashimo M, Moriwaki Y, Misawa H, Kawashima K, Fujii T. Regulation of immune functions by non-neuronal acetylcholine (ACh) via muscarinic and nicotinic ACh receptors. Int J Mol Sci 2021; 22(13): 6818.
[http://dx.doi.org/10.3390/ijms22136818] [PMID: 34202925]
[163]
ClinicalTrials.gov, U.S. National Library of Medicine, Study on the Safety of Drug BAY1817080 at Different Doses and the Way the Body Absorbs and Eliminates the Drug in Japanese Healthy Adult Male Participants. Available from: https://clinicaltrials.gov/ct2/show/NCT04265781 (Accessed Dec 07, 2021).
[164]
Ding S, Zhu L, Tian Y, Zhu T, Huang X, Zhang X. P2X3 receptor involvement in endometriosis pain via ERK signaling pathway. PLoS One 2017; 12(9): e0184647.
[http://dx.doi.org/10.1371/journal.pone.0184647] [PMID: 28898282]
[165]
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24(10): 997-1008.
[http://dx.doi.org/10.1080/14728222.2020.1815191] [PMID: 32838583]
[166]
Acadia Pharmaceuticals Inc. Early Stage Clinical Programs Available from: https://www.acadia-pharm.com/pipeline/early-stage-clinical-programs/ (accessed Dec 03, 2021).
[167]
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389(6653): 816-24.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[168]
Tominaga M, Caterina MJ, Malmberg AB, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998; 21(3): 531-43.
[http://dx.doi.org/10.1016/S0896-6273(00)80564-4] [PMID: 9768840]
[169]
Chuang HH, Prescott ED, Kong H, et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001; 411(6840): 957-62.
[http://dx.doi.org/10.1038/35082088] [PMID: 11418861]
[170]
Di Marzo V, Blumberg PM, Szallasi A. Endovanilloid signaling in pain. Curr Opin Neurobiol 2002; 12(4): 372-9.
[http://dx.doi.org/10.1016/S0959-4388(02)00340-9] [PMID: 12139983]
[171]
Shin CY, Shin J, Kim BM, et al. Essential role of mitochondrial permeability transition in vanilloid receptor 1-dependent cell death of sensory neurons. Mol Cell Neurosci 2003; 24(1): 57-68.
[http://dx.doi.org/10.1016/S1044-7431(03)00121-0] [PMID: 14550768]
[172]
Jin HW, Ichikawa H, Fujita M, et al. Involvement of caspase cascade in capsaicin-induced apoptosis of dorsal root ganglion neurons. Brain Res 2005; 1056(2): 139-44.
[http://dx.doi.org/10.1016/j.brainres.2005.07.025] [PMID: 16125681]
[173]
Sorrento Therapeutics, Inc. RTX. Available from: https://sorrentotherapeutics.com/research/pain/ (accessed Dec 03, 2021).
[174]
Kushnarev M, Pirvulescu IP, Candido KD, Knezevic NN. Neuropathic pain: preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin Investig Drugs 2020; 29(3): 259-71.
[http://dx.doi.org/10.1080/13543784.2020.1728254] [PMID: 32070160]
[175]
Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444(7121): 894-8.
[http://dx.doi.org/10.1038/nature05413] [PMID: 17167479]
[176]
Faber CG, Lauria G, Merkies IS, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA 2012; 109(47): 19444-9.
[http://dx.doi.org/10.1073/pnas.1216080109] [PMID: 23115331]
[177]
Ramachandran R, Thompson SK, Malkmus S, et al. Topical Application of ASN008, a Permanently Charged Sodium Channel Blocker, Shows Robust Efficacy, a Rapid Onset, and Long Duration of Action in a Mouse Model of Pruritus. J Pharmacol Exp Ther 2020; 374(3): 521-8.
[http://dx.doi.org/10.1124/jpet.120.265074] [PMID: 32616515]
[178]
Nocion Therapeutics Available from: https://www.nociontx.com/ (accessed Dec 03, 2021).
[179]
Sangameswaran L, Fish LM, Koch BD, et al. A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem 1997; 272(23): 14805-9.
[http://dx.doi.org/10.1074/jbc.272.23.14805] [PMID: 9169448]
[180]
England S, de Groot MJ. Subtype-selective targeting of voltage-gated sodium channels. Br J Pharmacol 2009; 158(6): 1413-25.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00437.x] [PMID: 19845672]
[181]
Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 1996; 379(6562): 257-62.
[http://dx.doi.org/10.1038/379257a0] [PMID: 8538791]
[182]
Akopian AN, Souslova V, England S, et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 1999; 2(6): 541-8.
[http://dx.doi.org/10.1038/9195] [PMID: 10448219]
[183]
Wex Pharmaceuticals. About Halneuron® Available from: https://wexpharma.com/technology/about-halneuron/ (accessed Dec 06, 2021).
[184]
Newron Pharmaceuticals, Ralfinamide. Available from: https://www.newron.com/science#ralfinamide (accessed Dec 06, 2021).
[185]
Altier C, Zamponi GW. Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 2004; 25(9): 465-70.
[http://dx.doi.org/10.1016/j.tips.2004.07.004] [PMID: 15559248]
[186]
Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 2001; 90(1): 1-19.
[http://dx.doi.org/10.1016/S0163-7258(01)00116-4] [PMID: 11448722]
[187]
Sah P, Faber ES. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 2002; 66(5): 345-53.
[http://dx.doi.org/10.1016/S0301-0082(02)00004-7] [PMID: 12015199]
[188]
Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ. P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 2008; 295(5): L858-65.
[http://dx.doi.org/10.1152/ajplung.90360.2008] [PMID: 18689601]
[189]
Idzko M, Hammad H, van Nimwegen M, et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 2007; 13(8): 913-9.
[http://dx.doi.org/10.1038/nm1617] [PMID: 17632526]
[190]
Lommatzsch M, Cicko S, Müller T, et al. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 181(9): 928-34.
[http://dx.doi.org/10.1164/rccm.200910-1506OC] [PMID: 20093639]
[191]
Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005; 85(1): 373-422.
[http://dx.doi.org/10.1152/physrev.00003.2004] [PMID: 15618484]
[192]
van Goor MKC, Hoenderop JGJ, van der Wijst J. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta Mol Cell Res 2017; 1864(6): 883-93.
[http://dx.doi.org/10.1016/j.bbamcr.2016.11.027] [PMID: 27913205]
[193]
Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta 2007; 1772(8): 937-46.
[http://dx.doi.org/10.1016/j.bbadis.2007.05.006] [PMID: 17616360]
[194]
Stewart JM. TRPV6 as a target for cancer therapy. J Cancer 2020; 11(2): 374-87.
[http://dx.doi.org/10.7150/jca.31640] [PMID: 31897233]
[195]
Raphaël M, Lehen’kyi V, Vandenberghe M, et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci 2014; 111(37): E3870-9.
[http://dx.doi.org/10.1073/pnas.1413409111] [PMID: 25172921]
[196]
Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 2008; 7(2): 271-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0478] [PMID: 18245667]
[197]
Song H, Dong M, Zhou J, Sheng W, Li X, Gao W. Expression and prognostic significance of TRPV6 in the development and progression of pancreatic cancer. Oncol Rep 2018; 39(3): 1432-40.
[http://dx.doi.org/10.3892/or.2018.6216] [PMID: 29344675]
[198]
Soricimed Biopharma, Discovery. Available from: https://www.soricimed.com/discovery.htm (accessed Dec 06, 2021).
[199]
Auger R, Motta I, Benihoud K, Ojcius DM, Kanellopoulos JM. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem 2005; 280(30): 28142-51.
[http://dx.doi.org/10.1074/jbc.M501290200] [PMID: 15937334]
[200]
Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997; 57(13): 2602-5.
[PMID: 9205063]
[201]
Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase. PLoS One 2008; 3(7): e2599.
[http://dx.doi.org/10.1371/journal.pone.0002599] [PMID: 18612415]
[202]
Gu BJ, Zhang W, Worthington RA, et al. A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 2001; 276(14): 11135-42.
[http://dx.doi.org/10.1074/jbc.M010353200] [PMID: 11150303]
[203]
Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15(10): 1170-8.
[http://dx.doi.org/10.1038/nm.2028] [PMID: 19767732]
[204]
Gilbert SM, Oliphant CJ, Hassan S, et al. ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene 2019; 38(2): 194-208.
[http://dx.doi.org/10.1038/s41388-018-0426-6] [PMID: 30087439]
[205]
Biosceptre International Ltd., Pipeline. Available from: https://www.biosceptre.com/pipeline/ (accessed Dec 06, 2021).
[206]
Oliphant CJ, Freeman FS, Imon GRL, et al. BIL06v immunizations generate antibodies specific for non-functional P2X7 (nfP2X7) that target solid tumors in vivo. Cancer Res 2019; 79(13) (Suppl.): LB-201.
[207]
Mall MA, Hartl D. CFTR: cystic fibrosis and beyond. Eur Respir J 2014; 44(4): 1042-54.
[http://dx.doi.org/10.1183/09031936.00228013] [PMID: 24925916]
[208]
Shin DH, Kim M, Kim Y, et al. Bicarbonate permeation through anion channels: its role in health and disease. Pflugers Arch 2020; 472(8): 1003-18.
[http://dx.doi.org/10.1007/s00424-020-02425-x] [PMID: 32621085]
[209]
Cystic Fibrosis Mutation Database. Available from: http://www.genet.sickkids.on.ca/Home.html (accessed Dec 06, 2021).
[210]
Fanen P, Wohlhuter-Haddad A, Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol 2014; 52: 94-102.
[http://dx.doi.org/10.1016/j.biocel.2014.02.023] [PMID: 24631642]
[211]
Chaudary N. Triplet CFTR modulators: future prospects for treatment of cystic fibrosis. Ther Clin Risk Manag 2018; 14: 2375-83.
[http://dx.doi.org/10.2147/TCRM.S147164] [PMID: 30584312]
[212]
Hoy SM. Elexacaftor/Ivacaftor/Tezacaftor: First Approval. Drugs 2019; 79(18): 2001-7.
[http://dx.doi.org/10.1007/s40265-019-01233-7] [PMID: 31784874]
[213]
Clunes LA, McMillan-Castanares N, Mehta N, et al. Epithelial vectorial ion transport in cystic fibrosis: dysfunction, measurement, and pharmacotherapy to target the primary deficit. SAGE Open Med 2020; 8: 2050312120933807.
[http://dx.doi.org/10.1177/2050312120933807] [PMID: 32637102]
[214]
AbbVie Inc. AbbVie Announces Collaboration with Cystic Fibrosis Foundation Available from: https://news.abbvie.com/ news/press-releases/news-type/corporate-news/abbvie-announces-collaboration-with-cystic-fibrosis-foundation.htm (accessed Dec 06, 2021).
[215]
Danahay H, Gosling M. TMEM16A: an alternative approach to restoring airway anion secretion in cystic fibrosis? Int J Mol Sci 2020; 21(7): E2386.
[http://dx.doi.org/10.3390/ijms21072386] [PMID: 32235608]
[216]
Enterprise Therapeutics. Enterprise Therapeutics’ First-in-Class TMEM16A potentiator program for treatment of cystic fibrosis and other respiratory diseases acquired by Roche. Available from: https://enterprisetherapeutics.com/enterprise-therapeutics-first-in-class-tmem16a-potentiator-program-for-treatment-of-cystic-fibrosis-and-other-respiratory-diseases-acquired-by-roche/ (accessed Dec 08, 2021).
[217]
Parion Sciences, Pipeline. Available from: https://www.parion.com/pipeline/ (accessed Dec 08, 2021).
[218]
Arrowhead Pharmaceuticals, Pipeline. Available from: https://arrowheadpharma.com/pipeline/ (accessed Dec 08, 2021).
[219]
Parion Sciences. Parion sciences and takeda end collaboration on p-321 for ophthalmic indications Available from: https://www.parion.com/uncategorized/parion-sciences-and-takeda-end-collaboration-on-p-321-for-ophthalmic-indications/ (accessed Dec 06, 2021).
[220]
Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol 2009; 2(2): 185-94.
[http://dx.doi.org/10.1161/CIRCEP.108.789081] [PMID: 19808464]
[221]
Priest BT, McDermott JS. Cardiac ion channels. Channels 2015; 9(6): 352-9.
[http://dx.doi.org/10.1080/19336950.2015.1076597] [PMID: 26556552]
[222]
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Cardiac small-conductance calcium-activated potassium channels in health and disease. Pflugers Arch 2021; 473(3): 477-89.
[http://dx.doi.org/10.1007/s00424-021-02535-0] [PMID: 33624131]
[223]
Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 2010; 42(3): 240-4.
[http://dx.doi.org/10.1038/ng.537] [PMID: 20173747]
[224]
Ellinor PT, Lunetta KL, Albert CM, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 2012; 44(6): 670-5.
[http://dx.doi.org/10.1038/ng.2261] [PMID: 22544366]
[225]
Li N, Timofeyev V, Tuteja D, et al. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 2009; 587(Pt 5): 1087-100.
[http://dx.doi.org/10.1113/jphysiol.2008.167718] [PMID: 19139040]
[226]
Zhang XD, Timofeyev V, Li N, et al. Critical roles of a small conductance Ca2⁺-activated K⁺ channel (SK3) in the repolarization process of atrial myocytes. Cardiovasc Res 2014; 101(2): 317-25.
[http://dx.doi.org/10.1093/cvr/cvt262] [PMID: 24282291]
[227]
Christophersen P, Wulff H. Pharmacological gating modulation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.x and KCa3.1). Channels 2015; 9(6): 336-43.
[http://dx.doi.org/10.1080/19336950.2015.1071748] [PMID: 26217968]
[228]
Mason JW, Elliott GT, Romano SJ, et al. Abstract 11495: HBI-3000: A Novel Drug for Conversion of Atrial Fibrillation - Phase 1 Study Results. Circulation 2019; 140 (Suppl. 1): A11495.
[229]
Shibasaki K. TRPV4 ion channel as important cell sensors. J Anesth 2016; 30(6): 1014-9.
[http://dx.doi.org/10.1007/s00540-016-2225-y] [PMID: 27506578]
[230]
Liu L, Guo M, Lv X, et al. Role of transient receptor potential vanilloid 4 in vascular function. Front Mol Biosci 2021; 8: 677661.
[http://dx.doi.org/10.3389/fmolb.2021.677661] [PMID: 33981725]
[231]
Randhawa PK, Jaggi AS. TRPV4 channels: physiological and pathological role in cardiovascular system. Basic Res Cardiol 2015; 110(6): 54.
[http://dx.doi.org/10.1007/s00395-015-0512-7] [PMID: 26415881]
[232]
GlaxoSmithKline, Our pipeline. Available from: https://www.gsk.com/en-gb/research-and-development/our-pipeline/ (accessed Dec 08, 2021).
[233]
Goyal N, Skrdla P, Schroyer R, et al. Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects. Am J Cardiovasc Drugs 2019; 19(3): 335-42.
[http://dx.doi.org/10.1007/s40256-018-00320-6] [PMID: 30637626]
[234]
Brooks CA, Barton LS, Behm DJ, et al. Discovery of GSK3527497: a candidate for the inhibition of transient receptor potential vanilloid-4 (TRPV4). J Med Chem 2019; 62(20): 9270-80.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01247] [PMID: 31532662]
[235]
Srikanth S, Gwack Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 2013; 35(3): 182-94.
[http://dx.doi.org/10.1007/s10059-013-0073-2] [PMID: 23483280]
[236]
Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M. KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta 2014; 1843(10): 2322-33.
[http://dx.doi.org/10.1016/j.bbamcr.2014.02.019] [PMID: 24613282]
[237]
Wulff H, Calabresi PA, Allie R, et al. The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 2003; 111(11): 1703-13.
[http://dx.doi.org/10.1172/JCI16921] [PMID: 12782673]
[238]
Beeton C, Wulff H, Standifer NE, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 2006; 103(46): 17414-9.
[http://dx.doi.org/10.1073/pnas.0605136103] [PMID: 17088564]
[239]
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in infection and inflammation. Immunity 2017; 47(1): 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[240]
Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K. Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 2009; 108(1): 115-25.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05744.x] [PMID: 19014371]
[241]
Castañeda O, Sotolongo V, Amor AM, et al. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon 1995; 33(5): 603-13.
[http://dx.doi.org/10.1016/0041-0101(95)00013-C] [PMID: 7660365]
[242]
Tarcha EJ, Olsen CM, Probst P, et al. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial. PLoS One 2017; 12(7): e0180762.
[http://dx.doi.org/10.1371/journal.pone.0180762] [PMID: 28723914]
[243]
TEKv Therapeutics LLC. Available from: https://tekvt.com/ (accessed Dec 08, 2021).
[244]
Gram DX, Holst JJ, Szallasi A. TRPV1: A potential therapeutic target in type 2 diabetes and comorbidities? Trends Mol Med 2017; 23(11): 1002-13.
[http://dx.doi.org/10.1016/j.molmed.2017.09.005] [PMID: 29137713]
[245]
Festa A, D’Agostino R Jr, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation 2000; 102(1): 42-7.
[http://dx.doi.org/10.1161/01.CIR.102.1.42] [PMID: 10880413]
[246]
Wu T, Dorn JP, Donahue RP, Sempos CT, Trevisan M. Associations of serum C-reactive protein with fasting insulin, glucose, and glycosylated hemoglobin: the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol 2002; 155(1): 65-71.
[http://dx.doi.org/10.1093/aje/155.1.65] [PMID: 11772786]
[247]
Schaldecker T, Kim S, Tarabanis C, et al. Inhibition of the TRPC5 ion channel protects the kidney filter. J Clin Invest 2013; 123(12): 5298-309.
[http://dx.doi.org/10.1172/JCI71165] [PMID: 24231357]
[248]
Goldfinch Bio, Inc. Our Pipeline: Changing kidney disease treatment, for good. Available from: https://www.goldfinchbio.com/pipeline/ (accessed Dec 08, 2021).
[249]
ClinicalTrials.gov. U.S. National Library of Medicine, Granexin gel for diabetic foot ulcers. Available from: https://www.io.nihr.ac.uk/wp-content/uploads/2018/07/12177-Granexin-gel-for-Diabetic-foot-ulcer-V1.0-JUN2018-NON-CONF.pdf (Accessed Dec 06, 2021).
[250]
Saniona, SAN903.. Available from: https://saniona.com/pipeline/san903/ (accessed Dec 06, 2021).
[251]
SpringWorks Therapeutics. SpringWorks Therapeutics Launches with $103M in Series A Funding and Rights to Four Clinical Program. Available from: https://ir.springworkstx.com/news-releases/news-release-details/springworks-therapeutics-launches-103m-series-funding-and-rights (accessed Dec 07, 2021).
[252]
ClinicalTrials.gov. U.S. National library of medicine, senicapoc and dehydrated stomatocytosis. Available from: https://clinicaltrials.gov/ct2/show/NCT04372498?term=PF-05416266+OR+senicapoc+OR+ICA-17043&draw=2&rank=3 (accessed Dec 07, 2021).
[253]
IONCHANNELLIBRARY. Ion channel drugs on the market Available from: https://www.ionchannellibrary.com/drugs-on-the-market/ (accessed Dec 07, 2021).
[254]
Del Río-Sancho S, Cros C, Coutaz B, Cuendet M, Kalia YN. Cutaneous iontophoresis of μ-conotoxin CnIIIC-A potent NaV1.4 antagonist with analgesic, anaesthetic and myorelaxant properties. Int J Pharm 2017; 518(1-2): 59-65.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.054] [PMID: 28034736]
[255]
Kolosov A, Aurini L, Williams ED, Cooke I, Goodchild CS. Intravenous injection of leconotide, an omega conotoxin: synergistic antihyperalgesic effects with morphine in a rat model of bone cancer pain. Pain Med 2011; 12(6): 923-41.
[http://dx.doi.org/10.1111/j.1526-4637.2011.01118.x] [PMID: 21539704]
[256]
Lee SY, MacKinnon R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 2004; 430(6996): 232-5.
[http://dx.doi.org/10.1038/nature02632] [PMID: 15241419]
[257]
Suchyna TM, Tape SE, Koeppe RE II, Andersen OS, Sachs F, Gottlieb PA. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 2004; 430(6996): 235-40.
[http://dx.doi.org/10.1038/nature02743] [PMID: 15241420]
[258]
Cardoso FC. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem Pharmacol 2020; 181: 114107.
[http://dx.doi.org/10.1016/j.bcp.2020.114107] [PMID: 32579958]
[259]
Flinspach M, Xu Q, Piekarz AD, et al. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep 2017; 7(1): 39662.
[http://dx.doi.org/10.1038/srep39662] [PMID: 28045073]
[260]
Lopez L, Montnach J, Oliveira-Mendes B, et al. Synthetic analogues of huwentoxin-iv spider peptide with altered human NaV1.7/NaV1.6 selectivity ratios. Front Cell Dev Biol 2021; 9: 798588.
[http://dx.doi.org/10.3389/fcell.2021.798588] [PMID: 34988086]
[261]
Neff RA, Flinspach M, Gibbs A, et al. Comprehensive engineering of the tarantula venom peptide huwentoxin-IV to inhibit the human voltage-gated sodium channel hNav1.7. J Biol Chem 2020; 295(5): 1315-27.
[http://dx.doi.org/10.1016/S0021-9258(17)49888-7] [PMID: 31871053]
[262]
Murray JK, Ligutti J, Liu D, et al. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel. J Med Chem 2015; 58(5): 2299-314.
[http://dx.doi.org/10.1021/jm501765v] [PMID: 25658507]
[263]
Chen C, Xu B, Shi X, et al. GpTx-1 and [Ala5, Phe6, Leu26, Arg28]GpTx-1, two peptide NaV 1.7 inhibitors: analgesic and tolerance properties at the spinal level. Br J Pharmacol 2018; 175(20): 3911-27.
[http://dx.doi.org/10.1111/bph.14461] [PMID: 30076786]
[264]
Srairi-Abid N, Othman H, Aissaoui D, BenAissa R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019; 80: 160-74.
[http://dx.doi.org/10.1016/j.ceca.2019.05.003] [PMID: 31108338]
[265]
Dueñas-Cuellar RA, Santana CJC, Magalhães ACM, Pires OR Jr, Fontes W, Castro MS. Scorpion toxins and ion channels: potential applications in cancer therapy. Toxins 2020; 12(5): E326.
[http://dx.doi.org/10.3390/toxins12050326] [PMID: 32429050]
[266]
Díaz-García A, Varela D, Voltage-Gated K. Voltage-gated K+/Na+ channels and scorpion venom toxins in cancer. Front Pharmacol 2020; 11: 913.
[http://dx.doi.org/10.3389/fphar.2020.00913] [PMID: 32655396]
[267]
Mikaelian AG, Traboulay E, Zhang XM, et al. Pleiotropic anticancer properties of scorpion venom peptides: rhopalurus princeps venom as an anticancer agent. Drug Des Devel Ther 2020; 14: 881-93.
[http://dx.doi.org/10.2147/DDDT.S231008] [PMID: 32161447]
[268]
Kerkis I, Hayashi MA, Prieto da Silva AR, et al. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Res Int 2014; 2014: 675985.
[http://dx.doi.org/10.1155/2014/675985] [PMID: 24551848]
[269]
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2022; 206: 1-13.
[http://dx.doi.org/10.1016/j.toxicon.2021.12.005] [PMID: 34896407]
[270]
Rádis-Baptista G. Cell-penetrating peptides derived from animal venoms and toxins. Toxins 2021; 13(2): 147.
[http://dx.doi.org/10.3390/toxins13020147] [PMID: 33671927]
[271]
Campeiro JD, Marinovic MP, Carapeto FC, et al. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 2018; 50(2): 267-78.
[http://dx.doi.org/10.1007/s00726-017-2513-3] [PMID: 29235017]
[272]
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126: 170234.
[http://dx.doi.org/10.1016/j.peptides.2019.170234] [PMID: 31857106]
[273]
Kimura T. Screening techniques using the periplasmic expression of peptide libraries and target molecules. J Bioanal Biomed 2015; 09(05)
[http://dx.doi.org/10.4172/1948-593X.1000190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy