Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Comparative Study of L-shaped and U-shaped TFET Device with Temperature Variations

Author(s): Sweta Chander and Sanjeet Kumar Sinha*

Volume 12, Issue 3, 2022

Published on: 22 June, 2022

Article ID: e280422204204 Pages: 5

DOI: 10.2174/2210681212666220428120240

Price: $65

conference banner
Abstract

Background: In the nanometer regime, the impact of temperature is quite dominant in the device characteristics.

Objectives: A comparative study of L-shaped Tunnel Field Effect Transistors (TFETs) and Ushaped TFETs with temperature variation.

Methods: The effect of temperature has been studied for the device characteristics in terms of surface potential, electric field, and transfer characteristics using the Synopsys TCAD tool.

Results: The ON current and OFF current of L-shaped and U-shaped TFETs structure shows the enhanced performance due to the large area of channel length. The addition of n-type pocket under the source enhances both devices ON current and OFF current. Both L-shaped and U-shaped TFETs structures are easy to fabricate and cost-effective due to the use of already established Si technology.

Conclusion: In next-generation devices, the superior performance of L and U-shaped TFETs structure makes it a promising contender for low power applications as their subthreshold swing (SS) is less than 60 mV/decade is observed.

Keywords: Temperature, tunnel field effect transistor, L-shaped, U-shaped, channel length, ON current.

[1]
Ionescu, A.M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479(7373), 329-337.
[http://dx.doi.org/10.1038/nature10679] [PMID: 22094693]
[2]
Nagavarapu, V.; Jhaveri, R.; Woo, J.C.S. The tunnel source (PNPN) n-MOSFET: A novel high performance transistor. IEEE Trans. Electron Dev., 2008, 55(4), 1013-1019.
[http://dx.doi.org/10.1109/TED.2008.916711]
[3]
Matheu, P.; Ho, B.; Jacobson, Z.A.; Liu, T.J.K. Planar GeOI TFET performance improvement with back biasing. IEEE Trans. Electron Dev., 2012, 59(6), 1629-1635.
[http://dx.doi.org/10.1109/TED.2012.2191410]
[4]
Villalon, A.; Le Carval, G.; Martinie, S.; Le Royer, C.; Jaud, M-A.; Cristoloveanu, S. Further insights in TFET operation. IEEE Trans. Electron Dev., 2014, 61(8), 2893-2898.
[http://dx.doi.org/10.1109/TED.2014.2325600]
[5]
Gupta, N.; Makosiej, A.; Vladimirescu, A.; Amara, A.; Anghel, C. 3T-TFET bitcell based TFET-CMOS hybrid SRAM design for ultralow power applications Autom. Test Eur. Conf. Exhibit; DATE: Dresden, Germany, 2016, pp. 361-366.
[6]
Sinha, S.K.; Singh, P.; Chaudhury, S. Effect of temperature and chiral vector on emerging CNTFET device. IEEE International Conference on Computing for Sustainable Global Development (INDIACom), 2014, pp. 432-435.
[http://dx.doi.org/10.1109/IndiaCom.2014.6828174]
[7]
Avci, U.E.; Rios, R.; Kuhn, K.; Young, I.A. Comparison of performance switching energy and process variations for the TFET and MOSFET in logic. Technol. Symp., 2011, pp. 124-125.
[8]
Choi, W.Y.; Park, B.G.; Lee, J.D.; Liu, T-J.K. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett., 2007, 28(8), 743-745.
[http://dx.doi.org/10.1109/LED.2007.901273]
[9]
Sinha, S.K.; Chander, S. Investigation of DC Performance of Ge-Source Pocket Silicon-on-Insulator Tunnel Field Effect Transistor in Nano Regime", Inderscience. Int. J. Nanopart., 2021, 13(1), 13-20.
[http://dx.doi.org/10.1504/IJNP.2021.114896]
[10]
Yang, Z. Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett., 2016, 37(7), 839-842.
[http://dx.doi.org/10.1109/LED.2016.2574821]
[11]
Kim, S.W.; Kim, J.H.; King Liu, T-J.; Choi, W.Y.; Park, B-G. Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Dev., 2016, 63(4), 1774-1778.
[http://dx.doi.org/10.1109/TED.2015.2472496]
[12]
Pindoo, I.A.; Sinha, S.K.; Chander, S. Improvement of Electrical Characteristics of SiGe Source based Tunnel FEt devices;; Springer, Silicon, 2021, 13, pp. (9)3209-3215.
[http://dx.doi.org/10.1007/s12633-020-00674-0]
[13]
Sinha, S.K.; Kumar, K.; Chaudhury, S. Si/Ge/GaAs as channel material in Nanowire-FET structures for future semiconductor devices 11th IEEE International Conference on Electron Devices and Solid State Circuits, Nanyang Excutive Center, 2015, pp. 527-530.
[http://dx.doi.org/10.1109/EDSSC.2015.7285167]
[14]
Kim, S.H.; Kam, H.; Hu, C.; Liu, T-J.K. Germanium-source tunnel field effect transistors with with record high ION/IOFF VLSI Symp. Tech. Dig., 2009, pp. 178-179.
[15]
Anghel, C.; Hraziia, G.; Gupta, A.; Amara, A.; Vladimirescu, A. 30-nm tunnel FET with improved performance and reduced ambipolar current. IEEE Trans. Electron Dev., 2011, 58(6), 1649-1654.
[http://dx.doi.org/10.1109/TED.2011.2128320]
[16]
Bhuwalka, K.K.; Schulze, J.; Eisele, I. Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer. Jpn. J. Appl. Phys., 2004, 43(7A), 4073-4078.
[http://dx.doi.org/10.1143/JJAP.43.4073]
[17]
Chander, S.; Sinha, S.K.; Kumar, S.; Singh, P.K.; Baral, K.; Singh, K.; Jit, S. Temperature analysis of Ge/Si heterojunction SOI-tunnel FET. Superlattices Microstruct., 2017, 110, 162-170.
[http://dx.doi.org/10.1016/j.spmi.2017.08.048]
[18]
Kim, S.W.; Choi, W.Y.; Sun, M-C.; Kim, H.W.; Park, B-G. Design guideline of Si-based L-shaped tunneling field-effect transistors. Jpn. J. Appl. Phys., 2012, 51(6S), 06FE09-1-06FE09-4.
[http://dx.doi.org/10.7567/JJAP.51.06FE09]
[19]
Sinha, S.K.; Chaudhury, S. Impact of oxide thickness on gate capacitance-- A comprehensive analysis on MOSFET, Nanowire FET and CNTFET Devices. IEEE Trans. NanoTechnol., 2013, 12(6), 958-964.
[http://dx.doi.org/10.1109/TNANO.2013.2278021]
[20]
Wang, W.; Wang, P.F.; Zhang, C-M.; Lin, X.; Liu, X-Y.; Sun, Q.Q.; Zhou, P.; Zhang, D.W. Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Trans. Electron Dev., 2014, 61(1), 193-197.
[http://dx.doi.org/10.1109/TED.2013.2289075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy