Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Recent Trends and Prospects in the Iron-catalyzed Amination Reactions

Author(s): Richard Bartholomew, Thaipparambil Aneeja and Gopinathan Anilkumar*

Volume 11, Issue 1, 2022

Published on: 06 July, 2022

Page: [41 - 56] Pages: 16

DOI: 10.2174/2211544711666220428110348

Price: $65

Abstract

Iron-catalyzed C–H amination reactions have emerged as a potent tool in synthetic organic chemistry in recent years. These reactions are eco-friendly, highly catalytic efficient, and show good functional group tolerance. The organonitrogen products of the reaction have found wide applications in agricultural chemistry, medicinal chemistry, industrial chemistry, and natural product synthesis. This review focuses on the recent progress in iron-catalyzed C–H amination reactions and covers literature from 2019-2021.

Keywords: Iron catalysis, oxidative amination, reductive amination, C-N bond, green chemistry, natural product synthesis.

Graphical Abstract

[1]
Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substance: Synthesis patents, applications, 4th ed; Georg Thieme: Stuttgart, 2001.
[2]
Miller, J.S.; Manson, J.L. Organic- and molecule-based magnets. Acc. Chem. Res., 2001, 34, 563-570.
[http://dx.doi.org/10.1021/ar0000354] [PMID: 11456474]
[3]
Fleming, F.F.; Wang, Q. Direct cyanation, hydrocyanation, dicyanation and cyanofunctionalization of alkynes. Chem. Rev., 2003, 103, 2035-2078.
[http://dx.doi.org/10.1021/cr020045d] [PMID: 12744700]
[4]
Wu, Y.; Yuan, H.; Shi, F. Sustainable catalytic amination of diols: from cycloamination to monoamination. ACS Sustain. Chem.& Eng., 2018, 6, 1061-1067.
[http://dx.doi.org/10.1021/acssuschemeng.7b03373]
[5]
Hemmati, S.; Kamangar, S.A.; Yousefi, M.; Salehi, M.H.; Hekmati, M. Cu(I)-anchored polyvinyl alcohol coated-magnetic nanoparticles as heterogeneous nanocatalyst in Ullmann-type C–N coupling reactions. Appl. Organomet. Chem., 2020, 34, 5611.
[http://dx.doi.org/10.1002/aoc.5611]
[6]
Agrawal, T.; Sieber, J.D. Recent developments in C–C bond formation using catalytic reductive coupling strategies. Synthesis, 2020, 52, 2623-2638.
[http://dx.doi.org/10.1055/s-0040-1707128]
[7]
Wang, E.; Zhang, J.; Zhong, Z.; Chen, K.; Chen, M. Shuttling catalyst: facilitating C−C bond formation via cross-couplings with a thermoresponsive polymeric ligand. Isr. J. Chem., 2020, 260, 419-423.
[http://dx.doi.org/10.1002/ijch.201900143]
[8]
Sellars, J.D.; Steel, P.G. Transition metal-catalysed cross-coupling reactions of P-activated enols. Chem. Soc. Rev., 2011, 40(10), 5170-5180.
[http://dx.doi.org/10.1039/c1cs15100b] [PMID: 21731959]
[9]
Weires, N.A.; Baker, E.L.; Garg, N.K. Nickel-catalysed Suzuki-Miyaura coupling of amides. Nat. Chem., 2016, 8(1), 75-79.
[http://dx.doi.org/10.1038/nchem.2388] [PMID: 26673267]
[10]
Otto, N.; Opatz, T. Heterocycles from α-aminonitriles. Chemistry, 2014, 20(41), 13064-13077.
[http://dx.doi.org/10.1002/chem.201403956] [PMID: 25220941]
[11]
Karimov, R.R.; Hartwig, J.F. Transition-metal-catalyzed selective functionalization of C(sp3)-H Bonds in natural products. Angew. Chem. Int. Ed. Engl., 2018, 57(16), 4234-4241.
[http://dx.doi.org/10.1002/anie.201710330] [PMID: 29228463]
[12]
Chen, D.Y.K.; Youn, S.W.; Activation, C-H. C-H activation: a complementary tool in the total synthesis of complex natural products. Chemistry, 2012, 18(31), 9452-9474.
[http://dx.doi.org/10.1002/chem.201201329] [PMID: 22736530]
[13]
Netz, I.; Kucukdisli, M.; Opatz, T. Enantioselective synthesis of α-Quaternary amino acids by alkylation of deprotonated α-Aminonitriles. J. Org. Chem., 2015, 80(13), 6864-6869.
[http://dx.doi.org/10.1021/acs.joc.5b00868] [PMID: 26024300]
[14]
Pang, J.H.; Kaga, A.; Chiba, S. Nucleophilic amination of methoxypyridines by a sodium hydride-iodide composite. Chem. Commun. (Camb.), 2018, 54(73), 10324-10327.
[http://dx.doi.org/10.1039/C8CC05979A] [PMID: 30141796]
[15]
Storer, R.I.; Carrera, D.E.; Ni, Y.; MacMillan, D.W.C. Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc., 2006, 128(1), 84-86.
[http://dx.doi.org/10.1021/ja057222n] [PMID: 16390133]
[16]
Erdik, E.; Ay, M. Electrophilic amination of carbanions. Chem. Rev., 1989, 89, 1947-1980.
[http://dx.doi.org/10.1021/cr00098a014]
[17]
Li, H.; Guo, H.; Fang, Z.; Aida, T.M.; Smith, R.L. Cycloamination strategies for renewable N-heterocycles. Green Chem., 2020, 22, 582-611.
[http://dx.doi.org/10.1039/C9GC03655E]
[18]
Nobis, M.; Driessen-Hölscher, B. Doz, Recent developments in transition metal catalyzed intermolecular hydroamination reactions-a breakthrough? Angew. Chem. Int. Ed. Engl., 2001, 40(21), 3983-3985.
[http://dx.doi.org/10.1002/1521-3773(20011105)40:21<3983:AID-ANIE3983>3.0.CO;2-8] [PMID: 12404468]
[19]
Ye, K.Y.; He, H.; Liu, W.B.; Dai, L.X.; Helmchen, G.; You, S.L. Iridium-catalyzed allylic vinylation and asymmetric allylic amination reactions with o-aminostyrenes. J. Am. Chem. Soc., 2011, 133(46), 19006-19014.
[http://dx.doi.org/10.1021/ja2092954] [PMID: 21995503]
[20]
Ohshima, T.; Miyamoto, Y.; Ipposhi, J.; Nakahara, Y.; Utsunomiya, M.; Mashima, K. Platinum-catalyzed direct amination of allylic alcohols under mild conditions: Ligand and microwave effects, substrate scope, and mechanistic study. J. Am. Chem. Soc., 2009, 131(40), 14317-14328.
[http://dx.doi.org/10.1021/ja9046075] [PMID: 19761183]
[21]
Shou, W.G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Ruthenium-catalyzed intramolecular amination reactions of aryl- and vinylazides. Organometallics, 2009, 28, 6847-6854.
[http://dx.doi.org/10.1021/om900275j]
[22]
Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. Engl., 2008, 47(34), 6338-6361.
[http://dx.doi.org/10.1002/anie.200800497] [PMID: 18663711]
[23]
Dequirez, G.; Pons, V.; Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. Engl., 2012, 51(30), 7384-7395.
[http://dx.doi.org/10.1002/anie.201201945] [PMID: 22730346]
[24]
Hazelard, D.; Nocquet, P.A.; Compain, P. Catalytic C–H amination at its limits: challenges and solutions. Org. Chem. Front., 2017, 4, 2500-2521.
[http://dx.doi.org/10.1039/C7QO00547D]
[25]
Roizen, J.L.; Harvey, M.E.; Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C-H bonds. Acc. Chem. Res., 2012, 45(6), 911-922.
[http://dx.doi.org/10.1021/ar200318q] [PMID: 22546004]
[26]
Davies, H.M.L.; Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451(7177), 417-424.
[http://dx.doi.org/10.1038/nature06485] [PMID: 18216847]
[27]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2012, 51(36), 8960-9009.
[http://dx.doi.org/10.1002/anie.201201666] [PMID: 22887739]
[28]
Singh, R.; Sathish, E.; Gupta, A.K.S. Goyal, 3d- Transition metal catalyzed C-H to C-N bond formation: An update. Tetrahedron, 2021, 100, 132474-132478.
[http://dx.doi.org/10.1016/j.tet.2021.132474]
[29]
Aneeja, T.; Neetha, M.; Afsina, C.M.A.; Anilkumar, G. Recent advances and perspectives in manganese-catalyzed C–H activation. Catal. Sci. Technol., 2021, 11, 444-458.
[http://dx.doi.org/10.1039/D0CY02087G]
[30]
Paradine, S.M.; Griffin, J.R.; Zhao, J.; Petronico, A.L.; Miller, S.M.; Christina White, M. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp(3))-H amination. Nat. Chem., 2015, 7(12), 987-994.
[http://dx.doi.org/10.1038/nchem.2366] [PMID: 26587714]
[31]
Clark, J.R.; Feng, K.; Sookezian, A.; White, M.C. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization. Nat. Chem., 2018, 10(6), 583-591.
[http://dx.doi.org/10.1038/s41557-018-0020-0] [PMID: 29713037]
[32]
Yu, X.Q.; Huang, J.S.; Zhou, X.G.; Che, C.M. Amidation of saturated C-H bonds catalyzed by electron-deficient ruthenium and manganese porphyrins. A highly catalytic nitrogen atom transfer process. Org. Lett., 2000, 2(15), 2233-2236.
[http://dx.doi.org/10.1021/ol000107r] [PMID: 10930251]
[33]
Mastalir, M.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Manganese-catalyzed aminomethylation of aromatic compounds with methanol as a sustainable C1 building block. J. Am. Chem. Soc., 2017, 139(26), 8812-8815.
[http://dx.doi.org/10.1021/jacs.7b05253] [PMID: 28628321]
[34]
Yan, T.; Feringa, B.L.; Barta, K. Iron catalysed direct alkylation of amines with alcohols. Nat. Commun., 2014, 5, 5602.
[http://dx.doi.org/10.1038/ncomms6602] [PMID: 25424885]
[35]
Zhang, L.; Deng, L. C-H bond amination by iron-imido/nitrene species. Chin. Sci. Bull., 2012, 57, 2352-2360.
[http://dx.doi.org/10.1007/s11434-012-5151-x]
[36]
Chow, T.W.S.; Chen, G.Q.; Liu, Y.; Zhou, C.Y.; Che, C.M. Practical iron-catalyzed atom/group transfer and insertion reactions. Pure Appl. Chem., 2012, 84, 1685-1704.
[http://dx.doi.org/10.1351/PAC-CON-11-11-08]
[37]
Sharma, A.; Hartwig, J.F. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization. Nature, 2015, 517(7536), 600-604.
[http://dx.doi.org/10.1038/nature14127] [PMID: 25631448]
[38]
Karimov, R.R.; Sharma, A.; Hartwig, J.F. Late stage azidation of complex molecules. ACS Cent. Sci., 2016, 2(10), 715-724.
[http://dx.doi.org/10.1021/acscentsci.6b00214] [PMID: 27800554]
[39]
Harden, J.D.; Ruppel, J.V.; Gao, G.Y.; Zhang, X.P. Cobalt-catalyzed intermolecular C-H amination with bromamine-T as nitrene source. Chem. Commun. (Camb.), 2007, 28(44), 4644-4646.
[http://dx.doi.org/10.1039/b710677g] [PMID: 17989819]
[40]
Ghorai, S.; Chirke, S.S.; Xu, W.B.; Chen, J.F.; Li, C. Cobalt-catalyzed regio- and enantioselective allylic amination. J. Am. Chem. Soc., 2019, 141(29), 11430-11434.
[http://dx.doi.org/10.1021/jacs.9b06035] [PMID: 31274311]
[41]
Villanueva, O.; Weldy, N.M.; Blakey, S.B.; MacBeth, C.E. Cobalt catalyzed sp3 C-H amination utilizing aryl azides. Chem. Sci. (Camb.), 2015, 6(11), 6672-6675.
[http://dx.doi.org/10.1039/C5SC01162K] [PMID: 29435216]
[42]
Chen, Y.H.; Graßl, S.; Knochel, P. Cobalt-catalyzed electrophilic amination of aryl- and heteroarylzinc pivalates with N-hydroxylamine benzoates. Angew. Chem. Int. Ed. Engl., 2018, 57(4), 1108-1111.
[http://dx.doi.org/10.1002/anie.201710931] [PMID: 29160920]
[43]
Li, J.; Tan, E.; Keller, N.; Chen, Y.H.; Zehetmaier, P.M.; Jakowetz, A.C.; Bein, T.; Knochel, P. Cobalt-catalyzed electrophilic aminations with anthranils: an expedient route to condensed quinolines. J. Am. Chem. Soc., 2019, 141(1), 98-103.
[http://dx.doi.org/10.1021/jacs.8b11466] [PMID: 30558415]
[44]
Hie, L.; Ramgren, S.D.; Mesganaw, T.; Garg, N.K. Nickel-catalyzed amination of aryl sulfamates and carbamates using an air-stable precatalyst. Org. Lett., 2012, 14(16), 4182-4185.
[http://dx.doi.org/10.1021/ol301847m] [PMID: 22849697]
[45]
Fine Nathel, N.F.; Kim, J.; Hie, L.; Jiang, X.; Garg, N.K. Nickel-catalyzed amination of aryl chlorides and sulfamates in 2-Methyl-THF. ACS Catal., 2014, 4(9), 3289-3293.
[http://dx.doi.org/10.1021/cs501045v] [PMID: 25243095]
[46]
Harada, T.; Ueda, Y.; Iwai, T.; Sawamura, M. Nickel-catalyzed amination of aryl fluorides with primary amines. Chem. Commun. (Camb.), 2018, 54(14), 1718-1721.
[http://dx.doi.org/10.1039/C7CC08181B] [PMID: 29250630]
[47]
Hanley, P.S.; Clark, T.P.; Krasovskiy, A.L.; Ober, M.S.; O’Brien, J.P.; Staton, T.S. Palladium- and nickel-catalyzed amination of aryl fluorosulfonates. ACS Catal., 2016, 6, 3515-3519.
[http://dx.doi.org/10.1021/acscatal.6b00865]
[48]
Bismuto, A.; Delcaillau, T.; Müller, P.; Morandi, B. Nickel-catalyzed amination of aryl thioethers: a combined synthetic and mechanistic study. ACS Catal., 2020, 10, 4630-4639.
[http://dx.doi.org/10.1021/acscatal.0c00393]
[49]
Kwong, F.Y.; Buchwald, S.L. Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines. Org. Lett., 2003, 5(6), 793-796.
[http://dx.doi.org/10.1021/ol0273396] [PMID: 12633073]
[50]
Chang, J.W.W.; Ton, T.M.U.; Tania, S.; Taylor, P.C.; Chan, P.W.H. Practical copper(I)-catalysed amidation of aldehydes. Chem. Commun. (Camb.), 2010, 46(6), 922-924.
[http://dx.doi.org/10.1039/B918588G] [PMID: 20107651]
[51]
Gephart, R.T.; Warren, T.H. Copper-catalyzed sp3 C–H amination. Organometallics, 2012, 31, 7728-7752.
[http://dx.doi.org/10.1021/om300840z]
[52]
Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-catalyzed C-H functionalization reactions: efficient synthesis of heterocycles. Chem. Rev., 2015, 115(3), 1622-1651.
[http://dx.doi.org/10.1021/cr500410y] [PMID: 25531056]
[53]
Neetha, M.; Saranya, S.; Harry, N.A.; Anilkumar, G. Recent advances and perspectives in the copper-catalysed amination of aryl and heteroaryl halides. ChemistrySelect, 2020, 5, 736-753.
[http://dx.doi.org/10.1002/slct.201904436]
[54]
Yoo, E.J.; Ma, S.; Mei, T.S.; Chan, K.S.L.; Yu, J.Q. Pd-catalyzed intermolecular C-H amination with alkylamines. J. Am. Chem. Soc., 2011, 133(20), 7652-7655.
[http://dx.doi.org/10.1021/ja202563w] [PMID: 21520961]
[55]
Huang, P.C.; Gandeepan, P.; Cheng, C.H. Cu(I)-catalyzed intramolecular oxidative C-H amination of 2-aminoacetophenones: a convenient route toward isatins. Chem. Commun. (Camb.), 2013, 49(76), 8540-8542.
[http://dx.doi.org/10.1039/c3cc44435j] [PMID: 23945918]
[56]
Cuypers, T.; Morias, T.; Windels, S.; Marquez, C.; Goethem, C.V.; Vankelecom, I.; Vos, D.E.D. Ni-Catalyzed reductive amination of phenols with ammonia or amines into cyclohexylamines. Green Chem., 2020, 22, 1884-1893.
[http://dx.doi.org/10.1039/C9GC02625H]
[57]
Jiang, L.; Zhou, P.; Zhang, Z.; Chi, Q.; Jin, S. Environmentally friendly synthesis of secondary amines via one-pot reductive amination over a heterogeneous Co–Nx catalyst. New J. Chem., 2017, 41, 11991-11997.
[http://dx.doi.org/10.1039/C7NJ02727C]
[58]
Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L. Iron(II)-Catalyzed Site-Selective Functionalization of Unactivated C(sp3)-H Bonds Guided by Alkoxyl Radicals. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11413-11417.
[http://dx.doi.org/10.1002/anie.201806434] [PMID: 30016576]
[59]
Wang, J.; Hou, J.T.; Wen, J.; Zhang, J.; Yu, X.Q. Iron-catalyzed direct amination of azoles using formamides or amines as nitrogen sources in air. Chem. Commun. (Camb.), 2011, 47(12), 3652-3654.
[http://dx.doi.org/10.1039/c0cc05811d] [PMID: 21327194]
[60]
Kennedy, C.R.; Joannou, M.V.; Steves, J.E.; Hoyt, J.M.; Kovel, C.B.; Chirik, P.J. Iron-catalyzed vinylsilane dimerization and cross-cycloadditions with 1,3-Dienes: probing the origins of chemo- and regioselectivity. ACS Catal., 2021, 11(3), 1368-1379.
[http://dx.doi.org/10.1021/acscatal.0c04608] [PMID: 34336370]
[61]
Ding, Y.; Kuang, J.; Xiao, X.; Wang, L.; Ma, Y. Environmentally benign synthesis of quinoline–spiroquinazolinones by iron-catalyzed dehydrogenative [4 + 2] cycloaddition of secondary/tertiary anilines and 4-methylene-quinazolinones. J. Org. Chem., 2021, 86(17), 12257-12266.
[http://dx.doi.org/10.1021/acs.joc.1c01602] [PMID: 34387487]
[62]
Zhao, M.N.; Ning, G.W.; Yang, D.S.; Fan, M.J.; Zhang, S.; Gao, P.; Zhao, L.F. Iron-catalyzed cycloaddition of amides and 2,3-Diaryl-2H-azirines to access oxazoles via C–N bond cleavage. J. Org. Chem., 2021, 86(3), 2957-2964.
[http://dx.doi.org/10.1021/acs.joc.0c02843] [PMID: 33443426]
[63]
Zhu, J.; Durham, A.C.; Wang, Y.; Corcoran, J.C.; Zuo, X.D.; Geib, S.J.; Wang, Y.M. Regiocontrolled coupling of alkynes and dipolar reagents: iron-mediated [3 + 2] cycloadditions revisited. Organometallics, 2021, 40, 2295-2304.
[http://dx.doi.org/10.1021/acs.organomet.1c00032]
[64]
Murata, S.; Miura, M.; Nomura, M. Iron-catalysed oxidation of N, N-dimethylaniline with molecular oxygen. J. Chem. Soc. Chem. Commun., 1989, 2, 116-118.
[http://dx.doi.org/10.1039/c39890000116]
[65]
He, Y.; Goldsmith, C.R. Observation of a ferric hydroperoxide complex during the non-heme iron catalysed oxidation of alkenes and alkanes by O2. Chem. Commun. (Camb.), 2012, 48(85), 10532-10534.
[http://dx.doi.org/10.1039/c2cc34634f] [PMID: 22992783]
[66]
van den Berg, T.A.; de Boer, J.W.; Browne, W.R.; Roelfes, G.; Feringa, B.L. Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids: evidence for involvement of Fe(IV)=O species. Chem. Commun. (Camb.), 2004, 22(22), 2550-2551.
[http://dx.doi.org/10.1039/B412016G] [PMID: 15543274]
[67]
Ziajka, J.; Beer, F.; Warneck, P. Iron-catalysed oxidation of bisulphite aqueous solution: evidence for a free radical chain mechanism. Atmos. Environ., 1994, 28, 2549-2552.
[http://dx.doi.org/10.1016/1352-2310(94)90405-7]
[68]
Roy, S.; Das, S.K.; Khatua, H.; Das, S.; Singh, K.N.; Chattopadhyay, B. Iron-catalyzed radical activation mechanism for denitrogenative rearrangement over C(sp3)–H amination. Angew. Chem. Int. Ed. Engl., 2021, 60(16), 8772-8780.
[http://dx.doi.org/10.1002/anie.202014950] [PMID: 33463874]
[69]
Hock, K.J.; Mertens, L.; Hommelsheim, R.; Spitzner, R.; Koenigs, R.M. Enabling iron catalyzed Doyle-Kirmse rearrangement reactions with in situ generated diazo compounds. Chem. Commun. (Camb.), 2017, 53(49), 6577-6580.
[http://dx.doi.org/10.1039/C7CC02801F] [PMID: 28574557]
[70]
Wei, K.; Yang, T.; Chen, Q.; Liang, S.; Yu, W. Iron-catalysed 1,2-aryl migration of tertiary azides. Chem. Commun. (Camb.), 2020, 56(78), 11685-11688.
[http://dx.doi.org/10.1039/D0CC04579A] [PMID: 33000809]
[71]
Zhao, D.; Zhou, Y.R.; Shen, Q.; Li, J.X. Iron-catalyzed oxidative synthesis of N-heterocycles from primary alcohols. RSC Advances, 2014, 4, 6486-6489.
[http://dx.doi.org/10.1039/c3ra46363j]
[72]
Iwasaki, M.; Kazao, Y.; Ishida, T.; Nishihara, Y. Synthesis of oxygen-containing heterocyclic compounds by iron-catalyzed alkylative cyclization of unsaturated carboxylic acids and alcohols. Org. Lett., 2020, 22(18), 7343-7347.
[http://dx.doi.org/10.1021/acs.orglett.0c02671] [PMID: 32870016]
[73]
Anagha, N.; Neetha, M.; Anilkumar, G. Iron-catalyzed synthesis of benzimidazoles: An overview. J. Organomet. Chem., 2022, 958, 122174.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122174]
[74]
Bosset, C.; Lefebvre, G.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Berthelot, D.; Guérinot, A.; Cossy, J. Iron-catalyzed synthesis of sulfur-containing heterocycles. J. Org. Chem., 2017, 82(8), 4020-4036.
[http://dx.doi.org/10.1021/acs.joc.6b01827] [PMID: 27736056]
[75]
Ratnikov, M.O.; Xu, X.; Doyle, M.P. Simple and sustainable iron-catalyzed aerobic C-H functionalization of N,N-dialkylanilines. J. Am. Chem. Soc., 2013, 135(25), 9475-9479.
[http://dx.doi.org/10.1021/ja402479r] [PMID: 23734676]
[76]
Cai, Y.; Zhu, S.F.; Wang, G.P.; Zhou, Q.L. Iron-catalyzed C-H fuctionalization of indoles. Adv. Synth. Catal., 2011, 353, 2939-2944.
[http://dx.doi.org/10.1002/adsc.201100334]
[77]
Li, H.; Achard, M.; Bruneau, C.; Sortais, J.B.; Darcel, C. Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. RSC Advances, 2014, 4, 25892-25897.
[http://dx.doi.org/10.1039/c4ra04037f]
[78]
Xu, S.; Geng, P.; Li, Y.; Liu, G.; Zhang, L.; Guo, Y.; Huang, Z. Pincer, Iron hydride complexes for alkene isomerization: catalytic approach to trisubstituted (Z)-alkenyl boronates. ACS Catal., 2021, 11, 10138-10147.
[http://dx.doi.org/10.1021/acscatal.1c02432]
[79]
Namea, L.L.; Toma, S.H.; Nogueira, H.P.; Avanzic, L.H.R. dos S. Pereirad, L. F. P. Ferreira, K. Araki, R. Cella, M. M. Toyama, Phosphotungstic acid impregnated niobium coated superparamagnetic iron oxide nanoparticles as recyclable catalyst for selective isomerization of terpenes. RSC Advances, 2021, 11, 14203-14212.
[http://dx.doi.org/10.1039/D1RA00012H]
[80]
Dhakshinamoorthy, A.; Alvaro, M.; Chevreau, H.; Horcajada, P.; Devic, T.; Serre, C.; Garcia, H. Iron(III) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol., 2012, 2, 324-330.
[http://dx.doi.org/10.1039/C2CY00376G]
[81]
Neilands, J.B. Met. Ions Biol. Syst., 1973, 13-42.
[http://dx.doi.org/10.1007/978-1-4684-3240-4_2]
[82]
Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C-H amination: scope, mechanism, and applications. Chem. Rev., 2017, 117(13), 9247-9301.
[http://dx.doi.org/10.1021/acs.chemrev.6b00644] [PMID: 28051855]
[83]
Liua, Y.T.; Youa, T.T. Wanga, C.M. Che, Iron-catalyzed C–H amination and its application in organic synthesis. Tetrahedron, 2019, 75, 130607.
[http://dx.doi.org/10.1016/j.tet.2019.130607]
[84]
Anugu, R.R.; Munnuri, S.; Falck, J.R. Picolinate-directed arene meta-C−H amination via FeCl3 catalysis. J. Am. Chem. Soc., 2020, 142(11), 5266-5271.
[http://dx.doi.org/10.1021/jacs.9b13753] [PMID: 32090542]
[85]
Aoki, Y.; Toyoda, T.; Kawasaki, H.; Takaya, H.; Sharma, A.K.; Morokuma, K.; Nakamura, M. Iron-catalyzed chemoselective C–N coupling reaction: A protecting-group-free amination of aryl halides bearing amino or hydroxy groups. Asian J. Org. Chem., 2020, 9, 372-376.
[http://dx.doi.org/10.1002/ajoc.201900641]
[86]
Airoldi, V.; Piccolo, O.; Roda, G.; Appiani, R.; Bavo, F.; Tassini, R.; Paganelli, S.; Arnoldi, S.; Pallavicini, M.; Bolchi, C. Efficient one-pot reductive aminations of carbonyl compounds with Aquivion-Fe as a recyclable catalyst and sodium borohydride. Eur. J. Org. Chem., 2020, 2, 162-168.
[http://dx.doi.org/10.1002/ejoc.201901614]
[87]
Falk, E.; Gasser, V.C.M.; Morandi, B. Synthesis of N-alkyl anilines from arenes via iron-promoted aromatic C-H Amination. Org. Lett., 2021, 23(4), 1422-1426.
[http://dx.doi.org/10.1021/acs.orglett.1c00099] [PMID: 33544600]
[88]
Vershinin, V.; Pappo, D. M[TPP]Cl (M = Fe or Mn)-Catalyzed oxidative amination of phenols by primary and secondary anilines. Org. Lett., 2020, 22(5), 1941-1946.
[http://dx.doi.org/10.1021/acs.orglett.0c00296] [PMID: 32049535]
[89]
Graßl, S.; Singer, J.; Knochel, P. Iron-mediated electrophilic amination of organozinc halides using organic azides. Angew. Chem. Int. Ed. Engl., 2020, 59(1), 335-338.
[http://dx.doi.org/10.1002/anie.201911704] [PMID: 31599056]
[90]
Akiyama, T.; Wada, Y.; Yamada, M.; Shio, Y.; Honma, T.; Shimoda, S.; Tsuruta, K.; Tamenori, Y.; Haneoka, H.; Suzuki, T.; Harada, K.; Tsurugi, H.; Mashima, K.; Hasegawa, J.Y.; Sato, Y.; Arisawa, M. Self-assembled multilayer iron(0) nanoparticle catalyst for ligand-free carbon–carbon/carbon–nitrogen bond-forming reactions. Org. Lett., 2020, 22(18), 7244-7249.
[http://dx.doi.org/10.1021/acs.orglett.0c02574] [PMID: 32903001]
[91]
Du, Y.D.; Zhou, C.Y.; To, W.P.; Wang, H.X.; Che, C.M. Iron porphyrin catalysed light driven C-H bond amination and alkene aziridination with organic azides. Chem. Sci. (Camb.), 2020, 11(18), 4680-4686.
[http://dx.doi.org/10.1039/D0SC00784F] [PMID: 34122922]
[92]
Baykal, A.; Plietker, B. The Bu4N[Fe(CO)3(NO)]-catalyzed Hemetsberger-Knittel-indole synthesis. Eur. J. Org. Chem., 2020, 2020, 1145-1147.
[http://dx.doi.org/10.1002/ejoc.201901864]
[93]
Wang, J.; Xiao, R.; Zheng, K.; Qian, L. Mechanistic and chemoselective insights on sp3- and sp2-C–H bond aminations: Fe- vs. Ir-based catalysis. Catal. Sci. Technol., 2021, 11, 5242-5249.
[http://dx.doi.org/10.1039/D1CY00682G]
[94]
Samanta, S.; Ghosh, A.K.; Ghosh, S.; Ilina, A.A.; Volkova, Y.A.; Zavarzin, I.V.; Scherbakov, A.M.; Salnikova, D.I.; Dzichenka, Y.U.; Sachenko, A.B.; Shirinian, V.Z.; Hajra, A. Fe(iii)-Catalyzed synthesis of steroidal imidazoheterocycles as potent antiproliferative agents. Org. Biomol. Chem., 2020, 18(29), 5571-5576.
[http://dx.doi.org/10.1039/D0OB01241F] [PMID: 32662797]
[95]
Jarrige, L.; Zhou, Z.; Hemming, M.; Meggers, E. Efficient amination of activated and non-activated C(sp3)-H bonds with a simple iron–phenanthroline catalyst. Angew. Chem. Int. Ed. Engl., 2021, 60(12), 6314-6319.
[http://dx.doi.org/10.1002/anie.202013687] [PMID: 33301240]
[96]
Liang, B.; Huang, J.; Zhu, W.; Li, Y.; Jiang, L.; Gao, Y.; Xie, F.; Li, Y.; Chen, X.; Zhu, Z. Iron-catalyzed electrophilic amination of sodium sulfinates with anthranils. Eur. J. Org. Chem., 2021, 2021, 1466-1473.
[http://dx.doi.org/10.1002/ejoc.202100010]
[97]
Bäumler, C.; Bauer, C.; Kempe, R. The synthesis of primary amines via reductive amination employing an iron catalyst. ChemSusChem, 2020, 13(12), 3110-3114.
[http://dx.doi.org/10.1002/cssc.202000856] [PMID: 32314866]
[98]
Zhang, Y.; Zhong, D.; Usman, M.; Xue, P.; Liu, W.B. Iron-catalyzed primary C–H amination of sulfamate esters and its application in the synthesis of azetidines. Chin. J. Chem., 2020, 38, 1651-1655.
[http://dx.doi.org/10.1002/cjoc.202000299]
[99]
Das, S.K.; Roy, S.; Khatua, H.; Chattopadhyay, B. Iron-catalyzed amination of strong aliphatic C(sp3)–H bonds. J. Am. Chem. Soc., 2020, 142(38), 16211-16217.
[http://dx.doi.org/10.1021/jacs.0c07810] [PMID: 32893615]
[100]
Vila, M.A.; Steck, V.; Rodriguez Giordano, S.; Carrera, I.; Fasan, R. C-H Amination via nitrene transfer catalyzed by mononuclear non-heme iron-dependent enzymes. ChemBioChem, 2020, 21(14), 1981-1987.
[http://dx.doi.org/10.1002/cbic.201900783] [PMID: 32189465]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy