Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Implications of COVID-19 to Stroke Medicine: An Epidemiological and Pathophysiological Perspective

Author(s): Alan King and Karen M. Doyle*

Volume 20, Issue 4, 2022

Published on: 17 June, 2022

Page: [333 - 340] Pages: 8

DOI: 10.2174/1570161120666220428101337

Price: $65

Abstract

The neurological complications of Coronavirus 2019 (COVID-19) including stroke have been documented in the recent literature. COVID-19-related inflammation is suggested to contribute to both a hypercoagulable state and haemorrhagic transformation, including in younger individuals.

COVID-19 is associated with a heightened risk of ischaemic stroke. Haemorrhagic stroke in COVID-19 patients is associated with increased morbidity and mortality. Cerebral venous sinus thrombosis (CVST) accounts for <1% of stroke cases in the general population but has come to heightened public attention due to the increased risk associated with adenoviral COVID-19 vaccines. However, recent evidence suggests the prevalence of stroke is less in vaccinated individuals than in unvaccinated COVID-19 patients. This review evaluates the current evidence of COVID-19-related ischaemic and haemorrhagic stroke, with a focus on current epidemiology and inflammatory-linked pathophysiology in the field of vascular neurology and stroke medicine.

Keywords: Ischaemic stroke, haemorrhagic stroke, COVID-19, inflammation, cerebrovascular disease, hypercoagulable state.

[1]
Sheraton M, Deo N, Kashyap R, Surani S. A review of neurological complications of COVID-19. Cureus 2020; 12(5): e8192.
[http://dx.doi.org/10.7759/cureus.8192] [PMID: 32455089]
[2]
Gao Y, Chen Y, Liu M, et al. Nervous system diseases are associated with the severity and mortality of patients with COVID-19: A systematic review and meta-analysis. Epidemiol Infect 2021; 149: e66.
[http://dx.doi.org/10.1017/S0950268821000376] [PMID: 33583450]
[3]
Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[4]
Godier A, Clausse D, Meslin S, et al. Major bleeding complications in critically ill patients with COVID-19 pneumonia. J Thromb Thrombolysis 2021; 52(1): 18-21.
[http://dx.doi.org/10.1007/s11239-021-02403-9] [PMID: 33646501]
[5]
Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2011 update: A report from the American Heart Association. Circulation 2011; 123(4): e18-e209.
[http://dx.doi.org/10.1161/CIR.0b013e3182009701] [PMID: 21160056]
[6]
National Heart, Lung, and Blood Institute, National Institutes of Health. Incidence and Prevalence: 2006 Chart Book on Cardiovascular and Lung Diseases. Bethesda United States: National Institutes of Health (NIH) 2006.
[7]
Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics--2007 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007; 115(5): e69-e171.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.179918] [PMID: 17194875]
[8]
Shahjouei S, Naderi S, Li J, et al. Risk of stroke in hospitalized SARS-CoV-2 infected patients: A multinational study. EBioMedicine 2020; 59: 102939.
[http://dx.doi.org/10.1016/j.ebiom.2020.102939] [PMID: 32818804]
[9]
Shahjouei S, Tsivgoulis G, Farahmand G, et al. SARS-CoV-2 and Stroke Characteristics: A Report From the Multinational COVID-19 Stroke Study Group. Stroke 2021; 52(5): e117-30.
[http://dx.doi.org/10.1161/STROKEAHA.120.032927] [PMID: 33878892]
[10]
Syahrul S, Maliga HA, Ilmawan M, et al. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: Incidence, risk factors, and pathogenesis - a systematic review and meta-analysis. F1000 Res 2021; 10: 34.
[http://dx.doi.org/10.12688/f1000research.42308.1] [PMID: 33708378]
[11]
Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry 2020; 7(10): 875-82.
[http://dx.doi.org/10.1016/S2215-0366(20)30287-X] [PMID: 32593341]
[12]
Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs. patients with influenza. JAMA Neurol 2020; 77(11): 1366-72.
[http://dx.doi.org/10.1001/jamaneurol.2020.2730] [PMID: 32614385]
[13]
Escalard S, Chalumeau V, Escalard C, et al. Early brain imaging shows increased severity of acute ischemic strokes with large vessel occlusion in COVID-19 patients. Stroke 2020; 51(11): 3366-70.
[http://dx.doi.org/10.1161/STROKEAHA.120.031011] [PMID: 32813602]
[14]
Ornello R, Degan D, Tiseo C, et al. Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: A systematic review and meta-analysis. Stroke 2018; 49(4): 814-9.
[http://dx.doi.org/10.1161/STROKEAHA.117.020031] [PMID: 29535272]
[15]
Lin E, Lantos JE, Strauss SB, et al. Brain imaging of patients with COVID-19: Findings at an academic institution during the height of the outbreak in New York City. AJNR Am J Neuroradiol 2020; 41(11): 2001-8.
[http://dx.doi.org/10.3174/ajnr.A6793] [PMID: 32819899]
[16]
Trifan G, Goldenberg FD, Caprio FZ, et al. Characteristics of a diverse cohort of stroke patients with SARSCoV-2 and outcome by sex. J Stroke Cerebrovasc Dis 2020; 29(11): 105314.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105314] [PMID: 32951959]
[17]
Tsivgoulis G, Katsanos AH, Ornello R, Sacco S. Ischemic stroke epidemiology during the COVID-19 pandemic: Navigating uncharted waters with changing tides. Stroke 2020; 51(7): 1924-6.
[http://dx.doi.org/10.1161/STROKEAHA.120.030791] [PMID: 32496937]
[18]
Yaghi S, Ishida K, Torres J, et al. SARS-CoV-2 and stroke in a New York healthcare system. Stroke 2020; 51(7): 2002-11.
[http://dx.doi.org/10.1161/STROKEAHA.120.030335] [PMID: 32432996]
[19]
Katsanos AH, Palaiodimou L, Zand R, et al. The impact of SARS-CoV-2 on stroke epidemiology and care: A meta-analysis. Ann Neurol 2021; 89(2): 380-8.
[http://dx.doi.org/10.1002/ana.25967] [PMID: 33219563]
[20]
Markus HS, Brainin M. COVID-19 and stroke-A global World Stroke Organization perspective. Int J Stroke 2020; 15(4): 361-4.
[http://dx.doi.org/10.1177/1747493020923472] [PMID: 32310017]
[21]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[22]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[23]
Requena M, Olivé-Gadea M, Muchada M, et al. COVID-19 and Stroke: Incidence and etiological description in a high-volume center. J Stroke Cerebrovasc Dis 2020; 29(11): 105225.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105225] [PMID: 33066917]
[24]
Rothstein A, Oldridge O, Schwennesen H, Do D, Cucchiara BL. Acute cerebrovascular events in hospitalized COVID-19 patients. Stroke 2020; 51(9): e219-22.
[http://dx.doi.org/10.1161/STROKEAHA.120.030995] [PMID: 32684145]
[25]
Sweid A, Hammoud B, Ramesh S, et al. Acute ischaemic stroke interventions: Large vessel occlusion and beyond. Stroke Vasc Neurol 2019; 5(1): 80-5.
[http://dx.doi.org/10.1136/svn-2019-000262] [PMID: 32411412]
[26]
Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: A review. Front Neurol 2017; 8: 651.
[http://dx.doi.org/10.3389/fneur.2017.00651] [PMID: 29250029]
[27]
Wang A, Mandigo GK, Yim PD, Meyers PM, Lavine SD. Stroke and mechanical thrombectomy in patients with COVID-19: Technical observations and patient characteristics. J Neurointerv Surg 2020; 12(7): 648-53.
[http://dx.doi.org/10.1136/neurintsurg-2020-016220] [PMID: 32451359]
[28]
Escalard S, Maïer B, Redjem H, et al. Treatment of acute ischemic stroke due to large vessel occlusion with COVID-19: Experience from Paris. Stroke 2020; 51(8): 2540-3.
[http://dx.doi.org/10.1161/STROKEAHA.120.030574] [PMID: 32466736]
[29]
Majidi S, Fifi JT, Ladner TR, et al. Emergent large vessel occlusion stroke during New York City’s COVID-19 outbreak: Clinical characteristics and paraclinical findings. Stroke 2020; 51(9): 2656-63.
[http://dx.doi.org/10.1161/STROKEAHA.120.030397] [PMID: 32755349]
[30]
Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med 2020; 382(20): e60.
[http://dx.doi.org/10.1056/NEJMc2009787] [PMID: 32343504]
[31]
Rudilosso S, Laredo C, Vera V, et al. Acute stroke care is at risk in the era of COVID-19: Experience at a comprehensive stroke center in Barcelona. Stroke 2020; 51(7): 1991-5.
[http://dx.doi.org/10.1161/STROKEAHA.120.030329] [PMID: 32438895]
[32]
Ashrafi F, Zali A, Ommi D, et al. COVID-19-related strokes in adults below 55 years of age: A case series. Neurol Sci 2020; 41(8): 1985-9.
[http://dx.doi.org/10.1007/s10072-020-04521-3] [PMID: 32583169]
[33]
Srivastava PK, Zhang S, Xian Y, et al. Acute ischemic stroke in patients with COVID-19: An analysis from get with the guidelines-stroke. Stroke 2021; 52(5): 1826-9.
[http://dx.doi.org/10.1161/STROKEAHA.121.034301] [PMID: 33728926]
[34]
Sweid A, Hammoud B, Bekelis K, et al. Cerebral ischemic and hemorrhagic complications of coronavirus disease 2019. Int J Stroke 2020; 15(7): 733-42.
[http://dx.doi.org/10.1177/1747493020937189] [PMID: 32501751]
[35]
Mirzaee SMM, Gonçalves FG, Mohammadifard M, Tavakoli SM, Vossough A. Focal cerebral arteriopathy in a pediatric patient with COVID-19. Radiology 2020; 297(2): E274-5.
[http://dx.doi.org/10.1148/radiol.2020202197] [PMID: 32484418]
[36]
Zanferrari C, Fanucchi S, Sollazzo MT, Ranieri M, Volterra D, Valvassori L. Focal cerebral arteriopathy in a young adult following SARS-CoV2 reinfection. J Stroke Cerebrovasc Dis 2021; 30(9): 105944.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105944] [PMID: 34271279]
[37]
Appavu B, Deng D, Dowling MM, et al. Arteritis and large vessel occlusive strokes in children after COVID-19 infection. Pediatrics 2021; 147(3): e2020023440.
[http://dx.doi.org/10.1542/peds.2020-023440] [PMID: 33277353]
[38]
LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol 2021; 78(5): 536-47.
[http://dx.doi.org/10.1001/jamaneurol.2021.0504] [PMID: 33666649]
[39]
Wang H, Tang X, Fan H, et al. Potential mechanisms of hemorrhagic stroke in elderly COVID-19 patients. Aging (Albany NY) 2020; 12(11): 10022-34.
[http://dx.doi.org/10.18632/aging.103335] [PMID: 32527987]
[40]
Ravindra VM, Grandhi R, Delic A, et al. Impact of COVID-19 on the hospitalization, treatment, and outcomes of intracerebral and subarachnoid hemorrhage in the United States. PLoS One 2021; 16(4): e0248728.
[http://dx.doi.org/10.1371/journal.pone.0248728] [PMID: 33852591]
[41]
Saposnik G, Barinagarrementeria F, Brown RD Jr, et al. Diagnosis and management of cerebral venous thrombosis: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011; 42(4): 1158-92.
[http://dx.doi.org/10.1161/STR.0b013e31820a8364] [PMID: 21293023]
[42]
Stam J. Thrombosis of the cerebral veins and sinuses. N Engl J Med 2005; 352(17): 1791-8.
[http://dx.doi.org/10.1056/NEJMra042354] [PMID: 15858188]
[43]
de Simone G, Stranges S, Gentile I. Incidence of cerebral venous thrombosis and COVID-19 vaccination: Possible causal effect or just chance? Eur Heart J Cardiovasc Pharmacother 2021; 7(4): e77-8.
[http://dx.doi.org/10.1093/ehjcvp/pvab036] [PMID: 33930114]
[44]
See I, Su JR, Lale A, et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S Vaccination, March 2 to April 21, 2021. JAMA 2021; 325(24): 2448-56.
[http://dx.doi.org/10.1001/jama.2021.7517] [PMID: 33929487]
[45]
Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021; 384(22): 2092-101.
[http://dx.doi.org/10.1056/NEJMoa2104840] [PMID: 33835769]
[46]
Scully M, Singh D, Lown R, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384(23): 2202-11.
[http://dx.doi.org/10.1056/NEJMoa2105385] [PMID: 33861525]
[47]
Warkentin TE, Basciano PA, Knopman J, Bernstein RA. Spontaneous heparin-induced thrombocytopenia syndrome: 2 new cases and a proposal for defining this disorder. Blood 2014; 123(23): 3651-4.
[http://dx.doi.org/10.1182/blood-2014-01-549741] [PMID: 24677540]
[48]
Al-Mufti F, Amuluru K, Sahni R, et al. Cerebral venous thrombosis in COVID-19: A New York metropolitan cohort study. AJNR Am J Neuroradiol 2021; 42(7): 1196-200.
[http://dx.doi.org/10.3174/ajnr.A7134] [PMID: 33888450]
[49]
Blazkova J, Skalicky P, Bradac O, Benes V Jr. Cerebral venous sinus thrombosis in infant with COVID-19. Acta Neurochir (Wien) 2022; 164(3): 853-8.
[http://dx.doi.org/10.1007/s00701-022-05116-x] [PMID: 35043266]
[50]
Baldini T, Asioli GM, Romoli M, et al. Cerebral venous thrombosis and severe acute respiratory syndrome coronavirus-2 infection: A systematic review and meta-analysis. Eur J Neurol 2021; 28(10): 3478-90.
[http://dx.doi.org/10.1111/ene.14727] [PMID: 33426733]
[51]
Mahase E. AstraZeneca vaccine: Blood clots are “extremely rare” and benefits outweigh risks, regulators conclude. BMJ 2021; 373(931): n931.
[http://dx.doi.org/10.1136/bmj.n931] [PMID: 33832929]
[52]
O’Dowd A. COVID-19: Cases of delta variant rise by 79%, but rate of growth slows. BMJ 2021; 373(1596): n1596.
[http://dx.doi.org/10.1136/bmj.n1596] [PMID: 34154997]
[53]
Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARSCoV-2 variant delta to antibody neutralization. Nature 2021; 596(7871): 276-80.
[http://dx.doi.org/10.1038/s41586-021-03777-9] [PMID: 34237773]
[54]
Shrivastava B. Gangrene, hearing loss show delta variant may be more severe Bloomberg 2021. Available from: https://www. bloomberg.com/news/articles/2021-06-07/gangrene-hearing-loss-point-to-delta-variant-being-more-severe
[55]
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in COVID-19-associated thrombosis: Molecular and cellular aspects. Front Cardiovasc Med 2021; 8: 785738.
[http://dx.doi.org/10.3389/fcvm.2021.785738] [PMID: 34977191]
[56]
Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta 2020; 509: 280-7.
[http://dx.doi.org/10.1016/j.cca.2020.06.017] [PMID: 32531256]
[57]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[58]
Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18(7): 1747-51.
[http://dx.doi.org/10.1111/jth.14854] [PMID: 32302448]
[59]
Maier CL, Truong AD, Auld SC, Polly DM, Tanksley C-L, Duncan A. COVID-19-associated hyperviscosity: A link between inflammation and thrombophilia? Lancet 2020; 395(10239): 1758-9.
[http://dx.doi.org/10.1016/S0140-6736(20)31209-5] [PMID: 32464112]
[60]
Hirano T, Murakami M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity 2020; 52(5): 731-3.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[61]
Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[62]
Laguna-Goya R, Utrero-Rico A, Talayero P, et al. IL-6-based mortality risk model for hospitalized patients with COVID-19. J Allergy Clin Immunol 2020; 146(4): 799-807.e9.
[http://dx.doi.org/10.1016/j.jaci.2020.07.009] [PMID: 32710975]
[63]
Valderrama EV, Humbert K, Lord A, Frontera J, Yaghi S. Severe acute respiratory syndrome coronavirus 2 infection and ischemic stroke. Stroke 2020; 51(7): e124-7.
[http://dx.doi.org/10.1161/STROKEAHA.120.030153] [PMID: 32396456]
[64]
Cuker A, Tseng EK, Nieuwlaat R, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv 2021; 5(3): 872-88.
[http://dx.doi.org/10.1182/bloodadvances.2020003763] [PMID: 33560401]
[65]
Nadkarni GN, Lala A, Bagiella E, et al. Anticoagulation, bleeding, mortality, and pathology in hospitalized patients with COVID-19. J Am Coll Cardiol 2020; 76(16): 1815-26.
[http://dx.doi.org/10.1016/j.jacc.2020.08.041] [PMID: 32860872]
[66]
Dogra S, Jain R, Cao M, et al. Hemorrhagic stroke and anticoagulation in COVID-19. J Stroke Cerebrovasc Dis 2020; 29(8): 104984.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104984] [PMID: 32689588]
[67]
Gomez K, Laffan M, Bradbury C. Debate: Should the dose or duration of anticoagulants for the prevention of venous thrombosis be increased in patients with COVID-19 while we are awaiting the results of clinical trials? Br J Haematol 2021; 192(3): 459-66.
[http://dx.doi.org/10.1111/bjh.17241] [PMID: 33236402]
[68]
Gordon AC, Mouncey PR, Al-Beidh F, et al. Interleukin-6 receptor antagonists in critically Ill patients with COVID-19. N Engl J Med 2021; 384(16): 1491-502.
[http://dx.doi.org/10.1056/NEJMoa2100433] [PMID: 33631065]
[69]
Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with COVID-19. N Engl J Med 2020; 383(24): 2333-44.
[http://dx.doi.org/10.1056/NEJMoa2028836] [PMID: 33085857]
[70]
Rosas IO, Bräu N, Waters M, et al. Tocilizumab in hospitalized patients with severe COVID-19 pneumonia. N Engl J Med 2021; 384(16): 1503-16.
[http://dx.doi.org/10.1056/NEJMoa2028700] [PMID: 33631066]
[71]
Chin BS, Conway DS, Chung NA, Blann AD, Gibbs CR, Lip GY. Interleukin-6, tissue factor and von Willebrand factor in acute decompensated heart failure: Relationship to treatment and prognosis. Blood Coagul Fibrinolysis 2003; 14(6): 515-21.
[http://dx.doi.org/10.1097/00001721-200309000-00001] [PMID: 12960603]
[72]
Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7(6): e438-40.
[http://dx.doi.org/10.1016/S2352-3026(20)30145-9] [PMID: 32407672]
[73]
Don BR, Kaysen G. Serum albumin: Relationship to inflammation and nutrition. Semin Dial 2004; 17(6): 432-7.
[http://dx.doi.org/10.1111/j.0894-0959.2004.17603.x] [PMID: 15660573]
[74]
Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr 2019; 43(2): 181-93.
[http://dx.doi.org/10.1002/jpen.1451] [PMID: 30288759]
[75]
Violi F, Cangemi R, Romiti GF, et al. Is albumin predictor of mortality in COVID-19? Antioxid Redox Signal 2021; 35(2): 139-42.
[http://dx.doi.org/10.1089/ars.2020.8142] [PMID: 32524832]
[76]
Violi F, Ceccarelli G, Cangemi R, et al. Hypoalbuminemia, coagulopathy, and vascular disease in COVID-19. Circ Res 2020; 127(3): 400-1.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317173] [PMID: 32508261]
[77]
Shaikh F, Shaikh FH, Chandio SA. Frequency of hypoalbuminemia and in-hospital mortality in acute ischemic stroke patients presenting at a tertiary care hospital, Hyderabad. Cureus 2021; 13(4): e14256.
[http://dx.doi.org/10.7759/cureus.14256] [PMID: 33959442]
[78]
Dziedzic T, Pera J, Slowik A, Gryz-Kurek EA, Szczudlik A. Hypoalbuminemia in acute ischemic stroke patients: Frequency and correlates. Eur J Clin Nutr 2007; 61(11): 1318-22.
[http://dx.doi.org/10.1038/sj.ejcn.1602643] [PMID: 17251921]
[79]
An SJ, Kim TJ, Yoon B-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J Stroke 2017; 19(1): 3-10.
[http://dx.doi.org/10.5853/jos.2016.00864] [PMID: 28178408]
[80]
Johansson K, Jansson J-H, Johansson L, Wiklund P-G, Nilsson TK, Lind M. D-dimer is associated with first-ever intracerebral hemorrhage. Stroke 2018; 49(9): 2034-9.
[http://dx.doi.org/10.1161/STROKEAHA.118.021751] [PMID: 30354971]
[81]
Aloisio E, Chibireva M, Serafini L, et al. A comprehensive appraisal of laboratory biochemistry tests as major predictors of COVID-19 severity. Arch Pathol Lab Med 2020; 144(12): 1457-64.
[http://dx.doi.org/10.5858/arpa.2020-0389-SA] [PMID: 32649222]
[82]
Paar M, Rossmann C, Nusshold C, et al. Anticoagulant action of low, physiologic, and high albumin levels in whole blood. PLoS One 2017; 12(8): e0182997.
[http://dx.doi.org/10.1371/journal.pone.0182997] [PMID: 28800610]
[83]
Mikhailidis DP, Ganotakis ES. Plasma albumin and platelet function: Relevance to atherogenesis and thrombosis. Platelets 1996; 7(3): 125-37.
[http://dx.doi.org/10.3109/09537109609023571] [PMID: 21043591]
[84]
Arques S. Serum albumin and cardiovascular disease: State-of-the-art review. Ann Cardiol Angeiol (Paris) 2020; 69(4): 192-200.
[http://dx.doi.org/10.1016/j.ancard.2020.07.012] [PMID: 32797938]
[85]
Gu Y, Dee CM, Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 2011; 3(4): 1216-31.
[http://dx.doi.org/10.2741/222] [PMID: 21622267]
[86]
Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 2013; 4: 32.
[http://dx.doi.org/10.3389/fneur.2013.00032] [PMID: 23565108]
[87]
Tsuge M, Yasui K, Ichiyawa T, et al. Increase of tumor necrosis factor-α in the blood induces early activation of matrix metalloproteinase-9 in the brain. Microbiol Immunol 2010; 54(7): 417-24.
[http://dx.doi.org/10.1111/j.1348-0421.2010.00226.x] [PMID: 20618688]
[88]
Ju X, Ijaz T, Sun H, et al. IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome. J Am Heart Assoc 2014; 3(1): e000476.
[http://dx.doi.org/10.1161/JAHA.113.000476] [PMID: 24449804]
[89]
Xie Z, Singh M, Singh K. Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1β. J Biol Chem 2004; 279(38): 39513-9.
[http://dx.doi.org/10.1074/jbc.M405844200] [PMID: 15269222]
[90]
Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 2016; 10: 56.
[http://dx.doi.org/10.3389/fncel.2016.00056] [PMID: 26973468]
[91]
Armstrong DA, Phelps LN, Vincenti MP. CCAAT enhancer binding protein-β; regulates matrix metalloproteinase-1 expression in interleukin-1β;-stimulated A549 lung carcinoma cells. Mol Cancer Res 2009; 7(9): 1517-24.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0082] [PMID: 19723873]
[92]
Mountain DJH, Singh M, Menon B, Singh K. Interleukin-1β; increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: Role of PKCalpha/β;1 and MAPKs. Am J Physiol Cell Physiol 2007; 292(2): C867-75.
[http://dx.doi.org/10.1152/ajpcell.00161.2006] [PMID: 16987994]
[93]
Zeni P, Doepker E, Schulze-Topphoff U, Huewel S, Tenenbaum T, Galla H-J. MMPs contribute to TNF-α-induced alteration of the blood-cerebrospinal fluid barrier in vitro. Am J Physiol Cell Physiol 2007; 293(3): C855-64.
[http://dx.doi.org/10.1152/ajpcell.00470.2006] [PMID: 17507431]
[94]
Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix metalloproteinases in acute intracerebral hemorrhage. Neurotherapeutics 2020; 17(2): 484-96.
[http://dx.doi.org/10.1007/s13311-020-00839-0] [PMID: 31975152]
[95]
Marten NW, Zhou J. The Role of Metalloproteinases in corona virus infection experimental models of multiple sclerosis. Boston, MA: Springer US 2005; pp. 839-48.
[http://dx.doi.org/10.1007/0-387-25518-4_48]
[96]
Syed F, Li W, Relich RF, et al. Excessive matrix metalloproteinase-1 and hyperactivation of endothelial cells occurred in COVID-19 patients and were associated with the severity of COVID-19. J Infect Dis 2021; 224(1): 60-9.
[http://dx.doi.org/10.1093/infdis/jiab167] [PMID: 33885811]
[97]
Desforges M, Miletti TC, Gagnon M, Talbot PJ. Activation of human monocytes after infection by human coronavirus 229E. Virus Res 2007; 130(1-2): 228-40.
[http://dx.doi.org/10.1016/j.virusres.2007.06.016] [PMID: 17669539]
[98]
Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci 2020; 257: 118096.
[http://dx.doi.org/10.1016/j.lfs.2020.118096] [PMID: 32679150]
[99]
Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27(4): 697-709.
[http://dx.doi.org/10.1038/sj.jcbfm.9600375] [PMID: 16850029]
[100]
Kazmierski R, Michalak S, Wencel-Warot A, Nowinski WL. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 2012; 79(16): 1677-85.
[http://dx.doi.org/10.1212/WNL.0b013e31826e9a83] [PMID: 22993287]
[101]
Voirin A-C, Perek N, Roche F. Inflammatory stress induced by a combination of cytokines (IL-6, IL-17, TNF-α) leads to a loss of integrity on bEnd.3 endothelial cells in vitro BBB model. Brain Res 2020; 1730: 146647.
[http://dx.doi.org/10.1016/j.brainres.2020.146647] [PMID: 31911168]
[102]
Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: Consequences for interendothelial adherens and tight junctions. PLoS One 2014; 9(7): e101815.
[http://dx.doi.org/10.1371/journal.pone.0101815] [PMID: 24992685]
[103]
Shepley-McTaggart A, Sagum CA, Oliva I, et al. SARS-CoV-2 Envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS One 2021; 16(6): e0251955.
[http://dx.doi.org/10.1371/journal.pone.0251955] [PMID: 34106957]
[104]
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARSCoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. Neurobiol Dis 2020; 146: 105131.
[http://dx.doi.org/10.1016/j.nbd.2020.105131] [PMID: 33053430]
[105]
Goldblum SE, Rai U, Tripathi A, et al. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J 2011; 25(1): 144-58.
[http://dx.doi.org/10.1096/fj.10-158972] [PMID: 20852064]
[106]
Skardelly M, Armbruster FP, Meixensberger J, Hilbig H. Expression of zonulin, c-kit, and glial fibrillary acidic protein in human gliomas. Transl Oncol 2009; 2(3): 117-20.
[http://dx.doi.org/10.1593/tlo.09115] [PMID: 19701495]
[107]
Oliviero S, Cortese R. The human haptoglobin gene promoter: Interleukin-6-responsive elements interact with a DNA-binding protein induced by interleukin-6. EMBO J 1989; 8(4): 1145-51.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03485.x] [PMID: 2787245]
[108]
Llorens S, Nava E, Muñoz-López M, Sánchez-Larsen Á, Segura T. Neurological symptoms of COVID-19: The zonulin hypothesis. Front Immunol 2021; 12: 665300.
[http://dx.doi.org/10.3389/fimmu.2021.665300] [PMID: 33981312]
[109]
Di Micco S, Musella S, Scala MC, et al. In silico analysis revealed potential anti-SARS-CoV-2 main protease activity by the zonulin inhibitor larazotide acetate. Front Chem 2021; 8: 628609.
[http://dx.doi.org/10.3389/fchem.2020.628609] [PMID: 33520943]
[110]
Bocsik A, Walter FR, Gyebrovszki A, et al. Reversible opening of intercellular junctions of intestinal epithelial and brain endothelial cells with tight junction modulator peptides. J Pharm Sci 2016; 105(2): 754-65.
[http://dx.doi.org/10.1016/j.xphs.2015.11.018] [PMID: 26869428]
[111]
Rittirsch D, Flierl MA, Nadeau BA, et al. Zonulin as prehaptoglobin2 regulates lung permeability and activates the complement system. Am J Physiol Lung Cell Mol Physiol 2013; 304(12): L863-72.
[http://dx.doi.org/10.1152/ajplung.00196.2012] [PMID: 23564505]
[112]
Jacob A, Alexander JJ. Complement and blood-brain barrier integrity. Mol Immunol 2014; 61(2): 149-52.
[http://dx.doi.org/10.1016/j.molimm.2014.06.039] [PMID: 25041699]
[113]
Jacob A, Hack B, Chen P, Quigg RJ, Alexander JJ. C5a/CD88 signaling alters blood-brain barrier integrity in lupus through nuclear factor-κB. J Neurochem 2011; 119(5): 1041-51.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07490.x] [PMID: 21929539]
[114]
Regenhardt RW, Desland F, Mecca AP, et al. Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology 2013; 71: 154-63.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.025] [PMID: 23583926]
[115]
Bennion DM, Haltigan EA, Irwin AJ, et al. Activation of the neuroprotective angiotensin-converting enzyme 2 in rat ischemic stroke. Hypertension 2015; 66(1): 141-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05185] [PMID: 25941346]
[116]
Mecca AP, Regenhardt RW, O’Connor TE, et al. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol 2011; 96(10): 1084-96.
[http://dx.doi.org/10.1113/expphysiol.2011.058578] [PMID: 21685445]
[117]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[118]
Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007; 21(1): 20-7.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[119]
Qureshi AI, Abd-Allah F, Al-Senani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: Report of an international panel. Int J Stroke 2020; 15(5): 540-54.
[http://dx.doi.org/10.1177/1747493020923234] [PMID: 32362244]
[120]
Bihl JC, Zhang C, Zhao Y, et al. Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway. Vascul Pharmacol 2015; 73: 115-23.
[http://dx.doi.org/10.1016/j.vph.2015.08.007] [PMID: 26264508]
[121]
Zhang C, Zhong J, Chen W-X, et al. Usage of angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in hypertension intracerebral hemorrhage. Neuropsychiatr Dis Treat 2021; 17: 355-63.
[http://dx.doi.org/10.2147/NDT.S291624] [PMID: 33603374]
[122]
Zanza C, Tassi MF, Romenskaya T, et al. Lock, stock and barrel: Role of renin-angiotensin-aldosterone system in coronavirus disease 2019. Cells 2021; 10(7): 1752.
[http://dx.doi.org/10.3390/cells10071752] [PMID: 34359922]
[123]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[124]
Katsiki N, Banach M, Mikhailidis DP. Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of the COVID-19 pandemic. Arch Med Sci 2020; 16(3): 485-9.
[http://dx.doi.org/10.5114/aoms.2020.94503] [PMID: 32399093]
[125]
Sviridov D, Miller YI, Ballout RA, Remaley AT, Bukrinsky M. Targeting lipid rafts-a potential therapy for COVID-19. Front Immunol 2020; 11: 574508.
[http://dx.doi.org/10.3389/fimmu.2020.574508] [PMID: 33133090]
[126]
Talasaz AH, Sadeghipour P, Aghakouchakzadeh M, et al. Investigating lipid-modulating agents for prevention or treatment of COVID-19: JACC state-of-the-art review. J Am Coll Cardiol 2021; 78(16): 1635-54.
[http://dx.doi.org/10.1016/j.jacc.2021.08.021] [PMID: 34649702]
[127]
Vahedian-Azimi A, Mohammadi SM, Banach M, et al. Improved COVID-19 outcomes following statin therapy: An updated systematic review and meta-analysis. Biomed Res Int 2021; 2021: 1901772.
[http://dx.doi.org/10.1155/2021/1901772] [PMID: 34568488]
[128]
Gorog DA, Storey RF, Gurbel PA, et al. Current and novel biomarkers of thrombotic risk in COVID-19: A consensus statement from the international COVID-19 thrombosis biomarkers colloquium. Nat Rev Cardiol 2022; 1-21.
[http://dx.doi.org/10.1038/s41569-021-00665-7] [PMID: 35027697]
[129]
Krysiak R, Okopień B, Herman Z. Effects of HMG-CoA reductase inhibitors on coagulation and fibrinolysis processes. Drugs 2003; 63(17): 1821-54.
[http://dx.doi.org/10.2165/00003495-200363170-00005] [PMID: 12921488]
[130]
Quist-Paulsen P. Statins and inflammation: An update. Curr Opin Cardiol 2010; 25(4): 399-405.
[http://dx.doi.org/10.1097/HCO.0b013e3283398e53] [PMID: 20421792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy