Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

COVID-19 and Inflammatory Markers

Author(s): Sevket Balta* and Ilknur Balta

Volume 20, Issue 4, 2022

Published on: 13 May, 2022

Page: [326 - 332] Pages: 7

DOI: 10.2174/1570161120666220404200205

Price: $65

Abstract

Coronavirus disease-2019 (COVID-19) causes mild illness to serious infection with lung involvement, thrombosis, and other complications potentially resulting in fatal outcomes. Recognised inflammatory biomarkers play important roles in managing patients with COVID-19; for example, diagnosis, follow-up, assessment of treatment response, and risk stratification. Inflammatory markers in COVID-19 disease were analysed in two categories. Well-known inflammatory markers include complete blood count, C-reactive protein, albumin, cytokines, and erythrocyte sedimentation rate. Asymmetric dimethylarginine, endocan, pentraxin 3, serum amyloid A, soluble urokinase plasminogen activator receptor, total oxidant status and total antioxidant status, and galectin-3 are considered among the emerging inflammatory markers. This brief narrative review assesses the relationship between these inflammatory markers and COVID-19 infection.

Keywords: COVID-19, inflammation, biomarkers, thrombosis, C-reactive protein, cytokines.

Graphical Abstract

[1]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
Huang W, Li M, Luo G, et al. The inflammatory factors associated with disease severity to predict COVID-19 progression. J Immunol 2021; 206(7): 1597-608.
[http://dx.doi.org/10.4049/jimmunol.2001327] [PMID: 33579725]
[3]
Nair A, Rodrigues JCL, Hare S, et al. A British Society of Thoracic Imaging statement: Considerations in designing local imaging diagnostic algorithms for the COVID-19 pandemic. Clin Radiol 2020; 75(5): 329-34.
[http://dx.doi.org/10.1016/j.crad.2020.03.008] [PMID: 32265036]
[4]
Weidmann MD, Ofori K, Rai AJ. laboratory biomarkers in the management of patients With COVID-19. Am J Clin Pathol 2021; 155(3): 333-42.
[http://dx.doi.org/10.1093/ajcp/aqaa205] [PMID: 33107558]
[5]
Kuba K, Yamaguchi T, Penninger JM. Angiotensin-Converting Enzyme 2 (ACE2) in the pathogenesis of ARDS in COVID-19. Front Immunol 2021; 12: 732690.
[http://dx.doi.org/10.3389/fimmu.2021.732690] [PMID: 35003058]
[6]
Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid-19 severity and fatality: A structured literature review. Infection 2021; 49(1): 15-28.
[http://dx.doi.org/10.1007/s15010-020-01509-1] [PMID: 32860214]
[7]
Ramdani H, Allali N, Chat L, El Haddad S. Covid-19 imaging: A narrative review. Ann Med Surg (Lond) 2021; 69: 102489.
[http://dx.doi.org/10.1016/j.amsu.2021.102489] [PMID: 34178312]
[8]
Gurugubelli KR, Bhat BV. Coronavirus disease 2019 infection among children: pathogenesis, treatment, and outcome. J Pediatr Intensive Care 2021; 10(3): 167-73.
[http://dx.doi.org/10.1055/s-0040-1718417] [PMID: 34395033]
[9]
CDC Weekly C. The epidemiological characteristics of an outbreak of 2019 novel Coronavirus Diseases (COVID-19) - China, 2020. China CDC Wkly 2020; 2(8): 113-22.
[http://dx.doi.org/10.46234/ccdcw2020.032] [PMID: 34594836]
[10]
Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75(18): 2352-71.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335]
[11]
Adu-Amankwaah J, Mprah R, Adekunle AO, et al. The cardiovascular aspect of COVID-19. Ann Med 2021; 53(1): 227-36.
[http://dx.doi.org/10.1080/07853890.2020.1861644] [PMID: 33345626]
[12]
Deana C, Vetrugno L, Fabris M, et al. Pericardial cytokine ‘storm’ in a COVID-19 patient: The confirmation of a hypothesis. Inflammation 2022; 45(1): 1-5.
[13]
Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[14]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[15]
Katsiki N, Gómez-Huelgas R, Mikhailidis DP, Pérez-Martínez P. Narrative review on clinical considerations for patients with diabetes and COVID-19: More questions than answers. Int J Clin Pract 2021; 75(11): e14833.
[16]
Guan X, Zhang B, Fu M, et al. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: Results from a retrospective cohort study. Ann Med 2021; 53(1): 257-66.
[http://dx.doi.org/10.1080/07853890.2020.1868564] [PMID: 33410720]
[17]
Verdugo P, Álvarez P, Aroca P, et al. Hematologic parameters and biomarkers predictors of severity in Multisystem Inflammatory Syndrome in children associated with SARS-CoV-2. Andes Pediatr 2021; 92(3): 382-8.
[PMID: 34479244]
[18]
Balta S, Celik T, Mikhailidis DP, et al. The relation between atherosclerosis and the neutrophil-lymphocyte ratio. Clin Appl Thromb Hemost 2016; 22(5): 405-11.
[http://dx.doi.org/10.1177/1076029615569568] [PMID: 25667237]
[19]
Balta S, Celik T, Ozturk C, et al. The relation between monocyte to HDL ratio and no-reflow phenomenon in the patients with acute STsegment elevation myocardial infarction. Am J Emerg Med 2016; 34(8): 1542-7.
[http://dx.doi.org/10.1016/j.ajem.2016.05.031] [PMID: 27238848]
[20]
Ji P, Zhu J, Zhong Z, et al. Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine (Baltimore) 2020; 99(47): e23315.
[http://dx.doi.org/10.1097/MD.0000000000023315] [PMID: 33217868]
[21]
Fici F, Celik T, Balta S, et al. Comparative effects of nebivolol and metoprolol on red cell distribution width and neutrophil/lymphocyte ratio in patients with newly diagnosed essential hypertension. J Cardiovasc Pharmacol 2013; 62(4): 388-93.
[http://dx.doi.org/10.1097/FJC.0b013e31829f716a] [PMID: 23921307]
[22]
Goyal N, Sodani AK, Jain R, Ram H. Do Elevated levels of inflammatory biomarkers predict the risk of occurrence of ischemic stroke in SARS-CoV2?: An observational study. J Stroke Cerebrovasc Dis 2021; 30(11): 106063.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.106063] [PMID: 34464929]
[23]
Celik T, Balta S, Mikhailidis DP, et al. The relation between noreflow phenomenon and complete blood count parameters. Angiology 2017; 68(5): 381-8.
[http://dx.doi.org/10.1177/0003319716659193] [PMID: 27418628]
[24]
Balta S, Demırer Z, Aparci M, Yildirim AO, Ozturk C. The lymphocyte-monocyte ratio in clinical practice. J Clin Pathol 2016; 69(1): 88-9.
[http://dx.doi.org/10.1136/jclinpath-2015-203233] [PMID: 26307075]
[25]
Pitre T, Jones A, Su J, et al. Inflammatory biomarkers as independent prognosticators of 28-day mortality for COVID-19 patients admitted to general medicine or ICU wards: A retrospective cohort study. Intern Emerg Med 2021; 16(6): 1573-82.
[http://dx.doi.org/10.1007/s11739-021-02637-8] [PMID: 33496923]
[26]
Bivona G, Agnello L, Ciaccio M. Biomarkers for prognosis and treatment response in COVID-19 patients. Ann Lab Med 2021; 41(6): 540-8.
[http://dx.doi.org/10.3343/alm.2021.41.6.540] [PMID: 34108281]
[27]
Arques S. Serum albumin and cardiovascular disease: State-of-the-art review. Ann Cardiol Angeiol (Paris) 2020; 69(4): 192-200.
[http://dx.doi.org/10.1016/j.ancard.2020.07.012] [PMID: 32797938]
[28]
Balta I, Balta S. The relation between c-reactive protein-albumin ratio and carotid intima-media thickness in psoriasis. Angiology 2022; 33197211072599.
[29]
Viana-Llamas MC, Arroyo-Espliguero R, Silva-Obregón JA, et al. Hypoalbuminemia on admission in COVID-19 infection: An early predictor of mortality and adverse events. A retrospective observational study. Med Clin (Barc) 2021; 156(9): 428-36.
[http://dx.doi.org/10.1016/j.medcli.2020.12.018]
[30]
Alshammary AF, Al-Sulaiman AM. The journey of SARS-CoV-2 in human hosts: A review of immune responses, immunosuppression, and their consequences. Virulence 2021; 12(1): 1771-94.
[http://dx.doi.org/10.1080/21505594.2021.1929800] [PMID: 34251989]
[31]
Yongzhi X. COVID-19-associated cytokine storm syndrome and diagnostic principles: An old and new Issue. Emerg Microbes Infect 2021; 10(1): 266-76.
[http://dx.doi.org/10.1080/22221751.2021.1884503] [PMID: 33522893]
[32]
Broman N, Rantasärkkä K, Feuth T, et al. IL-6 and other biomarkers as predictors of severity in COVID-19. Ann Med 2021; 53(1): 410-2.
[http://dx.doi.org/10.1080/07853890.2020.1840621] [PMID: 33305624]
[33]
Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020; 9(1): 1123-30.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[34]
Arulkumaran N, Snow TAC, Kulkarni A, et al. Influence of IL-6 levels on patient survival in COVID-19. J Crit Care 2021; 66: 123-5.
[http://dx.doi.org/10.1016/j.jcrc.2021.08.013] [PMID: 34537594]
[35]
Lapić I, Rogić D, Plebani M. Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): A pooled analysis. Clin Chem Lab Med 2020; 58(7): 1146-8.
[http://dx.doi.org/10.1515/cclm-2020-0620] [PMID: 32386190]
[36]
Balta S. Endothelial dysfunction and inflammatory markers of vascular disease. Curr Vasc Pharmacol 2021; 19(3): 243-9.
[http://dx.doi.org/10.2174/1570161118666200421142542] [PMID: 32316894]
[37]
Cakar M, Bulucu F, Karaman M, et al. Asymmetric dimethylarginine and augmentation index in newly diagnosed patients with hypertension. Angiology 2015; 66(1): 43-8.
[http://dx.doi.org/10.1177/0003319713513145] [PMID: 24301421]
[38]
Hannemann J, Balfanz P, Schwedhelm E, et al. Elevated serum SDMA and ADMA at hospital admission predict in-hospital mortality of COVID-19 patients. Sci Rep 2021; 11(1): 9895.
[http://dx.doi.org/10.1038/s41598-021-89180-w] [PMID: 33972591]
[39]
Katsiki N, Banach M, Mikhailidis DP. More good news on statins and COVID-19. Am J Cardiol 2021; 138: 127-8.
[http://dx.doi.org/10.1016/j.amjcard.2020.10.026] [PMID: 33164793]
[40]
Daiber A, Steven S, Euler G, Schulz R. Vascular and cardiac oxidative stress and inflammation as targets for cardioprotection. Curr Pharm Des 2021; 27(18): 2112-30.
[http://dx.doi.org/10.2174/1381612827666210125155821] [PMID: 33550963]
[41]
Diaz-Arocutipa C, Melgar-Talavera B, Alvarado-Yarasca Á, et al. Statins reduce mortality in patients with COVID-19: An updated meta-analysis of 147 824 patients. Int J Infect Dis 2021; 110: 374-81.
[http://dx.doi.org/10.1016/j.ijid.2021.08.004] [PMID: 34375760]
[42]
Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: A systematic review and meta-analysis. Arch Med Sci 2021; 17(3): 579-95.
[http://dx.doi.org/10.5114/aoms/132950] [PMID: 34025827]
[43]
Serban C, Sahebkar A, Ursoniu S, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep 2015; 5(1): 9902.
[http://dx.doi.org/10.1038/srep09902] [PMID: 25970700]
[44]
Balta S, Mikhailidis DP, Demirkol S, Celik T, Ozturk C, Iyisoy A. Endocan and atherosclerosis. Angiology 2015; 66(5): 490.
[http://dx.doi.org/10.1177/0003319715568973] [PMID: 25653246]
[45]
Balta S, Balta I, Mikhailidis DP. Endocan: A new marker of endothelial function. Curr Opin Cardiol 2021; 36(4): 462-8.
[http://dx.doi.org/10.1097/HCO.0000000000000867] [PMID: 33929364]
[46]
Balta Ş. COVID-19 and Endocan Levels. Angiology 2021; 72(3): 209.
[http://dx.doi.org/10.1177/0003319720965817] [PMID: 33086860]
[47]
Guzel D, Kalkan EA, Eren F, et al. Can serum endocan levels be used as an early prognostic marker for endothelial dysfunction in COVID-19? Angiology 2021; 33197211050446.
[http://dx.doi.org/10.1177/00033197211050446] [PMID: 34663109]
[48]
Görgün S, Cindoruk Ş, Özgen E, et al. Diagnostic and prognostic value of serum endocan levels in patients with COVID-19. Angiology 2021; 72(10): 942-6.
[49]
Medetalibeyoglu A, Emet S, Kose M, et al. Serum endocan levels on admission are associated with worse clinical outcomes in COVID-19 patients: A pilot study. Angiology 2021; 72(2): 187-93.
[http://dx.doi.org/10.1177/0003319720961267] [PMID: 32969233]
[50]
Tunçez A, Altunkeser BB, Öztürk B, et al. Comparative effects of atorvastatin 80 mg and rosuvastatin 40 mg on the levels of serum endocan, chemerin, and galectin-3 in patients with acute myocardial infarction. Anatol J Cardiol 2019; 22(5): 240-9.
[http://dx.doi.org/10.14744/AnatolJCardiol.2019.64249] [PMID: 31674929]
[51]
Unlu M, Karaman M, Ay SA, et al. The comparative effects of valsartan and amlodipine on vascular microinflammation in newly diagnosed hypertensive patients. Clin Exp Hypertens 2013; 35(6): 418-23.
[http://dx.doi.org/10.3109/10641963.2012.739237] [PMID: 23148500]
[52]
Tong M, Xiong Y, Zhu C, et al. Elevated serum pentraxin-3 levels is positively correlated to disease severity and coagulopathy in COVID-19 patients. Mediterr J Hematol Infect Dis 2021; 13(1): e2021015.
[http://dx.doi.org/10.4084/mjhid.2021.015] [PMID: 33489054]
[53]
Li Y-H, Wang L-H, Li Q, et al. Effects of rosuvastatin on pentraxin 3 level and platelet aggregation rate in elderly patients with acute myocardial infarction undergoing elective interventional therapy: A double-blind controlled study. Eur Rev Med Pharmacol Sci 2017; 21(16): 3730-5.
[PMID: 28925467]
[54]
Galkin AP. Hypothesis: AA amyloidosis is a factor causing systemic complications after coronavirus disease. Prion 2021; 15(1): 53-5.
[http://dx.doi.org/10.1080/19336896.2021.1910468] [PMID: 33876719]
[55]
Soran H, Liu Y, Adam S, et al. A comparison of the effects of low- and high-dose atorvastatin on lipoprotein metabolism and inflammatory cytokines in type 2 diabetes: Results from the Protection Against Nephropathy in Diabetes with Atorvastatin (PANDA) randomized trial. J Clin Lipidol 2018; 12(1): 44-55.
[http://dx.doi.org/10.1016/j.jacl.2017.10.011] [PMID: 29246729]
[56]
Mekonnen G, Corban MT, Hung OY, et al. Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease. Atherosclerosis 2015; 239(1): 55-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.025] [PMID: 25574858]
[57]
Stauning MA, Altintas I, Kallemose T, et al. Soluble urokinase plasminogen activator receptor as a decision marker for early discharge of patients with COVID-19 symptoms in the emergency department. J Emerg Med 2021; 61(3): 298-313.
[58]
Chalkias A, Mouzarou A, Samara E, Xanthos T, Ischaki E, Pantazopoulos I. Soluble urokinase plasminogen activator receptor: a biomarker for predicting complications and critical care admission of COVID-19 patients. Mol Diagn Ther 2020; 24(5): 517-21.
[http://dx.doi.org/10.1007/s40291-020-00481-8] [PMID: 32613288]
[59]
Hodges GW, Bang CN, Forman JL, et al. Effect of simvastatin and ezetimibe on suPAR levels and outcomes. Atherosclerosis 2018; 272: 129-36.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.03.030] [PMID: 29602140]
[60]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[61]
Çakırca G, Çakırca TD, Üstünel M, Torun A, Koyuncu İ. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Ir J Med Sci 2022; 191(4): 1925-30.
[62]
Madrigal-Matute J, Lindholt JS, Fernandez-Garcia CE, et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J Am Heart Assoc 2014; 3(4): e000785.
[http://dx.doi.org/10.1161/JAHA.114.000785] [PMID: 25095870]
[63]
Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in cardiovascular diseases. Int J Mol Sci 2020; 21(23): 9232.
[http://dx.doi.org/10.3390/ijms21239232] [PMID: 33287402]
[64]
Kuśnierz-Cabala B, Maziarz B, Dumnicka P, et al. Diagnostic significance of serum galectin-3 in hospitalized patients with COVID-19-a preliminary study. Biomolecules 2021; 11(8): 1136.
[http://dx.doi.org/10.3390/biom11081136] [PMID: 34439802]
[65]
Portacci A, Diaferia F, Santomasi C, et al. Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir Med 2021; 187: 106556.
[http://dx.doi.org/10.1016/j.rmed.2021.106556] [PMID: 34375925]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy