Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Drug Targeting and Therapeutic Management of Chronic Myeloid Leukemia: Conventional and Nanotherapeutic Drug Options

Author(s): Akrofi Akotiah, Dominique Walker, Sarah Boddie and Robert B. Campbell*

Volume 22, Issue 17, 2022

Published on: 30 June, 2022

Page: [2933 - 2941] Pages: 9

DOI: 10.2174/1871520622666220426104631

Price: $65

Abstract

Chronic myeloid leukemia (CML) is a blood cancer predominantly affecting older adult patients. According to the American Cancer Society, an estimated 8,860 people will be diagnosed with CML in 2022. Treatments for CML have evolved with a focus on CML phase severity or progression. Overall, there have been some breakthrough treatment options for a high percentage of patients with CML. This is largely due to the discovery of tyrosine kinase inhibitors (TKI); however, drug resistance continues to present a significant challenge in the management of CML disease. The use of interferon (IFN), antimetabolites, and bone marrow transplants provides alternative treatment options, but also presents limitations, including severe side effects, toxicity, and graft versus host disease. Nanomedicine has demonstrated benefits in terms of efficacy, often reducing or eliminating unwanted toxicities associated with the use of conventional drug agents. This review summarizes rational molecular targets of CML drugs and provides highlights of current FDA-approved agents for the treatment of CML. Additionally, this communication includes an overview of the limitations of conventional treatments and how nanomedicine has addressed challenges encountered during CML treatment.

Keywords: Cancer therapy, drug resistance, nanomedicine, chronic myeloid leukemia, tyrosine kinase inhibitors, nanotherapeutic drug.

[1]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[2]
Younis, M.A.; Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev., 2022, 181, 114083.
[http://dx.doi.org/10.1016/j.addr.2021.114083] [PMID: 34929251]
[3]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[4]
Davis, A.S.; Viera, A.J.; Mead, M.D. Leukemia: An overview for primary care. Am. Fam. Physician, 2014, 89(9), 731-738.
[PMID: 24784336]
[5]
Chronic Myeloid Leukemia Cancer website. 2020. Available from: https://www.cancer.gov/types/leukemia/hp/cml-treatment-pdq#_6
[6]
Milojkovic, D.; Apperley, J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin. Cancer Res., 2009, 15(24), 7519-7527.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1068] [PMID: 20008852]
[7]
Sawyers, C.L. Chronic myeloid leukemia. N. Engl. J. Med., 1999, 340(17), 1330-1340.
[http://dx.doi.org/10.1056/NEJM199904293401706] [PMID: 10219069]
[8]
Chronic Myeloid Leukemia. Available from: https://www-dynamed-com.ezproxymcp.flo.org/condition/chronic-myeloid-leukemia-cml# [Accessed June 25, 2020].
[9]
ABL1 Gene. Medline Plus. Available from: https://medlineplus.gov/genetics/gene/abl1/
[10]
Gene, B.C.R. Medline Plus. Available from: https://medlineplus.gov/genetics/gene/bcr
[11]
Chronic Myeloid Leukemia: Leukemia and Lymphoma Society Available from: https://www.lls.org/leukemia/chronic-myeloid-leukemia
[12]
Chronic Myeloid Leukemia: Leukemia Foundation. 2020. Available from: https://www.leukaemia.org.au/disease-information/leukaemias/chronic-myeloid-leukaemia
[13]
Goldman, J.M.; Druker, B.J. Chronic myeloid leukemia: Current treatment options. Blood, 2001, 98(7), 2039-2042.
[http://dx.doi.org/10.1182/blood.V98.7.2039] [PMID: 11567987]
[14]
Goldman, J.M. Chronic myeloid leukemia: A historical perspective. Semin. Hematol., 2010, 47(4), 302-311.
[http://dx.doi.org/10.1053/j.seminhematol.2010.07.001] [PMID: 20875546]
[15]
Treating Chronic Myeloid Leukemia by Phase: American Cancer Society. Available from: https://www.cancer.org/cancer/chronic-myeloid-leukemia/treating/treating-by-phase.html
[17]
Hochhaus, A.; Larson, R.A.; Guilhot, F.; Radich, J.P.; Branford, S.; Hughes, T.P.; Baccarani, M.; Deininger, M.W.; Cervantes, F.; Fujihara, S.; Ortmann, C.E.; Menssen, H.D.; Kantarjian, H.; O’Brien, S.G.; Druker, B.J. Long-term outcomes of imatinib treatment for chronic mye-loid leukemia. N. Engl. J. Med., 2017, 376(10), 917-927.
[http://dx.doi.org/10.1056/NEJMoa1609324] [PMID: 28273028]
[18]
Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Gathmann, I.; Kantarjian, H.; Gattermann, N.; Deininger, M.W.; Silver, R.T.; Goldman, J.M.; Stone, R.M.; Cervantes, F.; Hochhaus, A.; Powell, B.L.; Gabrilove, J.L.; Rousselot, P.; Reiffers, J.; Cornelissen, J.J.; Hughes, T.; Agis, H.; Fischer, T.; Verhoef, G.; Shepherd, J.; Saglio, G.; Gratwohl, A.; Nielsen, J.L.; Radich, J.P.; Simonsson, B.; Taylor, K.; Baccarani, M.; So, C.; Letvak, L.; Larson, R.A. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med., 2006, 355(23), 2408-2417.
[http://dx.doi.org/10.1056/NEJMoa062867] [PMID: 17151364]
[19]
Kantarjian, H.; O’Brien, S.; Jabbour, E.; Garcia-Manero, G.; Quintas-Cardama, A.; Shan, J.; Rios, M.B.; Ravandi, F.; Faderl, S.; Kadia, T.; Borthakur, G.; Huang, X.; Champlin, R.; Talpaz, M.; Cortes, J. Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: A single-institution historical experience. Blood, 2012, 119(9), 1981-1987.
[http://dx.doi.org/10.1182/blood-2011-08-358135] [PMID: 22228624]
[20]
Saglio, G.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Lobo, C.; Pasquini, R.; Clark, R.E.; Hochhaus, A.; Hughes, T.P.; Gal-lagher, N.; Hoenekopp, A.; Dong, M.; Haque, A.; Larson, R.A.; Kantarjian, H.M. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med., 2010, 362(24), 2251-2259.
[http://dx.doi.org/10.1056/NEJMoa0912614] [PMID: 20525993]
[21]
Deshantri, A.K.; Varela Moreira, A.; Ecker, V.; Mandhane, S.N.; Schiffelers, R.M.; Buchner, M.; Fens, M.H.A.M. Nanomedicines for the treatment of hematological malignancies. J. Control. Release, 2018, 287, 194-215.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.034] [PMID: 30165140]
[22]
Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib ver-sus imatinib for newly diagnosed chronic myeloid leukemia: Results from the randomized BFORE trial. J. Clin. Oncol., 2018, 36(3), 231-237.
[http://dx.doi.org/10.1200/JCO.2017.74.7162] [PMID: 29091516]
[24]
How Do You Know if Treatment for Chronic Myeloid Leukemia is Working? American Cancer Society, Available from: https://www.cancer.org/cancer/chronic-myeloid-leukemia/treating/is-treatment-working.html
[25]
Miller, G.D.; Bruno, B.J.; Lim, C.S. Resistant mutations in CML and Ph(+)ALL - role of ponatinib. Biologics, 2014, 8, 243-254.
[PMID: 25349473]
[26]
Poch Martell, M.; Sibai, H.; Deotare, U.; Lipton, J.H. Ponatinib in the therapy of chronic myeloid leukemia. Expert Rev. Hematol., 2016, 9(10), 923-932.
[http://dx.doi.org/10.1080/17474086.2016.1232163] [PMID: 27590270]
[27]
Fanin, R.; Michieli, M.G.; Gallizia, C.; Damiani, D.; Baccarani, M.; Russo, D.; Zuffa, E.; Tura, S. Interferon gamma in chronic myeloid leukemia: Dose and side effects. Blood, 1988, 72(4), 1436-1438.
[http://dx.doi.org/10.1182/blood.V72.4.1436.1436] [PMID: 3139108]
[28]
Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2020, 95(6), 691-709.
[http://dx.doi.org/10.1002/ajh.25792] [PMID: 32239758]
[29]
Pavlu, J.; Szydlo, R.M.; Goldman, J.M.; Apperley, J.F. Three decades of transplantation for chronic myeloid leukemia: What have we learned? Blood, 2011, 117(3), 755-763.
[http://dx.doi.org/10.1182/blood-2010-08-301341] [PMID: 20966165]
[30]
Mu, C.F.; Shen, J.; Liang, J.; Zheng, H.S.; Xiong, Y.; Wei, Y.H.; Li, F. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials, 2018, 155, 191-202.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.029] [PMID: 29182960]
[31]
Fausel, C. Targeted chronic myeloid leukemia therapy: Seeking a cure. Am. J. Health Syst. Pharm., 2007, 64(24)(Suppl. 15), S9-S15.
[http://dx.doi.org/10.2146/ajhp070482] [PMID: 18056932]
[32]
Chronic Myeloid Leukemia (CML): The Leukemia Bone Marrow Transplant Program of BC. Available from: http://www.leukemiabmtprogram.com/patients_and_family/treatment/treatment_by_disease_type/leukemia/cml.html
[33]
Lübking, A.; Dreimane, A.; Sandin, F.; Isaksson, C.; Märkevärn, B.; Brune, M.; Ljungman, P.; Lenhoff, S.; Stenke, L.; Höglund, M.; Rich-ter, J.; Olsson-Strömberg, U. Allogeneic stem cell transplantation for chronic myeloid leukemia in the TKI era: Population-based data from the Swedish CML registry. Bone Marrow Transplant., 2019, 54(11), 1764-1774.
[http://dx.doi.org/10.1038/s41409-019-0513-5] [PMID: 30962502]
[34]
Quintás-Cardama, A.; Kantarjian, H.M.; Cortes, J.E. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Contr., 2009, 16(2), 122-131.
[http://dx.doi.org/10.1177/107327480901600204] [PMID: 19337198]
[35]
Hussein Kamareddine, M.; Ghosn, Y.; Tawk, A.; Elia, C.; Alam, W.; Makdessi, J.; Farhat, S. Organic nanoparticles as drug delivery sys-tems and their potential role in the treatment of chronic myeloid leukemia. Technol. Cancer Res. Treat., 2019, 18, 1533033819879902.
[http://dx.doi.org/10.1177/1533033819879902] [PMID: 31865865]
[36]
Pricl, S.; Fermeglia, M.; Ferrone, M.; Tamborini, E. T315I-mutated Bcr-Abl in chronic myeloid leukemia and imatinib: Insights from a computational study. Mol. Cancer Ther., 2005, 4(8), 1167-1174.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0101] [PMID: 16093432]
[37]
O’Brien, S.G.; Guilhot, F.; Larson, R.A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J.J.; Fischer, T.; Hochhaus, A.; Hughes, T.; Lechner, K.; Nielsen, J.L.; Rousselot, P.; Reiffers, J.; Saglio, G.; Shepherd, J.; Simonsson, B.; Gratwohl, A.; Goldman, J.M.; Kantarjian, H.; Taylor, K.; Verhoef, G.; Bolton, A.E.; Capdeville, R.; Druker, B.J. Imatinib compared with interferon and low-dose cytarabine for new-ly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med., 2003, 348(11), 994-1004.
[http://dx.doi.org/10.1056/NEJMoa022457] [PMID: 12637609]
[38]
Hehlmann, R.; Lauseker, M.; Saußele, S.; Pfirrmann, M.; Krause, S.; Kolb, H.J.; Neubauer, A.; Hossfeld, D.K.; Nerl, C.; Gratwohl, A.; Baerlocher, G.M.; Heim, D.; Brümmendorf, T.H.; Fabarius, A.; Haferlach, C.; Schlegelberger, B.; Müller, M.C.; Jeromin, S.; Proetel, U.; Kohlbrenner, K.; Voskanyan, A.; Rinaldetti, S.; Seifarth, W.; Spieß, B.; Balleisen, L.; Goebeler, M.C.; Hänel, M.; Ho, A.; Dengler, J.; Falge, C.; Kanz, L.; Kremers, S.; Burchert, A.; Kneba, M.; Stegelmann, F.; Köhne, C.A.; Lindemann, H.W.; Waller, C.F.; Pfreundschuh, M.; Spiekermann, K.; Berdel, W.E.; Müller, L.; Edinger, M.; Mayer, J.; Beelen, D.W.; Bentz, M.; Link, H.; Hertenstein, B.; Fuchs, R.; Wernli, M.; Schlegel, F.; Schlag, R.; de Wit, M.; Trümper, L.; Hebart, H.; Hahn, M.; Thomalla, J.; Scheid, C.; Schafhausen, P.; Verbeek, W.; Eckart, M.J.; Gassmann, W.; Pezzutto, A.; Schenk, M.; Brossart, P.; Geer, T.; Bildat, S.; Schäfer, E.; Hochhaus, A.; Hasford, J. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia, 2017, 31(11), 2398-2406.
[http://dx.doi.org/10.1038/leu.2017.253] [PMID: 28804124]
[39]
Li, M.Q.; Zhang, M.; Liao, A.J.; Liu, Z.G. Meta-analysis of imatinib mesylate with or without interferon for chronic-phase chronic mye-loid leukemia. Zhonghua Xue Ye Xue Za Zhi, 2013, 34(8), 685-690.
[PMID: 23978020]
[40]
Payandeh, M.; Sadeghi, M.; Sadeghi, E. Treatment and survival in patients with chronic myeloid leukemia in a chronic phase in West Iran. Asian Pac. J. Cancer Prev., 2015, 16(17), 7555-7559.
[http://dx.doi.org/10.7314/APJCP.2015.16.17.7555] [PMID: 26625761]
[41]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[42]
Product Information. HYDREA(R) oral capsules, hydroxyurea oral capsules. Bristol-Myers Squibb Company (per FDA); Princeton, NJ,, 2019.
[43]
Slattery, J.T.; Clift, R.A.; Buckner, C.D.; Radich, J.; Storer, B.; Bensinger, W.I.; Soll, E.; Anasetti, C.; Bowden, R.; Bryant, E.; Chauncey, T.; Deeg, H.J.; Doney, K.C.; Flowers, M.; Gooley, T.; Hansen, J.A.; Martin, P.J.; McDonald, G.B.; Nash, R.; Petersdorf, E.W.; Sanders, J.E.; Schoch, G.; Stewart, P.; Storb, R.; Sullivan, K.M.; Thomas, E.D.; Witherspoon, R.P.; Appelbaum, F.R. Marrow transplantation for chronic myeloid leukemia: The influence of plasma busulfan levels on the outcome of transplantation. Blood, 1997, 89(8), 3055-3060.
[http://dx.doi.org/10.1182/blood.V89.8.3055] [PMID: 9108427]
[44]
Ayala, F.; Dewar, R.; Kieran, M.; Kalluri, R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia, 2009, 23(12), 2233-2241.
[http://dx.doi.org/10.1038/leu.2009.175] [PMID: 19727127]
[45]
Traer, E.; MacKenzie, R.; Snead, J.; Agarwal, A.; Eiring, A.M.; O’Hare, T.; Druker, B.J.; Deininger, M.W. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia, 2012, 26(5), 1140-1143.
[http://dx.doi.org/10.1038/leu.2011.325] [PMID: 22094585]
[46]
Zhao, L.; Zhan, H.; Jiang, X.; Li, Y.; Zeng, H. The role of cholesterol metabolism in leukemia. Blood Sci., 2019, 1(1), 44-49.
[http://dx.doi.org/10.1097/BS9.0000000000000016] [PMID: 35402792]
[47]
Mayengbam, S.S.; Singh, A.; Pillai, A.D.; Bhat, M.K. Influence of cholesterol on cancer progression and therapy. Transl. Oncol., 2021, 14(6), 101043.
[http://dx.doi.org/10.1016/j.tranon.2021.101043] [PMID: 33751965]
[48]
Bandyopadhyay, S.; Li, J.; Traer, E.; Tyner, J.W.; Zhou, A.; Oh, S.T.; Cheng, J.X. Cholesterol esterification inhibition and imatinib treat-ment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One, 2017, 12(7), e0179558.
[http://dx.doi.org/10.1371/journal.pone.0179558] [PMID: 28719608]
[49]
Muller, C.P.; Wagner, A.U.; Maucher, C.; Steinke, B. Hypocholesterolemia, an unfavorable feature of prognostic value in chronic myeloid leukemia. Eur. J. Haematol., 1989, 43(3), 235-239.
[http://dx.doi.org/10.1111/j.1600-0609.1989.tb00288.x] [PMID: 2806478]
[50]
Ghalaut, V.S.; Pahwa, M.B. Sunita; Ghalaut, P.S. Alteration in lipid profile in patients of chronic myeloid leukemia before and after chemotherapy. Clin. Chim. Acta, 2006, 366(1-2), 239-242.
[http://dx.doi.org/10.1016/j.cca.2005.10.022] [PMID: 16386722]
[51]
Andersen, C.J.; Dupree, L.; Murray, K.; Ragonesi, N.; McMullen, K.; Cintrón-Rivera, L.; Doerr, A. Low-density lipoproteins, High-Density Lipoproteins (HDL), and HDL-associated proteins differentially modulate chronic myelogenous leukemia cell viability. Lipids, 2020, 55(6), 615-626.
[http://dx.doi.org/10.1002/lipd.12254] [PMID: 32558932]
[52]
Longo, J.; van Leeuwen, J.E.; Elbaz, M.; Branchard, E.; Penn, L.Z. Statins as anticancer agents in the era of precision medicine. Clin. Cancer Res., 2020, 26(22), 5791-5800.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1967] [PMID: 32887721]
[53]
Jang, H.J.; Woo, Y.M.; Naka, K.; Park, J.H.; Han, H.J.; Kim, H.J.; Kim, S.H.; Ahn, J.S.; Kim, T.; Kimura, S.; Zarabi, S.; Lipton, J.H.; Min-den, M.D.; Jung, C.W.; Kim, H.J.; Kim, J.W.; Kim, D.D.H. Statins enhance the molecular response in chronic myeloid leukemia when combined with tyrosine kinase inhibitors. Cancers (Basel), 2021, 13(21), 5543.
[http://dx.doi.org/10.3390/cancers13215543] [PMID: 34771705]
[54]
Ye, P.; Zhang, W.; Yang, T.; Lu, Y.; Lu, M.; Gai, Y.; Ma, X.; Xiang, G. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int. J. Nanomedicine, 2014, 9, 2167-2178.
[http://dx.doi.org/10.2147/IJN.S60178] [PMID: 24855354]
[55]
Mayer, L.D.; Tardi, P.; Louie, A.C. CPX-351: A nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodis-tribution and tumor cell uptake properties. Int. J. Nanomedicine, 2019, 14, 3819-3830.
[http://dx.doi.org/10.2147/IJN.S139450] [PMID: 31213803]
[56]
Dandamudi, S.; Campbell, R.B. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials, 2007, 28(31), 4673-4683.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.024] [PMID: 17688940]
[57]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[58]
Kuesters, G.M.; Campbell, R.B. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond.), 2010, 5(2), 181-192.
[http://dx.doi.org/10.2217/nnm.09.105] [PMID: 20148631]
[59]
Tangutoori, S.; Ohta, A.; Gatley, S.; Campbell, R.B. Repurposing an erstwhile cancer drug: A quantitative and therapeutic evaluation of alternative nanosystems for the delivery of colchicine to solid tumors. J. Cancer Sci. Ther., 2014, 6(7), 236-246.
[http://dx.doi.org/10.4172/1948-5956.1000277]
[60]
Krauss, A.C.; Gao, X.; Li, L.; Manning, M.L.; Patel, P.; Fu, W.; Janoria, K.G.; Gieser, G.; Bateman, D.A.; Przepiorka, D.; Shen, Y.L.; Shord, S.S.; Sheth, C.M.; Banerjee, A.; Liu, J.; Goldberg, K.B.; Farrell, A.T.; Blumenthal, G.M.; Pazdur, R. FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin. Cancer Res., 2019, 25(9), 2685-2690.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2990] [PMID: 30541745]
[61]
Zhang, G.S.; Liu, D.S.; Dai, C.W.; Li, R.J. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspa-se-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib. Am. J. Hematol., 2006, 81(4), 242-255.
[http://dx.doi.org/10.1002/ajh.20542] [PMID: 16550520]
[62]
Simonsson, B.; Gedde-Dahl, T.; Markevärn, B.; Remes, K.; Stentoft, J.; Almqvist, A.; Björeman, M.; Flogegård, M.; Koskenvesa, P.; Lind-blom, A.; Malm, C.; Mustjoki, S.; Myhr-Eriksson, K.; Ohm, L.; Räsänen, A.; Sinisalo, M.; Själander, A.; Strömberg, U.; Bjerrum, O.W.; Ehrencrona, H.; Gruber, F.; Kairisto, V.; Olsson, K.; Sandin, F.; Nagler, A.; Nielsen, J.L.; Hjorth-Hansen, H.; Porkka, K. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood, 2011, 118(12), 3228-3235.
[http://dx.doi.org/10.1182/blood-2011-02-336685] [PMID: 21685374]
[63]
Preudhomme, C.; Guilhot, J.; Nicolini, F.E.; Guerci-Bresler, A.; Rigal-Huguet, F.; Maloisel, F.; Coiteux, V.; Gardembas, M.; Berthou, C.; Vekhoff, A.; Rea, D.; Jourdan, E.; Allard, C.; Delmer, A.; Rousselot, P.; Legros, L.; Berger, M.; Corm, S.; Etienne, G.; Roche-Lestienne, C.; Eclache, V.; Mahon, F.X.; Guilhot, F. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N. Engl. J. Med., 2010, 363(26), 2511-2521.
[http://dx.doi.org/10.1056/NEJMoa1004095] [PMID: 21175313]
[64]
Patent Landscape Report for Pegylated Interferon Alfa 2A & 2B. IMAK 2013.
[65]
Subramanian, N.; Yajnik, A.; Murthy, R.S. Artificial neural network as an alternative to multiple regression analysis in optimizing formula-tion parameters of cytarabine liposomes. AAPS PharmSciTech, 2004, 5(1), E4.
[PMID: 15198525]
[66]
Cytarabine: Massachusetts General Hospital Cancer Center. Available from: https://www.cancerrxgene.org/compound/Cytarabine/1006/overview/ic50
[67]
Alavi, S.E.; Esfahani, M.K.; Alavi, F.; Movahedi, F.; Akbarzadeh, A. Drug delivery of hydroxyurea to breast cancer using liposomes. Indian J. Clin. Biochem., 2013, 28(3), 299-302.
[http://dx.doi.org/10.1007/s12291-012-0291-y] [PMID: 24426227]
[68]
Hassan, Z.; Ljungman, P.; Ringdén, O.; Winiarski, J.; Nilsson, C.; Aschan, J.; Whitley, H.R.; Hassan, M. Pharmacokinetics of liposomal busulphan in man. Bone Marrow Transplant., 2001, 27(5), 479-485.
[http://dx.doi.org/10.1038/sj.bmt.1702823] [PMID: 11313681]
[69]
Nicolas-Virelizier, E.; Jacquet-Lagreze, M.; Was, D.; Rea, D.; Coiteux, V.; Leguay, T.; Legros, L.; Deau, B.; Sobh, M.; Morisset, S.; Michallet, M.; Nicolini, F.E. Combined chemotherapy (daunorubicin + cytarabine) and dasatinib as salvage therapy of Chronic Myeloid Leukemia (CML) in myeloid blast crisis, A pilot study. Blood, 2009, 114(22), 2195.
[http://dx.doi.org/10.1182/blood.V114.22.2195.2195]
[70]
Tzogani, K.; Penttilä, K.; Lapveteläinen, T.; Hemmings, R.; Koenig, J.; Freire, J.; Márcia, S.; Cole, S.; Coppola, P.; Flores, B.; Barbachano, Y.; Roige, S.D.; Pignatti, F. EMA review of daunorubicin and cytarabine encapsulated in liposomes (VYXEOS, CPX-351) for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia or acute myeloid leukemia with myelodysplasia-related changes. Oncologist, 2020, 25(9), e1414-e1420.
[http://dx.doi.org/10.1634/theoncologist.2019-0785] [PMID: 32282100]
[71]
Gharagozloo, M.; Majewski, S.; Foldvari, M. Therapeutic applications of nanomedicine in autoimmune diseases: From immunosuppres-sion to tolerance induction. Nanomedicine , 2015, 11(4), 1003-1018.
[http://dx.doi.org/10.1016/j.nano.2014.12.003] [PMID: 25596076]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy