Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

CDC25B Inhibition by Menadione: A Potential New Therapeutical Approach

Author(s): Helem Ferreira Ribeiro, Carla de Castro Sant’ Anna*, Valdenira de Jesus Oliveira Kato, Rafael Maia de Sousa Brasil, Amanda Braga Bona, Danielle Feio da Costa, Isamu Komatsu Lima, Paulo Cardoso Soares, Ana Paula Araújo Guimarães, Paulo Pimentel de Assumpção and Rommel Rodriguez Burbano

Volume 22, Issue 17, 2022

Published on: 07 July, 2022

Page: [2927 - 2932] Pages: 6

DOI: 10.2174/1871520622666220418131935

Price: $65

Abstract

Gastric cancer (GC) is the fifth most common type of tumor and the third leading cause of cancer death worldwide. The evolution of gastric carcinogenesis is still poorly understood and, for this reason, preclinical research protocols were established that included the development of gastric cancer cell lines and the establishment of models of gastric carcinogenesis in non-human primates such as Sapajus apella. A comprehensive literature search was performed in relevant databases such as PubMed, ResearchGate, and Google Scholar to identify studies related to the topic. After an in-depth study of these reports, significant data were collected and compiled under appropriate headings. The main result of the studies carried out by the group on GC is the demonstration of the MYC gene overexpression as a common phenomenon in stomach carcinogenesis. Furthermore, we revealed that reducing the expression of the CDC25B gene, regulated by the MYC protein, is a therapeutic strategy against stomach tumors. This review article reveals preclinical evidence that treatment with menadione in experimental models of gastric tumorigenesis, in vivo and in vitro, inhibits the action of the phosphatase CDC25B and, consequently, prevents cell proliferation, invasion, and migration.

Keywords: MYC regulated genes, new CDC25B therapy, gastric cancer, menadione, Sapajus apella treatment, premature death.

[1]
Weiderpass, E.; Stewart, B.W. World cancer report 2020: Cancer research for cancer precention. Cancer Contr., 2020, 199, 1828-1840.
[http://dx.doi.org/10.1016/j.cma.2010.02.010]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, G.J.A.; Maciejewski, R.; Polkowski, W.P. Gastric cancer: Epidemiology, prevention, clas-sification, and treatment. Cancer Manag. Res., 2018, 10, 239-248.
[http://dx.doi.org/10.2147/CMAR.S149619] [PMID: 29445300]
[4]
Jou, E.; Rajdev, L. Current and emerging therapies in unresectable and recurrent gastric cancer. World J. Gastroenterol., 2016, 22(20), 4812-4823.
[http://dx.doi.org/10.3748/wjg.v22.i20.4812] [PMID: 27239108]
[5]
Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz. Gastroenterol., 2019, 14(1), 26-38.
[http://dx.doi.org/10.5114/pg.2018.80001] [PMID: 30944675]
[6]
Pelucchi, C.; Lunet, N.; Boccia, S.; Zhang, Z.F.; Praud, D.; Boffetta, P.; Levi, F.; Matsuo, K.; Ito, H.; Hu, J.; Johnson, K.C.; Ferraroni, M.; Yu, G.P.; Peleteiro, B.; Malekzadeh, R.; Derakhshan, M.H.; Ye, W.; Zaridze, D.; Maximovitch, D.; Aragonés, N.; Martín, V.; Pakseresht, M.; Pourfarzi, F.; Bellavia, A.; Orsini, N.; Wolk, A.; Mu, L.; Arzani, D.; Kurtz, R.C.; Lagiou, P.; Trichopoulos, D.; Muscat, J.; La Vecchia, C.; Negri, E. The stomach cancer pooling (StoP) project: Study design and presentation. Eur. J. Cancer Prev., 2015, 24(1), 16-23.
[http://dx.doi.org/10.1097/CEJ.0000000000000017] [PMID: 24566154]
[7]
Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; Lieto, E.; Ciardiello, F.; De Vita, F. Treatment of gastric cancer. World J. Gastroenterol., 2014, 20(7), 1635-1649.
[http://dx.doi.org/10.3748/wjg.v20.i7.1635] [PMID: 24587643]
[8]
Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet, 2016, 388(10060), 2654-2664.
[http://dx.doi.org/10.1016/S0140-6736(16)30354-3] [PMID: 27156933]
[9]
Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand., 1965, 64(64), 31-49.
[http://dx.doi.org/10.1111/apm.1965.64.1.31] [PMID: 14320675]
[10]
Cisło, M.; Filip, A.A.; Arnold Offerhaus, G.J.; Ciseł, B.; Rawicz-Pruszyński, K.; Skierucha, M.; Polkowski, W.P. Distinct molecular sub-types of gastric cancer: From Laurén to molecular pathology. Oncotarget, 2018, 9(27), 19427-19442.
[http://dx.doi.org/10.18632/oncotarget.24827] [PMID: 29721214]
[11]
Bosman, F.T.; Carneiro, F.; Hruban, R.H GI WHO classification of tumours. Digestive System Tumours, (4th editon.). 2019, 3
[12]
Bass, A.J.; Thorsson, V.; Shmulevich, I. Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014, 513(7517), 202-209.
[http://dx.doi.org/10.1038/nature13480] [PMID: 25079317]
[13]
Razvan, C.; Lee, J.; Nebozhyn, M. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med., 2015, 21(5), 449-456.
[PMID: 25894828]
[14]
Wang, Q.; Liu, G.; Hu, C. Molecular classification of gastric adenocarcinoma. Gastroenterol. Res., 2019, 12(6), 275-282.
[http://dx.doi.org/10.14740/gr1187] [PMID: 31803306]
[15]
Alessandrini, L.; Manchi, M.; De Re, V.; Dolcetti, R.; Canzonieri, V. Proposed molecular and miRNA classification of gastric cancer. Int. J. Mol. Sci., 2018, 19(6), 1683.
[http://dx.doi.org/10.3390/ijms19061683] [PMID: 29882766]
[16]
Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin., 2021, 71(3), 264-279.
[http://dx.doi.org/10.3322/caac.21657] [PMID: 33592120]
[17]
Wang, K.; Yuen, S.T.; Xu, J.; Lee, S.P.; Yan, H.H.; Shi, S.T.; Siu, H.C.; Deng, S.; Chu, K.M.; Law, S.; Chan, K.H.; Chan, A.S.; Tsui, W.Y.; Ho, S.L.; Chan, A.K.; Man, J.L.; Foglizzo, V.; Ng, M.K.; Chan, A.S.; Ching, Y.P.; Cheng, G.H.; Xie, T.; Fernandez, J.; Li, V.S.; Clevers, H.; Rejto, P.A.; Mao, M.; Leung, S.Y. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gas-tric cancer. Nat. Genet., 2014, 46(6), 573-582.
[http://dx.doi.org/10.1038/ng.2983] [PMID: 24816253]
[18]
Röcken, C. Molecular classification of gastric cancer. Expert Rev. Mol. Diagn., 2017, 17(3), 293-301.
[http://dx.doi.org/10.1080/14737159.2017.1286985] [PMID: 28118758]
[19]
Martinez Tyson, D.; Medina-Ramirez, P.; Flores, A.M.; Siegel, R.; Aguado Loi, C. Unpacking hispanic ethnicity-cancer mortality differen-tials among hispanic subgroups in the United States, 2004-2014. Front. Public Health, 2018, 6, 219.
[http://dx.doi.org/10.3389/fpubh.2018.00219] [PMID: 30234082]
[20]
da Costa, J.F.; Leal, M.F.; Silva, T.C.R.; Andrade, Junior E.F.; Rezende, A.P.; Muniz, J.A.; Lacreta, Junior A.C.; Assumpção, P.P.; Cal-cagno, D.Q.; Demachki, S.; Rabenhorst, S.H.; Smith, M.A.; Burbano, R.R. Experimental gastric carcinogenesis in Cebus apella nonhuman primates. PLoS One, 2011, 6(7), e21988.
[http://dx.doi.org/10.1371/journal.pone.0021988] [PMID: 21811552]
[21]
Silva, T.C.R.; Leal, M.F.; Calcagno, D.Q.; de Souza, C.R.; Khayat, A.S.; dos Santos, N.P.; Montenegro, R.C.; Rabenhorst, S.H.; Nascimen-to, M.Q.; Assumpção, P.P.; de Arruda Cardoso Smith, M.; Burbano, R.R. hTERT, MYC and TP53 deregulation in gastric preneoplastic le-sions. BMC Gastroenterol., 2012, 12(1), 85.
[http://dx.doi.org/10.1186/1471-230X-12-85] [PMID: 22768805]
[22]
de Souza, C.R.; Leal, M.F.; Calcagno, D.Q.; Costa Sozinho, E.K.; Borges, B.N.; Montenegro, R.C.; Dos Santos, A.K.; Dos Santos, S.E.; Ribeiro, H.F.; Assumpção, P.P.; de Arruda Cardoso Smith, M.; Burbano, R.R. MYC deregulation in gastric cancer and its clinicopathologi-cal implications. PLoS One, 2013, 8(5), e64420.
[http://dx.doi.org/10.1371/journal.pone.0064420] [PMID: 23717612]
[23]
Calcagno, D.Q.; Freitas, V.M.; Leal, M.F.; de Souza, C.R.; Demachki, S.; Montenegro, R.; Assumpção, P.P.; Khayat, A.S.; Smith, M.A.; dos Santos, A.K.; Burbano, R.R. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC Gastroenterol., 2013, 13(1), 141.
[http://dx.doi.org/10.1186/1471-230X-13-141] [PMID: 24053468]
[24]
de Souza, C.R.; de Oliveira, K.S.; Ferraz, J.J.; Leal, M.F.; Calcagno, D.Q.; Seabra, A.D.; Khayat, A.S.; Montenegro, R.C.; Alves, A.P.; As-sumpção, P.P.; Smith, M.C.; Burbano, R.R. Occurrence of helicobacter pylori and epstein-barr virus infection in endoscopic and gastric cancer patients from Northern Brazil. BMC Gastroenterol., 2014, 14(1), 179.
[http://dx.doi.org/10.1186/1471-230X-14-179] [PMID: 25318991]
[25]
Calcagno, D.Q.; Gigek, C.O.; Chen, E.S.; Burbano, R.R.; Smith, M.A. DNA and histone methylation in gastric carcinogenesis. World J. Gastroenterol., 2013, 19(8), 1182-1192.
[http://dx.doi.org/10.3748/wjg.v19.i8.1182] [PMID: 23482412]
[26]
Wisnieski, F.; Calcagno, D.Q.; Leal, M.F.; Chen, E.S.; Gigek, C.O.; Santos, L.C.; Pontes, T.B.; Rasmussen, L.T.; Payão, S.L.; Assumpção, P.P.; Lourenço, L.G.; Demachki, S.; Artigiani, R.; Burbano, R.R.; Smith, M.C. Differential expression of histone deacetylase and acetyl-transferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol., 2014, 35(7), 6373-6381.
[http://dx.doi.org/10.1007/s13277-014-1841-0] [PMID: 24668547]
[27]
Mello, A.A.; Leal, M.F.; Rey, J.A.; Pinto, G.R.; Lamarão, L.M.; Montenegro, R.C.; Alves, A.P.; Assumpção, P.P.; Borges, B.N.; Smith, M.C.; Burbano, R.R. Deregulated expression of SRC, LYN and CKB kinases by DNA methylation and its potential role in gastric cancer invasiveness and metastasis. PLoS One, 2015, 10(10), e0140492.
[http://dx.doi.org/10.1371/journal.pone.0140492] [PMID: 26460485]
[28]
Leal, M.F.; Ribeiro, H.F.; Rey, J.A.; Pinto, G.R.; Smith, M.C.; Moreira-Nunes, C.A.; Assumpção, P.P.; Lamarão, L.M.; Calcagno, D.Q.; Montenegro, R.C.; Burbano, R.R. YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: New insights about YWHAE role in the tumor development and metastasis process. Oncotarget, 2016, 7(51), 85393-85410.
[http://dx.doi.org/10.18632/oncotarget.13381] [PMID: 27863420]
[29]
Montenegro, R.C.; Clark, P.G.K.; Howarth, A.; Wan, X.; Ceroni, A.; Siejka, P.; Nunez-Alonso, G.A.; Monteiro, O.; Rogers, C.; Gamble, V.; Burbano, R.; Brennan, P.E.; Tallant, C.; Ebner, D.; Fedorov, O.; O’Neill, E.; Knapp, S.; Dixon, D.; Müller, S. BET inhibition as a new strategy for the treatment of gastric cancer. Oncotarget, 2016, 7(28), 43997-44012.
[http://dx.doi.org/10.18632/oncotarget.9766] [PMID: 27259267]
[30]
Cardoso, P.C.D.S.; Rocha, C.A.M.D.; Leal, M.F.; Bahia, M.O.; Alcântara, D.D.F.Á.; Santos, R.A.D.; Gonçalves, N.D.S.; Ambrósio, S.R.; Cavalcanti, B.C.; Moreira-Nunes, C.A.; Pessoa, C.D.Ó.; Burbano, R.M.R. Effect of diterpenoid kaurenoic acid on genotoxicity and cell cy-cle progression in gastric cancer cell lines. Biomed. Pharmacother., 2017, 89, 772-780.
[http://dx.doi.org/10.1016/j.biopha.2017.02.085] [PMID: 28273639]
[31]
Maués, J.H.D.S.; Ribeiro, H.F.; Pinto, G.R.; Lopes, L.O.; Lamarão, L.M.; Pessoa, C.M.F.; Moreira-Nunes, C.F.A.; de Carvalho, R.M.; As-sumpção, P.P.; Rey, J.A.; Burbano, R.M.R. Gastric cancer cell lines have different MYC-regulated expression patterns but share a common core of altered genes. Can. J. Gastroenterol. Hepatol., 2018, 2018, 5804376.
[http://dx.doi.org/10.1155/2018/5804376] [PMID: 30410872]
[32]
Mesquita, F.P.; Pinto, L.C.; Soares, B.M.; de Sousa Portilho, A.J.; da Silva, E.L.; de Farias Ramos, I.N.; Khayat, A.S.; Moreira-Nunes, C.A.; Bezerra, M.M.; de Lucas Chazin, E.; Vasconcelos, T.R.A.; Burbano, R.M.R.; de Moraes, M.E.A.; Montenegro, R.C. Small benzothia-zole molecule induces apoptosis and prevents metastasis through DNA interaction and c-MYC gene supression in diffuse-type gastric ad-enocarcinoma cell line. Chem. Biol. Interact., 2018, 294, 118-127.
[http://dx.doi.org/10.1016/j.cbi.2018.08.006] [PMID: 30107152]
[33]
Leal, M.F.; Martins do Nascimento, J.L.; da Silva, C.E.; Vita Lamarão, M.F.; Calcagno, D.Q.; Khayat, A.S.; Assumpção, P.P.; Cabral, I.R.; de Arruda Cardoso Smith, M.; Burbano, R.R. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines. Cancer Genet. Cytogenet., 2009, 195(1), 85-91.
[http://dx.doi.org/10.1016/j.cancergencyto.2009.04.020] [PMID: 19837275]
[34]
Leal, M.F.; Calcagno, D.Q.; Borges da Costa, J.F.; Silva, T.C.; Khayat, A.S.; Chen, E.S.; Assumpção, P.P.; de Arruda Cardoso Smith, M.; Burbano, R.R. MYC, TP53, and chromosome 17 copy-number alterations in multiple gastric cancer cell lines and in their parental primary tumors. J. Biomed. Biotechnol., 2011, 2011, 631268.
[http://dx.doi.org/10.1155/2011/631268] [PMID: 21528007]
[35]
Ribeiro, H.F.; Alcântara, D.F.A.; Matos, L.A.; Sousa, J.M.; Leal, M.F.; Smith, M.A.; Burbano, R.R.; Bahia, M.O. Cytogenetic characteriza-tion and evaluation of c-MYC gene amplification in PG100, a new Brazilian gastric cancer cell line. Braz. J. Med. Biol. Res., 2010, 43(8), 717-721.
[http://dx.doi.org/10.1590/S0100-879X2010007500068] [PMID: 20658094]
[36]
Tao, Y.; Hao, X.; Ding, X.; Cherukupalli, S.; Song, Y.; Liu, X.; Zhan, P. Medicinal chemistry insights into novel CDC25 inhibitors. Eur. J. Med. Chem., 2020, 201, 112374.
[http://dx.doi.org/10.1016/j.ejmech.2020.112374] [PMID: 32603979]
[37]
Lavecchia, A.; Di Giovanni, C.; Novellino, E. Inhibitors of Cdc25 phosphatases as anticancer agents: A patent review. Expert Opin. Ther. Pat., 2010, 20(3), 405-425.
[http://dx.doi.org/10.1517/13543771003623232]
[38]
Liu, J.C.; Granieri, L.; Shrestha, M.; Wang, D.Y.; Vorobieva, I.; Rubie, E.A.; Jones, R.; Ju, Y.; Pellecchia, G.; Jiang, Z.; Palmerini, C.A.; Ben-David, Y.; Egan, S.E.; Woodgett, J.R.; Bader, G.D.; Datti, A.; Zacksenhaus, E. Identification of CDC25 as a common therapeutic target for triple-negative breast cancer. Cell Rep., 2018, 23(1), 112-126.
[http://dx.doi.org/10.1016/j.celrep.2018.03.039] [PMID: 29617654]
[39]
Lee, M.H.; Cho, Y.; Kim, D.H.; Woo, H.J.; Yang, J.Y.; Kwon, H.J.; Yeon, M.J.; Park, M.; Kim, S.H.; Moon, C.; Tharmalingam, N.; Kim, T.U.; Kim, J.B. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degrada-tion of CDK1 and cyclin B1. Am. J. Transl. Res., 2016, 8(12), 5246-5255.
[PMID: 28077999]
[40]
Al-Matouq, J.; Holmes, T.R.; Hansen, L.A. CDC25B and CDC25C overexpression in nonmelanoma skin cancer suppresses cell death. Mol. Carcinog., 2019, 58(9), 1691-1700.
[http://dx.doi.org/10.1002/mc.23075] [PMID: 31237025]
[41]
Lin, T.C.; Lin, P.L.; Cheng, Y.W.; Wu, T.C.; Chou, M.C.; Chen, C.Y.; Lee, H. MicroRNA-184 deregulated by the MicroRNA-21 promotes tumor malignancy and poor outcomes in non-small cell lung cancer via targeting CDC25A and c-Myc. Ann. Surg. Oncol., 2015, 22(3)(Suppl. 3), S1532-S1539.
[http://dx.doi.org/10.1245/s10434-015-4595-z] [PMID: 25990966]
[42]
Sur, S.; Agrawal, D.K. Phosphatases and kinases regulating CDC25 activity in the cell cycle: Clinical implications of CDC25 overexpres-sion and potential treatment strategies. Mol. Cell. Biochem., 2016, 416(1-2), 33-46.
[http://dx.doi.org/10.1007/s11010-016-2693-2] [PMID: 27038604]
[43]
Ma, H.T.; Poon, R.Y.C. Aurora kinases and DNA damage response. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2020, 821, 111716.
[http://dx.doi.org/10.1016/j.mrfmmm.2020.111716] [PMID: 32738522]
[44]
Leal, M.F.; Antunes, L.M.G.; Lamarão, M.F.V.; da Silva, C.E.; da Silva, I.D.; Assumpção, P.P.; Andrade, E.F.; Rezende, A.P.; Imbeloni, A.A.; Muniz, J.A.; Pinto, G.R.; Smith, M.A.; Burbano, R.R. The protective effect of Canova homeopathic medicine in cyclophosphamide-treated non-human primates. Food Chem. Toxicol., 2012, 50(12), 4412-4420.
[http://dx.doi.org/10.1016/j.fct.2012.09.002] [PMID: 22982473]
[45]
Leal, M.F.; Calcagno, D.Q.; Demachki, S.; Assumpção, P.P.; Chammas, R.; Burbano, R.R.; Smith, M.A. Clinical implication of 14-3-3 epsilon expression in gastric cancer. World J. Gastroenterol., 2012, 18(13), 1531-1537.
[http://dx.doi.org/10.3748/wjg.v18.i13.1531] [PMID: 22509086]
[46]
Leal, M.F.; Chung, J.; Calcagno, D.Q.; Assumpção, P.P.; Demachki, S.; da Silva, I.D.; Chammas, R.; Burbano, R.R.; de Arruda Cardoso Smith, M. Differential proteomic analysis of noncardia gastric cancer from individuals of northern Brazil. PLoS One, 2012, 7(7), e42255.
[http://dx.doi.org/10.1371/journal.pone.0042255] [PMID: 22860099]
[47]
Sadeghi, H.; Golalipour, M.; Yamchi, A.; Farazmandfar, T.; Shahbazi, M. CDC25A pathway toward tumorigenesis: Molecular targets of CDC25A in cell-cycle regulation. J. Cell. Biochem., 2019, 120(3), 2919-2928.
[http://dx.doi.org/10.1002/jcb.26838] [PMID: 30443958]
[48]
Liu, K.; Zheng, M.; Lu, R.; Du, J.; Zhao, Q.; Li, Z.; Li, Y.; Zhang, S. The role of CDC25C in cell cycle regulation and clinical cancer thera-py: A systematic review. Cancer Cell Int., 2020, 20(1), 213.
[http://dx.doi.org/10.1186/s12935-020-01304-w] [PMID: 32518522]
[49]
Monteiro, L.F.; Ferruzo, P.Y.M.; Russo, L.C.; Farias, J.O.; Forti, F.L. DUSP3/VHR: A druggable dual phosphatase for human diseases. Rev. Physiol. Biochem. Pharmacol., 2019, 176, 1-35.
[PMID: 30069819]
[50]
Lazo, J.S.; McQueeney, K.E.; Sharlow, E.R. New approaches to difficult drug targets: The phosphatase story. SLAS Discov., 2017, 22(9), 1071-1083.
[http://dx.doi.org/10.1177/2472555217721142] [PMID: 28745976]
[51]
George Rosenker, K.M.; Paquette, W.D.; Johnston, P.A.; Sharlow, E.R.; Vogt, A.; Bakan, A.; Lazo, J.S.; Wipf, P. Synthesis and biological evaluation of 3-aminoisoquinolin-1(2H)-one based inhibitors of the dual-specificity phosphatase Cdc25B. Bioorg. Med. Chem., 2015, 23(12), 2810-2818.
[http://dx.doi.org/10.1016/j.bmc.2015.01.043] [PMID: 25703307]
[52]
Yangjiong, X.; Yu, Y.; Gao, D. Inhibition of CDC25B with WG-391D impedes the tumorigenesis of ovarian cancer. Frontiers in Oncology, 2015, 9, 236.
[53]
Bona, A.B.; Calcagno, D.Q.; Ribeiro, H.F.; Muniz, J.A.P.C.; Pinto, G.R.; Rocha, C.A.M.; Lacreta, Junior A.C.C.; de Assumpção, P.P.; Her-ranz, J.A.R.; Burbano, R.R. Menadione reduces CDC25B expression and promotes tumor shrinkage in gastric cancer. Therap. Adv. Gastroenterol., 2020, 13, 1756284819895435.
[http://dx.doi.org/10.1177/1756284819895435]
[54]
Lee, M.H.; Yang, J.Y.; Cho, Y. Menadione induces apoptosis in a gastric cancer cell line mediated by down-regulation of X-linked inhibi-tor of apoptosis. Int. J. Clin. Exp. Med., 2016, 9(2), 2437-2443.
[55]
Li, H.L.; Ma, Y.; Ma, Y.; Li, Y.; Chen, X.B.; Dong, W.L.; Wang, R.L. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches. Oncotarget, 2017, 8(20), 33225-33240.
[http://dx.doi.org/10.18632/oncotarget.16600] [PMID: 28402259]
[56]
Brenner, A.K.; Reikvam, H.; Lavecchia, A.; Bruserud, Ø. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia-the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules, 2014, 19(11), 18414-18447.
[http://dx.doi.org/10.3390/molecules191118414] [PMID: 25397735]
[57]
Takahashi, H.; Murai, Y.; Tsuneyama, K.; Nomoto, K.; Okada, E.; Fujita, H.; Takano, Y. High labeling indices of cdc25B is linked to pro-gression of gastric cancers and associated with a poor prognosis. Appl. Immunohistochem. Mol. Morphol., 2007, 15(3), 267-272.
[http://dx.doi.org/10.1097/01.pai.0000213120.58472.57] [PMID: 17721270]
[58]
Masyuk, T.V.; Radtke, B.N.; Stroope, A.J.; Banales, J.M.; Masyuk, A.I.; Gradilone, S.A.; Gajdos, G.B.; Chandok, N.; Bakeberg, J.L.; Ward, C.J.; Ritman, E.L.; Kiyokawa, H.; LaRusso, N.F. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology, 2012, 142(3), 622-633.e4.
[http://dx.doi.org/10.1053/j.gastro.2011.11.036] [PMID: 22155366]
[59]
Teixeira, J.; Amorim, R.; Santos, K.; Soares, P.; Datta, S.; Cortopassi, G.A.; Serafim, T.L.; Sardão, V.A.; Garrido, J.; Borges, F.; Oliveira, P.J. Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative. Toxicology, 2018, 393, 123-139.
[http://dx.doi.org/10.1016/j.tox.2017.11.014] [PMID: 29141199]
[60]
Castro, F.A.V.; Mariani, D.; Panek, A.D.; Eleutherio, E.C.; Pereira, M.D. Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS One, 2008, 3(12), e3999.
[http://dx.doi.org/10.1371/journal.pone.0003999] [PMID: 19098979]
[61]
Glorieux, C.; Buc Calderon, P. Cancer cell sensitivity to redox-cycling quinones is influenced by NAD(P)H: Quinone oxidoreductase 1 polymorphism. Antioxidants, 2019, 8(9), 369.
[http://dx.doi.org/10.3390/antiox8090369] [PMID: 31480790]
[62]
Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol., 2017, 30(1), 13-37.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00256] [PMID: 27617882]
[63]
Ren, X.; Santhosh, S.M.; Coppo, L.; Ogata, F.T.; Lu, J.; Holmgren, A. The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress. Free Radic. Biol. Med., 2019, 134, 350-358.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.037] [PMID: 30703479]
[64]
Dasari, S.; Ali, S.M.; Zheng, G.; Chen, A.; Dontaraju, V.S.; Bosland, M.C.; Kajdacsy-Balla, A.; Munirathinam, G. Vitamin K and its ana-logs: Potential avenues for prostate cancer management. Oncotarget, 2017, 8(34), 57782-57799.
[http://dx.doi.org/10.18632/oncotarget.17997] [PMID: 28915711]
[65]
Guizzardi, S.; Picotto, G.; Rodríguez, V.L.; Bohl, L.; Tolosa de Talamoni, N. Calcitriol and menadione produces cell cycle arrest, oxidative and nitrosative stress, mitochondrial damage and cell death on MCF-7 breast cancer cell. Bone, 2016, 100(89), 67.
[http://dx.doi.org/10.1016/j.bone.2015.12.032]
[66]
Suresh, S.; Raghu, D.; Karunagaran, D. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration. Asian Pac. J. Cancer Prev., 2013, 14(9), 5461-5465.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5461] [PMID: 24175842]
[67]
Lee, H.H.; Yang, J.Y.; Cho, Y.; Woo, H.; Kwon, H.; Kim, D.; Park, M.; Moon, C.; Yeon, M.; Kim, H.; Seo, W-D.; Kim, S-H.; Kim, J-B. Inhibitory effects of menadione on helicobacter pylori growth and helicobacter pylori-induced inflammation via NF-κB inhibition. Int. J. Mol. Sci., 2019, 20(5), 1169.
[http://dx.doi.org/10.3390/ijms20051169]
[68]
Tetef, M.; Margolin, K.; Ahn, C.; Akman, S.; Chow, W.; Coluzzi, P.; Leong, L.; Morgan, R.J., Jr; Raschko, J.; Shibata, S.; Somlo, G.; Doroshow, J.H. Mitomycin C and menadione for the treatment of advanced gastrointestinal cancers: A phase II trial. J. Cancer Res. Clin. Oncol., 1995, 121(2), 103-106.
[http://dx.doi.org/10.1007/BF01202221] [PMID: 7883772]
[69]
Tetef, M.; Margolin, K.; Ahn, C.; Akman, S.; Chow, W.; Leong, L.; Morgan, R.J., Jr; Raschko, J.; Somlo, G.; Doroshow, J.H. Mitomycin C and menadione for the treatment of lung cancer: A phase II trial. Invest. New Drugs, 1995, 13(2), 157-162.
[http://dx.doi.org/10.1007/BF00872865] [PMID: 8617579]
[70]
Bajor, M.; Graczyk-Jarzynka, A.; Marhelava, K.; Kurkowiak, M.; Rahman, A.; Aura, C.; Russell, N.; Zych, A.O.; Firczuk, M.; Winiarska, M.; Gallagher, W.M.; Zagozdzon, R. Triple combination of ascorbate, menadione and the inhibition of peroxiredoxin-1 produces synergis-tic cytotoxic effects in triple-negative breast cancer cells. Antioxidants, 2020, 9(4), 320.
[http://dx.doi.org/10.3390/antiox9040320] [PMID: 32316111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy