Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Role of Indole Derivatives in Agrochemistry: Synthesis and Future Insights

Author(s): Manisha Rani, Divya Utreja* and Shivali Sharma

Volume 26, Issue 7, 2022

Published on: 15 June, 2022

Page: [651 - 678] Pages: 28

DOI: 10.2174/1385272826666220426103835

Price: $65

Abstract

Heterocycles constitute a wider class of organic compounds which contribute significantly to every facet of pure and applied chemistry. Indole, one of the bicyclic heterocyclic compounds containing nitrogen atom, witnessed unparalleled biological activity such as antiviral, antibacterial, anticancer, anti-depressant and antifungal activities. Different biological activities exhibited by indole derivatives provide the impulsion to explore its activity against anti-phytopathogenic microbes to save the plants from pests and disease, as food security will once again become a rigid demand. This review mainly focuses on various methods related to the synthesis of indole derivatives and its role in agriculture.

Keywords: Indole, heterocyclic, biological activity, phytopathogenic, antifungal, antibacterial, antimicrobial.

Graphical Abstract

[1]
Gulati, S.; Singh, R.; Sangwan, S. A review on green synthesis and biological activities of nitrogen and oxygen containing heterocycles. Preprints, 2021.
[2]
Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. iScience, 2020, 23(9), 101467.
[http://dx.doi.org/10.1016/j.isci.2020.101467] [PMID: 32891056]
[3]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947.
[4]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of heterocyclic chemistry, 3rd ed; Elsevier, 2010.
[5]
Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocy-cles; Elsevier, 2019.
[6]
Eicher, T.; Hauptmann, S.; Speicher, A. The chemistry of heterocycles: Structures, reactions, synthesis, and applications; John Wiley & Sons, 2013.
[7]
Joule, J.A.; Mills, K. Heterocyclic chemistry at a glance; John Wiley & Sons, 2012.
[http://dx.doi.org/10.1002/9781118380208]
[8]
Hiroya, K.; Itoh, S.; Sakamoto, T. Development of an efficient procedure for indole ring synthesis from 2-ethynylaniline derivatives cata-lyzed by CuII salts and its application to natural product synthesis. J. Org. Chem., 2004, 69(4), 1126-1136.
[http://dx.doi.org/10.1021/jo035528b] [PMID: 14961661]
[9]
Sharma, V.; Kumar, P.; Pathak, D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem., 2010, 7(3), 49502.
[10]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[11]
Biswal, S.; Sahoo, U.; Sethy, S.; Kumar, H.K.; Banerjee, M. Indole: The molecule of diverse biological activities. Asian J. Pharm. Clin. Res., 2012, (1), 1-6.
[12]
Roychowdhury, P.; Basak, B.S. The crystal structure of indole. Acta Crystallogr. B, 1975, 31(6), 1559-1563.
[http://dx.doi.org/10.1107/S0567740875005687]
[13]
Moradi, R.; Ziarani, G.M.; Lashgari, N. Recent applications of isatin in the synthesis of organic compounds. ARKIVOC, 2017, 1(1), 148-201.
[http://dx.doi.org/10.24820/ark.5550190.p009.980]
[14]
Joulain, D. Study of the fragrance given off by certain springtime flowers. InProgress in essential oil research; De Gruyter, 2019, pp. 57-68.
[15]
Yamamoto, Y.; Sato, Y.; Ebina, T.; Yokoyama, C.; Takahasi, S.; Mito, Y.; Tanabe, H.; Nishiguchi, N.; Nagaoka, K. Separation of high purity indole from coal tar by high pressure crystallization. Fuel, 1991, 70(4), 565-566.
[http://dx.doi.org/10.1016/0016-2361(91)90039-D]
[16]
Zhang, T.; Bing, X.; Wang, D.; Gao, J.; Zhang, L.; Xu, D.; Zhang, Y.; Wang, Y. Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. J. Environ. Chem. Eng., 2021, 9(3), 105255.
[http://dx.doi.org/10.1016/j.jece.2021.105255]
[17]
Cao, Y.; Xu, W.; Wu, X.; Li, Y.; Li, H.; Huang, W. Synthesis of a molecularly imprinted polymer on silica-gel surfaces for the selective adsorption of indole from fuel oil. Adsorpt. Sci. Technol., 2013, 31(6), 489-502.
[http://dx.doi.org/10.1260/0263-6174.31.6.489]
[18]
Akhtar, M.S.; Malik, A.; Arshad, H.; Batool, S.; Raza, A.R.; Tabassum, T.; Murtaza, M.A.; Riaz, M.; Noreen, M.; Rasool, G. Protective effect of newly synthesized indole imines against ethanol-induced gastric ulcer in rats. Biotechnol. Biotechnol. Equip., 2021, 35(1), 239-245.
[http://dx.doi.org/10.1080/13102818.2020.1868330]
[19]
Folkes, L.K.; Wardman, P. Oxidative activation of indole-3-acetic acids to cytotoxic species- a potential new role for plant auxins in can-cer therapy. Biochem. Pharmacol., 2001, 61(2), 129-136.
[http://dx.doi.org/10.1016/S0006-2952(00)00498-6] [PMID: 11163327]
[20]
Vicente, R. Recent advances in indole syntheses: New routes for a classic target. Org. Biomol. Chem., 2011, 9(19), 6469-6480.
[http://dx.doi.org/10.1039/c1ob05750b] [PMID: 21779596]
[21]
Nimnoi, P.; Pongsilp, N. Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficus religiosa L. Leucaena leucocephala. Res. J. Agric. Biol. Sci., 2009, 5(1), 29-41.
[22]
Cole, R.J.; Dorner, J.W.; Springer, J.P.; Cox, R.H. Indole metabolites from a strain of Aspergillus flavus. J. Agric. Food Chem., 1981, 29(2), 293-295.
[http://dx.doi.org/10.1021/jf00104a019]
[23]
Yu, Y.; Zhong, J.S.; Xu, K.; Yuan, Y.; Ye, K.Y. Recent advances in the electrochemical synthesis and functionalization of indole deriva-tives. Adv. Synth. Catal., 2020, 362(11), 2102-2119.
[http://dx.doi.org/10.1002/adsc.201901520]
[24]
Siddiqui, M.I.; Hussain, S.A. Effect of indole butyric acid and types of cuttings on root initiation of Ficus hawaii. Sarhad J. Agric., 2007, 23(4), 919.
[25]
Mendes, M.C.D.S.; Fazolo, B.R.; de Souza, J.M.; de Vasconcelos, L.G.; de Sousa, Junior, P.T.; Dall’Oglio, E.L.; Soares, M.A.; Sampaio, O.M.; Vieira, L.C.C. Synthesis and evaluation of indole derivatives as photosynthesis and plant growth inhibitors. Photochem. Photobiol. Sci., 2019, 18(6), 1350-1358.
[http://dx.doi.org/10.1039/C8PP00506K] [PMID: 30915429]
[26]
Song, B.; Jin, L.; Yang, S.; Bhadury, P.S. Environment-Friendly Antiviral Agents for Plants 2010th edition;,
[http://dx.doi.org/10.1007/978-3-642-03692-7]
[27]
Oh, K.B.; Mar, W.; Kim, S.; Kim, J.Y.; Lee, T.H.; Kim, J.G.; Shin, D.; Sim, C.J.; Shin, J. Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the sponge Spongosorites sp. Biol. Pharm. Bull., 2006, 29(3), 570-573.
[http://dx.doi.org/10.1248/bpb.29.570] [PMID: 16508170]
[28]
Bessa, L.J.; Buttachon, S.; Dethoup, T.; Martins, R.; Vasconcelos, V.; Kijjoa, A.; Martins da Costa, P. Neofiscalin A and fiscalin C are potential novel indole alkaloid alternatives for the treatment of multidrug-resistant Gram-positive bacterial infections. FEMS Microbiol. Lett., 2016, 363(15), fnw150.
[http://dx.doi.org/10.1093/femsle/fnw150] [PMID: 27268269]
[29]
Amer, M.A.; Wasfi, R.; Attia, A.S.; Ramadan, M.A. Indole derivatives obtained from Egyptian Enterobacter sp. soil isolates exhibit anti-virulence activities against uropathogenic Proteus mirabilis. Antibiotics (Basel), 2021, 10(4), 363.
[http://dx.doi.org/10.3390/antibiotics10040363] [PMID: 33805493]
[30]
Meng, T.; Hou, Y.; Shang, C.; Zhang, J.; Zhang, B. Recent advances in indole dimers and hybrids with antibacterial activity against methi-cillin-resistant Staphylococcus aureus. Arch. Pharm. (Weinheim), 2021, 354(2), e2000266.
[http://dx.doi.org/10.1002/ardp.202000266] [PMID: 32986279]
[31]
Minvielle, M.J.; Eguren, K.; Melander, C. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria. Chemistry, 2013, 19(51), 17595-17602.
[http://dx.doi.org/10.1002/chem.201303510] [PMID: 24243627]
[32]
Qin, H-L.; Liu, J.; Fang, W-Y.; Ravindar, L.; Rakesh, K.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 194, 112245.
[http://dx.doi.org/10.1016/j.ejmech.2020.112245] [PMID: 32220687]
[33]
Bhakhar, K.A.; Sureja, D.K.; Dhameliya, T.M. Synthetic account of indoles in search of potential anti-mycobacterial agents:A review and future insights. J. Mol. Struct., 2022, 1248, 131522.
[http://dx.doi.org/10.1016/j.molstruc.2021.131522]
[34]
Melander, R.J.; Minvielle, M.J.; Melander, C. Controlling bacterial behavior with indole-containing natural products and derivatives. Tetrahedron, 2014, 70(37), 6363-6372.
[http://dx.doi.org/10.1016/j.tet.2014.05.089] [PMID: 25267859]
[35]
Rajasekharan, S.K.; Lee, J.H.; Ravichandran, V.; Kim, J.C.; Park, J.G.; Lee, J. Nematicidal and insecticidal activities of halogenated indoles. Sci. Rep., 2019, 9(1), 2010.
[http://dx.doi.org/10.1038/s41598-019-38561-3] [PMID: 30765810]
[36]
Rajasekharan, S.K.; Lee, J.H.; Ravichandran, V.; Lee, J. Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode. Bursaphelenchusxylophilus. Sci. Rep., 2017, 7(1), 1-3.
[http://dx.doi.org/10.1038/s41598-017-07074-2] [PMID: 28127051]
[37]
Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. Synthesis and quantitative structure-activity relationship (QSAR) study of novel N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents. J. Agric. Food Chem., 2013, 61(24), 5696-5705.
[http://dx.doi.org/10.1021/jf400536q] [PMID: 23738496]
[38]
Noble, C.; Cannaert, A.; Linnet, K.; Stove, C.P. Application of an activity-based receptor bioassay to investigate the in vitro activity of selected indole- and indazole-3-carboxamide-based synthetic cannabinoids at CB1 and CB2 receptors. Drug Test. Anal., 2019, 11(3), 501-511.
[http://dx.doi.org/10.1002/dta.2517] [PMID: 30280499]
[39]
Deswal, S.; Tittal, R.K.; Vikas, D.G.; Lal, K.; Kumar, A. 5-Fluoro-1H-indole-2, 3-dione-triazoles-synthesis, biological activity, molecular docking, and DFT study. J. Mol. Struct., 2020, 1209, 127982.
[http://dx.doi.org/10.1016/j.molstruc.2020.127982]
[40]
Costa, Â.C.F.; Cavalcanti, S.C.H.; Santana, A.S.; Lima, A.P.S.; Brito, T.B.; Oliveira, R.R.B.; Macêdo, N.A.; Cristaldo, P.F.; Araújo, A.P.A.; Bacci, L. Insecticidal activity of indole derivatives against Plutella xylostella and selectivity to four non-target organisms. Ecotoxicology, 2019, 28(8), 973-982.
[http://dx.doi.org/10.1007/s10646-019-02095-1] [PMID: 31420785]
[41]
Banister, S.D.; Moir, M.; Stuart, J.; Kevin, R.C.; Wood, K.E.; Longworth, M.; Wilkinson, S.M.; Beinat, C.; Buchanan, A.S.; Glass, M.; Connor, M.; McGregor, I.S.; Kassiou, M. Pharmacology of indole and indazole synthetic cannabinoid designer drugs ab-fubinaca, adb-fubinaca, ab-pinaca, adb-pinaca, 5f-ab-pinaca, 5f-adb-pinaca, adbica, and 5f-adbica. ACS Chem. Neurosci., 2015, 6(9), 1546-1559.
[http://dx.doi.org/10.1021/acschemneuro.5b00112] [PMID: 26134475]
[42]
Glenn, E.M.; Bowman, B.J.; Kooyers, W.; Koslowske, T.; Myers, M.L. The pharmacology of 2,3-bis-(p-methoxyphenyl)-indole (indox-ole). J. Pharmacol. Exp. Ther., 1967, 155(1), 157-166.
[PMID: 6017336]
[43]
Sundberg, R. The chemistry of indoles; Elsevier, 2012, p. 18.
[44]
Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Umpolung reactivity of indole through gold catalysis. Angew. Chem. Int. Ed. Engl., 2011, 50(36), 8358-8362.
[http://dx.doi.org/10.1002/anie.201103014] [PMID: 21761530]
[45]
Yang, Y.; Gao, P.; Zhao, Y.; Shi, Z. Regiocontrolled Direct C-H Arylation of Indoles at the C4 and C5 Positions. Angew. Chem. Int. Ed. Engl., 2017, 56(14), 3966-3971.
[http://dx.doi.org/10.1002/anie.201612599] [PMID: 28271605]
[46]
Broadbent, T.A.; Broadbent, H.S. 1. The chemistry and pharmacology of indole-3-carbinol (indole-3-methanol) and 3-(methoxymethyl)indole. [Part II]. Curr. Med. Chem., 1998, 5(6), 469-491.
[PMID: 9873111]
[47]
Wei, C.; Zhao, L.; Sun, Z.; Hu, D.; Song, B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pestic. Biochem. Physiol., 2020, 166, 104568.
[http://dx.doi.org/10.1016/j.pestbp.2020.104568] [PMID: 32448422]
[48]
Puli, V S; Subburu, M.; Yadagiri, B.; Tripathi, A.; Prasad, K.R.S. PuChatterjeeli, A.; Pola, S.; Chetti, P. New Indolo[3,2-b]indole based small organic molecules for OrganicThin Film Transistors (OTFTs): A Combined Experimental and DFT Study. J Mol. Str, 2020.
[http://dx.doi.org/10.1016/j.molstruc.2020.129491]
[49]
Santhosh, K.; Ganesan, S.; Balamurugan, S. Novel indole-based photosensitizers coupled with PEG-HEC quasi-solid-state electrolyte to improve energy conversion and stability of organic dyes based-dye sensitized solar cells. Electrochim. Acta, 2021, 389, 138771.
[http://dx.doi.org/10.1016/j.electacta.2021.138771]
[50]
Sheng, F-T.; Wang, J-Y.; Tan, W.; Zhang, Y-C.; Shi, F. Progress in organocatalytic asymmetric dearomatization reactions of indole deriva-tives. Org. Chem. Front., 2020, 7(23), 3967-3998.
[http://dx.doi.org/10.1039/D0QO01124J]
[51]
Preston, G.M. Profiling the extended phenotype of plant pathogens: Challenges in bacterial molecular plant pathology. Mol. Plant Pathol., 2017, 18(3), 443-456.
[http://dx.doi.org/10.1111/mpp.12530] [PMID: 28026146]
[52]
Bockus, W.W.; Shroyer, J.P. The impact of reduced tillage on soilborne plant pathogens. Annu. Rev. Phytopathol., 1998, 36(1), 485-500.
[http://dx.doi.org/10.1146/annurev.phyto.36.1.485] [PMID: 15012510]
[53]
Shahab, S.; Ahmed, N.; Khan, N.S. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr. J. Agric. Res., 2009, 4(11), 1312-1316.
[54]
Karadeniz, A.; Kaya, B. Savaş, B.; Topcuoğlu, Ş.F. Effects of two plant growth regulators, indole-3-acetic acid and β-naphthoxyacetic acid, on genotoxicity in Drosophila SMART assay and on proliferation and viability of HEK293 cells from the perspective of carcinogen-esis. Toxicol. Ind. Health, 2011, 27(9), 840-848.
[http://dx.doi.org/10.1177/0748233711399314] [PMID: 21511897]
[55]
Hui, F.; Ekborg-Ott, K.H.; Armstrong, D.W. High-performance liquid chromatographic and capillary electrophoretic enantioseparation of plant growth regulators and related indole compounds using macrocyclic antibiotics as chiral selectors. J. Chromatogr. A, 2001, 906(1-2), 91-103.
[http://dx.doi.org/10.1016/S0021-9673(00)00954-7] [PMID: 11215905]
[56]
Chauhan, N.; Narang, J.; Pundir, C.S. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens. Bioelectron., 2011, 29(1), 82-88.
[http://dx.doi.org/10.1016/j.bios.2011.07.070] [PMID: 21873044]
[57]
Petrushkina, E.A.; Kalinin, V.N.; Ivanova, G.B.; Kheinman, V.A. Synthesis of 2-ethyl-2-methyl-2, 3-dihydro-1 H-indole, a new insecti-cide exhibiting juvenile hormone activity. Russ. J. Gen. Chem., 2006, 76(12), 1953-1957.
[http://dx.doi.org/10.1134/S107036320612022X]
[58]
Dubey, R.A.; Chaudhary, N.; Kumar, R.; Panwar, H.A. Study of mesoionic compounds: Synthesis and pharmacological evaluation of several 2-[{(4-substituted-1-sulphonyl) sydnon-3-yl}]-1, 3, 4-thiadiazino (6, 5-b) indoles as antimicrobial, insecticidal and antihelmintic agents. Orient. J. Chem., 2014, 30(1), 271-278.
[http://dx.doi.org/10.13005/ojc/300134]
[59]
Kumar, R.; Giri, S. Nizamuddin, Synthesis of some 1;-(substituted phenyl) spiro [indole-3, 4;-azetidine]-2 (3H), 2;-diones as potential fungicides. J. Agric. Food Chem., 1989, 37(4), 1094-1096.
[http://dx.doi.org/10.1021/jf00088a061]
[60]
Raut, J.S.; Shinde, R.B.; Karuppayil, M.S. Indole, a bacterial signaling molecule, exhibits inhibitory activity against growth, dimorphism and biofilm formation in Candida albicans. Afr. J. Microbiol. Res., 2012, 6(30), 6005-6012.
[61]
Li, X.Q.; Gan, Y.Y.; Meng, J.; Li, W.; Chen, J.; Qi, Y.Y.; Tian, K.; Ouyang, G-P.; Wang, Z-C. Synthesis and antimicrobial activities of novel quinazolinone acylhydrazone derivatives containing the indole moiety. J. Heterocycl. Chem., 2018, 55(6), 1382-1390.
[http://dx.doi.org/10.1002/jhet.3172]
[62]
Ji, X.; Wang, Z.; Dong, J.; Liu, Y.; Lu, A.; Wang, Q. Discovery of topsentin alkaloids and their derivatives as novel antiviral and anti-phytopathogenic fungus agents. J. Agric. Food Chem., 2016, 64(48), 9143-9151.
[http://dx.doi.org/10.1021/acs.jafc.6b04020] [PMID: 27933985]
[63]
Santos, D.; Abrantes, I.; Maleita, C. The quarantine root;knot nematode Meloidogyne enterolobii–a potential threat to Portugal and Eu-rope. Plant Pathol., 2019, 68(9), 1607-1615.
[http://dx.doi.org/10.1111/ppa.13079]
[64]
Truong, N.M.; Nguyen, C.N.; Abad, P.; Quentin, M.; Favery, B. Function of root-knot nematode effectors and their targets in plant parasit-ism. Adv. Bot. Res., 2015, 73, 293-324.
[http://dx.doi.org/10.1016/bs.abr.2014.12.010]
[65]
McCarter, JF Molecular approaches toward resistance to plant-parasitic nematodes; Cell. Biol. Plant Nematode Parasitism, 2008, pp. 1-29.
[66]
Yu, H.; Yu, Z. Direct alkenylation of indoles with α-oxo ketene dithioacetals: Efficient synthesis of indole alkaloids meridianin deriva-tives. Angew. Chem. Int. Ed. Engl., 2009, 48(16), 2929-2933.
[http://dx.doi.org/10.1002/anie.200900278] [PMID: 19288509]
[67]
Pfaffenbach, M.; Bakanas, I.; O’Connor, N.R.; Herrick, J.L.; Sarpong, R. Total syntheses of xiamycins A, C, F, H and Oridamycin A and preliminary evaluation of their anti-fungal properties. Angew. Chem. Int. Ed. Engl., 2019, 58(43), 15304-15308.
[http://dx.doi.org/10.1002/anie.201908399] [PMID: 31419367]
[68]
Kearn, J.; Lilley, C.; Urwin, P.; O’Connor, V.; Holden-Dye, L. Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida. Pestic. Biochem. Physiol., 2017, 142, 83-90.
[http://dx.doi.org/10.1016/j.pestbp.2017.01.009] [PMID: 29107251]
[69]
Kawanobe, M.; Toyota, K.; Fujita, T.; Hatta, D. Evaluation of nematicidal activity of fluensulfone against non-target free-living nematodes under field conditions. Agronomy (Basel), 2019, 9(12), 853.
[http://dx.doi.org/10.3390/agronomy9120853]
[70]
Giannakou, I.O.; Panopoulou, S. The use of fluensulfone for the control of root-knot nematodes in greenhouse cultivated crops: Efficacy and phytotoxicity effects. Cogent Food Agric., 2019, 5(1), 1643819.
[http://dx.doi.org/10.1080/23311932.2019.1643819]
[71]
De Waele, D.; Elsen, A. Challenges in tropical plant nematology. Annu. Rev. Phytopathol., 2007, 45(1), 457-485.
[http://dx.doi.org/10.1146/annurev.phyto.45.062806.094438] [PMID: 17489690]
[72]
Juroszek, P.; Von Tiedemann, A. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challeng-es, research gaps, key studies and concepts. J. Agric. Sci., 2013, 151(2), 163-188.
[http://dx.doi.org/10.1017/S0021859612000500]
[73]
Sumiya, T.; Ishigaki, M.; Oh, K. Synthesis of imidazole and indole hybrid molecules and antifungal activity against rice blast. Int. J. Chem. Eng. Appl., 2017, 8(3), 233-236.
[http://dx.doi.org/10.18178/ijcea.2017.8.3.662]
[74]
Wu, J.S.; Zhang, X.; Zhang, Y.L.; Xie, J.W. Synthesis and antifungal activities of novel polyheterocyclic spirooxindole derivatives. Org. Biomol. Chem., 2015, 13(17), 4967-4975.
[http://dx.doi.org/10.1039/C5OB00256G] [PMID: 25820179]
[75]
Basse, C.W.; Lottspeich, F.; Steglich, W.; Kahmann, R. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fun-gus Ustilago maydis. Eur. J. Biochem., 1996, 242(3), 648-656.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0648r.x] [PMID: 9022693]
[76]
Gao, Y.; Huang, D.C.; Liu, C.; Song, Z.L.; Liu, J.R.; Guo, S.K.; Tan, J.Y.; Qiu, R.L.; Jin, B.; Zhang, H.; Mulholland, N.; Han, X.; Xia, Q.; Ali, A.S.; Guo, D.; Deng, Y.; Gu, Y.C.; Zhang, M.Z. Streptochlorin analogues as potential antifungal agents: Design, synthesis, antifungal activity and molecular docking study. Bioorg. Med. Chem., 2021, 35, 116073.
[http://dx.doi.org/10.1016/j.bmc.2021.116073] [PMID: 33610010]
[77]
Buaban, K.; Phutdhawong, W.; Taechowisan, T.; Phutdhawong, W.S. Synthesis and investigation of tetrahydro-β-carboline derivatives as inhibitors of plant pathogenic fungi. Molecules, 2021, 26(1), 207.
[http://dx.doi.org/10.3390/molecules26010207] [PMID: 33401587]
[78]
Reddy, G.S.; Hossain, K.A.; Kumar, J.S.; Thirupataiah, B.; Edwin, R.K.; Giliyaru, V.B.; Hariharapura, R.C.; Shenoy, G.G.; Misra, P.; Pal, M. Novel isatin–indole derivatives as potential inhibitors of chorismate mutase (CM): Their synthesis along with unexpected formation of 2-indolylmethylamino benzoate ester under Pd–Cu catalysis. RSC Advances, 2020, 10(1), 289-297.
[http://dx.doi.org/10.1039/C9RA09236F]
[79]
Huang, ZB; Xia, XJ; Huang, ZH; Xu, L; Zhang, XY; Tang, RY Selective C–H dithiocarbamation of arenes and antifungal activity evalua-tion., Org Biomol Chem, 2020, 18(7), 1369-76.2020,
[80]
Song, Z.L.; Zhu, Y.; Liu, J.R.; Guo, S.K.; Gu, Y.C.; Han, X.; Dong, H.Q.; Sun, Q.; Zhang, W.H.; Zhang, M.Z. Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety. Mol. Divers., 2021, 25(1), 205-221.
[http://dx.doi.org/10.1007/s11030-020-10048-8] [PMID: 32056130]
[81]
Parle, N.K. Synthesis, characterization and evaluation of 3-acetylindole derivatives evaluating as potential anti-inflammatory agent. Pharma Innov., 2020, 9(6), 468-474.
[82]
Ali, S.; Wisal, A.; Tahir, M.N.; Ali, A.; Hameed, S.; Ahmed, M.N. One-pot synthesis, crystal structure and antimicrobial activity of 6-benzyl-11-(p-tolyl)-6H-indolo [2, 3-b] quinoline. J. Mol. Struct., 2020, 1210, 128035.
[http://dx.doi.org/10.1016/j.molstruc.2020.128035]
[83]
Kaczmarek, D.K.; Kleiber, T.; Wenping, L.; Niemczak, M. Chrzanowski, Ł.; Pernak, J. Transformation of indole-3-butyric acid into ionic liquids as a sustainable strategy leading to highly efficient plant growth stimulators. ACS Sustain. Chem.& Eng., 2020, 8(3), 1591-1598.
[http://dx.doi.org/10.1021/acssuschemeng.9b06378]
[84]
Soltani, S.; Montazeri, N.; Zeydi, M.M.; Heravi, M.M. Synthesis of new bis (indolyl) methanes catalyzed by benzylsulfamic acid and eval-uation of their antimicrobial activities. Pharm. Chem. J., 2020, 53(10), 947-952.
[http://dx.doi.org/10.1007/s11094-020-02103-3]
[85]
Dong, J.; Huang, S.S.; Hao, Y.N.; Wang, Z.W.; Liu, Y.X.; Li, Y.Q.; Wang, Q.M. Marine-natural-products for biocides development: First discovery of meridianin alkaloids as antiviral and anti-phytopathogenic-fungus agents. Pest Manag. Sci., 2020, 76(10), 3369-3376.
[http://dx.doi.org/10.1002/ps.5690] [PMID: 31756256]
[86]
Tian, K.; Li, X.Q.; Zhang, L.; Gan, Y.Y.; Meng, J.; Wu, S.Q.; Wan, J.L.; Xu, Y.; Cai, C.T.; Ouyang, G.P.; Wang, Z.C. Synthesis of novel indole derivatives containing double 1, 3, 4-oxadiazole moiety as efficient bactericides against phytopathogenic bacterium Xanthomonas oryzae. Chem. Pap., 2019, 73(1), 17-25.
[http://dx.doi.org/10.1007/s11696-018-0555-y]
[87]
Wei, C.; Zhang, J.; Shi, J.; Gan, X.; Hu, D.; Song, B. Synthesis, antiviral activity, and induction of plant resistance of indole analogues bearing dithioacetal moiety. J. Agric. Food Chem., 2019, 67(50), 13882-13891.
[http://dx.doi.org/10.1021/acs.jafc.9b05357] [PMID: 31721582]
[88]
Bai, H.; Cui, P.; Zang, C.; Li, S. Enantioselective total synthesis, divergent optimization and preliminary biological evaluation of (indole-N-alkyl)-diketopiperazines. Bioorg. Med. Chem. Lett., 2019, 29(23), 126718.
[http://dx.doi.org/10.1016/j.bmcl.2019.126718] [PMID: 31678005]
[89]
Gupta, A.K.; Sharma, M. Synthesis, characterization and anti-microbial activity of indole derivatives. J. Drug Deliv. Ther., 2019, 9(4-s), 918-925.
[90]
Bawazir, W.A. Synthesis of some new thioethers and 4-thiazolidinones bearing 3-(Pyridine-4;-yl)-1, 2, 4-Triazino [5, 6-b] indole moiety as antifungal agents. Int. J. Org. Chem. (Irvine), 2019, 9(1), 37-46.
[http://dx.doi.org/10.4236/ijoc.2019.91004]
[91]
Jia, B.; Ma, Y.M.; Liu, B.; Chen, P.; Hu, Y.; Zhang, R. Synthesis, antimicrobial activity, structure-activity relationship, and molecular docking studies of indole diketopiperazine alkaloids. Front Chem., 2019, 7, 837.
[http://dx.doi.org/10.3389/fchem.2019.00837] [PMID: 31850323]
[92]
Yan, W.; Zhao, S.S.; Ye, Y.H.; Zhang, Y.Y.; Zhang, Y.; Xu, J.Y.; Yin, S.M.; Tan, R.X. Generation of indoles with agrochemical signifi-cance through biotransformation by Chaetomium globosum. J. Nat. Prod., 2019, 82(8), 2132-2137.
[http://dx.doi.org/10.1021/acs.jnatprod.8b01101] [PMID: 31329433]
[93]
Zheng, S.; Zhu, R.; Tang, B.; Chen, L.; Bai, H.; Zhang, J. Synthesis and biological evaluations of a series of calycanthaceous analogues as antifungal agents. Nat. Prod. Res., 2019, 1-9.
[PMID: 31378086]
[94]
Guo, J.; Hao, Y.; Ji, X.; Wang, Z.; Liu, Y.; Ma, D.; Li, Y.; Pang, H.; Ni, J.; Wang, Q. Optimization, structure-activity relationship, and mode of action of nortopsentin analogues containing thiazole and oxazole moieties. J. Agric. Food Chem., 2019, 67(36), 10018-10031.
[http://dx.doi.org/10.1021/acs.jafc.9b04093] [PMID: 31448918]
[95]
Pedras, M.S.C.; Abdoli, A.; To, Q.H.; Thapa, C. Ecological roles of tryptanthrin, indirubin and N-formylanthranilic acid in isatis indigoti-ca: Phytoalexins or phytoanticipins? Chem. Biodivers., 2019, 16(3), e1800579.
[http://dx.doi.org/10.1002/cbdv.201800579] [PMID: 30557446]
[96]
Dutov, M.D.; Kachala, V.V.; Ugrak, B.I.; Korolev, V.A.; Popkov, S.V.; Aleksanyan, D.R.; Rusina, O.N.; Aleksanyan, K.G.; Koshelev, V.N. Synthesis and fungicidal activity of new 4-hydroxy-6-trifluoromethyl-2-phenylindoles. Mendeleev Commun., 2018, 28(4), 437-438.
[http://dx.doi.org/10.1016/j.mencom.2018.07.033]
[97]
Zhang, Z.J.; Zeng, Y.; Jiang, Z.Y.; Shu, B.S.; Sethuraman, V.; Zhong, G.H. Design, synthesis, fungicidal property and QSAR studies of novel -carbolines containing urea, benzoylthiourea and benzoylurea for the control of rice sheath blight. Pest Manag. Sci., 2018, 74(7), 1736-1746.
[http://dx.doi.org/10.1002/ps.4873] [PMID: 29384254]
[98]
Ji, X.; Guo, J.; Liu, Y.; Lu, A.; Wang, Z.; Li, Y.; Yang, S.; Wang, Q. Marine-natural-product development: First discovery of nortopsentin alkaloids as novel antiviral, anti-phytopathogenic-fungus, and insecticidal agentsJ Agric. J. Agric. Food Chem., 2018, 66(16), 4062-4072.
[http://dx.doi.org/10.1021/acs.jafc.8b00507] [PMID: 29630371]
[99]
Sharma, V.; Jaiswal, P.K.; Kumar, K.; Saran, M.; Mathur, M.; Swami, A.K.; Chaudhary, S. An efficient synthesis and biological evaluation of novel analogues of natural product Cephalandole A: A new class of antimicrobial and antiplatelet agents. Fitoterapia, 2018, 129, 13-19.
[http://dx.doi.org/10.1016/j.fitote.2018.06.003] [PMID: 29894738]
[100]
Huo, X.Y.; Guo, L.; Chen, X.F.; Zhou, Y.T.; Zhang, J.; Han, X.Q.; Dai, B. Design, synthesis, and antifungal activity of novel aryl-1, 2, 3-triazole--carboline hybrids. Molecules, 2018, 23(6), 1344.
[http://dx.doi.org/10.3390/molecules23061344] [PMID: 29866988]
[101]
Chen, L.; Liu, Y.; Song, H.; Liu, Y.; Wang, L.; Wang, Q. Expanding indole diversity: Direct 1-step synthesis of 1,2-fused indoles and spiroindolines from 2-halo anilines for fast SAR antiviral elucidation against tobacco mosaic virus (TMV). Mol. Divers., 2017, 21(1), 61-68.
[http://dx.doi.org/10.1007/s11030-016-9697-4] [PMID: 27592328]
[102]
Quazi, I.; Sastry, V.G.; Ansari, J.A. Synthesis and antimicrobial activity of indole derivative bearing the pyrazole moiety. Int. J. Pharm. Sci. Res., 2017, 8(3), 1145.
[103]
Al Osaimi, A.G.; Ali, R.S.; Saad, H.A.; Aly, M.E. Synthesis and antimicrobial activity of novel fused [1, 2, 4] triazino [5, 6-b] indole de-rivatives. Russ. J. Gen. Chem., 2017, 87(6), 1246-1255.
[http://dx.doi.org/10.1134/S1070363217060202]
[104]
Zhang, M.Z.; Jia, C.Y.; Gu, Y.C.; Mulholland, N.; Turner, S.; Beattie, D.; Zhang, W.H.; Yang, G.F.; Clough, J. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues. Eur. J. Med. Chem., 2017, 126, 669-674.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.001] [PMID: 27936445]
[105]
Reddy, D.S.; Seelam, N.; Reddy, S.M. Design and new synthetic approach of indole based 1, 2, 3-triazoles: A potent antimicrobial agents. Asian J. Chem., 2017, 29(3), 631-634.
[http://dx.doi.org/10.14233/ajchem.2017.20287]
[106]
Zheng, S.; Gu, Y.; Li, L.; Zhu, R.; Cai, X.; Bai, H.; Zhang, J. Synthesis and fungicidal activity of tryptophan analogues - the unexpected calycanthaceous alkaloid derivatives. Nat. Prod. Res., 2017, 31(10), 1142-1149.
[http://dx.doi.org/10.1080/14786419.2016.1230117] [PMID: 27653454]
[107]
Joseph, O.B.; Sholagbade, A.T.; Olubumni, J.O. Synthesis, charactwerization and biological studies of N-Methylindole-3-thioacetic acid. J Appl Chem. Sci. Int. (Lahore), 2016, 7(2), 90-114.
[108]
Zine, B.; Jadhav, S.; Farooqui, M. Design, synthesis and biological evaluation of dihydroisoxazole of indole derivatives as anti-microbial agents. J. Chem. Pharm. Res., 2016, 8(7), 234-240.
[109]
Pedras, M.S.; To, Q.H. Unveiling the first indole-fused thiazepine: Structure, synthesis and biosynthesis of cyclonasturlexin, a remarkable cruciferous phytoalexin. Chem. Commun. (Camb.), 2016, 52(34), 5880-5883.
[http://dx.doi.org/10.1039/C6CC02108E] [PMID: 27052411]
[110]
Ashok, D.; Srinivas, G.; Kumar, A.V.; Gandhi, D.M. Microwave-assisted synthesis and evaluation of indole based benzofuran scaffolds as antimicrobial and antioxidant agents. Russ. J. Bioorganic Chem., 2016, 42(5), 560-566.
[http://dx.doi.org/10.1134/S1068162016050034]
[111]
Sharma, S.; Meena, R.; Singh, R.V.; Fahmi, N. Synthesis, characterization, antimicrobial, and DNA cleavage evaluation of some organotin (IV) complexes derived from ligands containing the 1H-indole-2, 3-dione moiety. Main Group Met. Chem., 2016, 39(1-2), 31-40.
[http://dx.doi.org/10.1515/mgmc-2015-0030]
[112]
Pan, L.; Li, X.; Gong, C.; Jin, H.; Qin, B. Synthesis of N-substituted phthalimides and their antifungal activity against Alternaria solani and Botrytis cinerea. Microb. Pathog., 2016, 95, 186-192.
[http://dx.doi.org/10.1016/j.micpath.2016.04.012] [PMID: 27079471]
[113]
Quiroga, D.; Becerra, L.D.; Sadat-Bernal, J.; Vargas, N.; Coy-Barrera, E. Synthesis and antifungal activity against Fusarium oxysporum of some Brassinin analogs derived from L-tryptophan: A DFT/B3LYP study on the reaction mechanism. Molecules, 2016, 21(10), 1349.
[http://dx.doi.org/10.3390/molecules21101349] [PMID: 27727186]
[114]
Thanh, N.D.; Giang, N.T.K.; Quyen, T.H.; Huong, D.T.; Toan, V.N. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones. Eur. J. Med. Chem., 2016, 123, 532-543.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.074] [PMID: 27517802]
[115]
Oh, K.; Ishigaki, M.; Hoshi, T.; Yoshizawa, Y. Synthesis of novel imidazole derivatives based on camalexin scaffold and anti-fungal activity against rice blast; Curr Appl Sci Technol, 2015, pp. 527-533.
[116]
Wang, G.L.; Chen, X.; Chang, Y.N.; Du, D.; Li, Z.; Xu, X.Y. Synthesis of 1, 2, 3-benzotriazin-4-one derivatives containing spirocyclic indoline-2-one moieties and their nematicidal evaluation. Chin. Chem. Lett., 2015, 26(12), 1502-1506.
[http://dx.doi.org/10.1016/j.cclet.2015.10.024]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy