Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Benzalacetophenone-based Isoxazoline and Isoxazole Derivatives

Author(s): Saba Farooq* and Zainab Ngaini*

Volume 26, Issue 7, 2022

Published on: 31 May, 2022

Page: [679 - 692] Pages: 14

DOI: 10.2174/1385272826666220408120350

Price: $65

conference banner
Abstract

The demand for natural product-based drugs with less cost and efficient procedures has become a challenge for researchers. Benzalacetophenone is a natural product-based species that is modified into numerous heterocyclic compounds, including isoxazoline and isoxazole derivatives. The utility of isoxazoline and oxazole derivatives has been increased for the synthesis of new and effective chemical entities to serve medicinal chemistry in the past few years. Isoxazoline and isoxazole are fascinating classes of heterocyclic compounds, which belong to N- and O-heterocycles, and are widely used as precursors for the development of drugs. This review highlights the recent work on the synthesis of mono and bis isoxazoline and isoxazole derivatives using stable benzalacetophenone and functionalization of isoxazoline and isoxazole, along with the prevailing biological properties.

Keywords: Anticancer drug, stirring, ammonium hydroxide, lipophilic, benzalacetophenone, isoxazoline.

Graphical Abstract

[1]
Farooq, S.; Ngaini, Z. Recent synthetic methodologies for chalcone synthesis (2013-2018). Curr. Organocatal., 2019, 6(3), 184-192.
[http://dx.doi.org/10.2174/2213337206666190306155140]
[2]
Ngaini, Z.; Fadzillah, S.M.H.; Hussain, H. Synthesis and antimicrobial studies of hydroxylated chalcone derivatives with variable chain length. Nat. Prod. Res., 2012, 26(10), 892-902.
[http://dx.doi.org/10.1080/14786419.2010.502896] [PMID: 21678160]
[3]
Farooq, S.; Ngaini, Z. Chalcone derived pyrazole synthesis via one-pot and two-pot strategies. Curr. Org. Chem., 2020, 24(13), 1491-1506.
[http://dx.doi.org/10.2174/1385272824999200714101420]
[4]
Farooq, S.; Ngaini, Z. Microwaveassisted synthesis, antimicrobial activities and molecular docking of methoxycarboxylated chalcone derived pyrazoline and pyrazole derivatives. Chem. Select, 2022, 7(1), e202103984.
[http://dx.doi.org/10.1002/slct.202103984]
[5]
Farooq, S.; Ngaini, Z. One-pot and two-pot synthesis of chalcone based mono and bis- pyrazolines. Tetrahedron Lett., 2020, 61(4), 151416.
[http://dx.doi.org/10.1016/j.tetlet.2019.151416]
[6]
Farooq, S.; Ngaini, Z.; Hwang, S.S.; Choo, D.C.Y.; Daud, A.I.; Khairul, W.M. In vitro cytotoxic activities, molecular docking and density functional theory (DFT) evaluation of chalcone derived pyrazolines. Chem. Africa,, 2022. [Epub ahead of print].
[http://dx.doi.org/10.1007/s42250-021-00311-2]
[7]
Farooq, S.; Ngaini, Z. One pot and two pot synthetic strategies and biological applications of epoxy-chalcones. Chem. Africa, 2020, 3(2), 291-302.
[http://dx.doi.org/10.1007/s42250-020-00128-5]
[8]
Farooq, S.; Ngaini, Z. ONEPOT and TWOPOT methods for chalcone derived pyrimidines synthesis and applications. J. Heterocycl. Chem., 2021, 58(6), 1209-1224.
[http://dx.doi.org/10.1002/jhet.4226]
[9]
Farooq, S.; Ngaini, Z. Chalcone derived benzoheterodiazepines for medicinal applications: A TWOPOT and ONEPOT synthetic approach. J. Heterocycl. Chem., 2021, 58(10), 1914-1928.
[http://dx.doi.org/10.1002/jhet.4337]
[10]
Ramiz, M.M.M.; El-Sayed, W.A.; El-Tantawy, A.I.; Abdel-Rahman, A.A.H. Antimicrobial activity of new 4,6-disubstituted pyrimidine, pyrazoline, and pyran deriva-tives. Arch. Pharm. Res., 2010, 33(5), 647-654.
[http://dx.doi.org/10.1007/s12272-010-0501-1] [PMID: 20512460]
[11]
Bhimwal, R.; Sharma, A.K.; Jain, A. Synthesis, characterization and in-vitro antimicrobial evaluation of some novel isoxazoline derivatives. J. Adv. Pharm. Educ. Res., 2011, 1(5), 251-258.
[12]
Sharma, B.K.; Ameta, S.C.; Dwivedi, V.K. Ecofriendly synthesis of chalcones and their 2- pyrazoline and isoxazolines derivatives as potential microbial agents. Int. J. Chem. Sci., 2014, 12(4), 1121-1134.
[13]
Niu, C.; Yin, L.; Nie, L.F.; Dou, J.; Zhao, J.Y.; Li, G.; Aisa, H.A. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg. Med. Chem., 2016, 24(21), 5440-5448.
[http://dx.doi.org/10.1016/j.bmc.2016.08.066] [PMID: 27622747]
[14]
Verma, N.; Kumar, S.; Ahmed, N. A facile access to novel heterocyclic analogues of chalcone from newly synthesized ketone containing isoxazole and a benzoxazinone ring. RSC Advances, 2016, 6(56), 51183-51191.
[http://dx.doi.org/10.1039/C6RA08710H]
[15]
Hsieh, C.J.; Xu, K.; Lee, I.; Graham, T.J.A.; Tu, Z.; Dhavale, D.; Kotzbauer, P.; Mach, R.H. Chalcones and five-membered heterocyclic isosteres bind to alpha synuclein fibrils in vitro. ACS Omega, 2018, 3(4), 4486-4493.
[http://dx.doi.org/10.1021/acsomega.7b01897] [PMID: 30221226]
[16]
Kumar, V.; Kaur, K. Fluorinated isoxazolines and isoxazoles: A synthetic perspective. J. Fluor. Chem., 2015, 180, 55-97.
[http://dx.doi.org/10.1016/j.jfluchem.2015.09.004]
[17]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1,3,4- oxadiazole derivatives. Synth. Commun., 2014, 44(13), 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[18]
Motegaonkar, M.B. Synthesis and analysis of antimicrobial properties of isoxazoline. Int. J. Eng. Res. Technol. (Ahmedabad), 2020, V9(2), 386-390.
[http://dx.doi.org/10.17577/IJERTV9IS020188]
[19]
Hr, C.R.U. N, S.; K, J. Biological evaluation of newly synthesized isoxazole derivatives. Chem. Sin., 2018, 9(1), 581-587.
[20]
Bhoyal, A.D.; Parihar, R.T.; Rajput, P.R. Eco friendly synthesis and potent antimicrobial activities of pyrazoles and isoxazoles. Int. J. Chem. Phys. Sci., 2012, 1(2), 27-34.
[http://dx.doi.org/10.30731/ijcps.1.2.2012.27-34]
[21]
Arshad, M. Synthesis, characterization, and antimicrobial assessment of some computationally bioactive 1,2-oxazole derivatives. Russ. J. Gen. Chem., 2018, 88(9), 1886-1891.
[http://dx.doi.org/10.1134/S1070363218090207]
[22]
Bakhite, E.A.; Mohamed, T.A.; Abdel-Rahman, A.E. Synthesis and application of some new oxazole derivatives as antimicrobial agents. J. Chem. Technol. Biotechnol., 1992, 55(2), 157-161.
[http://dx.doi.org/10.1002/jctb.280550209]
[23]
de Souza, A.; Xavier, V.; Coelho, G.; Sales, JuniorP.; Romanha, A.; Murta, S.; Carneiro, C.; Taylor, J. Synthesis of 3,5-diarylisoxazole derivatives and evaluation of in vitro trypanocidal activity. J. Braz. Chem. Soc., 2017, 29(2), 269-277.
[http://dx.doi.org/10.21577/0103-5053.20170137]
[24]
Wang, G.; Liu, W.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis and biological evaluation of isoxazole-naphthalene derivatives as anti-tubulin agents. Arab. J. Chem., 2020, 13(6), 5765-5775.
[http://dx.doi.org/10.1016/j.arabjc.2020.04.014]
[25]
Gouhar, R.S.; Ewies, E.F.; El-Shehry, M.F.; El-Mahdy, E-M.M.; Nf, M. Synthesis and utility of naphthalen-benzofuran chalcone in the synthesis of new pyrazole, isoox-azole, thiazole, pyrimidine, pyran, pyridine and different azide derivatives with antiviral and antitumor activity. Pharma Chem., 2018, 10(2), 42-54.
[26]
Bhavsar, Z.A.; Acharya, P.T.; Jethava, D.J.; Patel, H.D. Recent advances in development of anthelmintic agents: Synthesis and biological screening. Synth. Commun., 2020, 50(7), 917-946.
[http://dx.doi.org/10.1080/00397911.2019.1695276]
[27]
Gosavi, S.A.; Nandal, D.H.; Pawar, S.S. Synthesis and biological evaluation of some novel mannich bases of isoxazoline derivatives as possible antimicrobial agents. Asian J. Chem., 2019, 31(12), 2821-2826.
[http://dx.doi.org/10.14233/ajchem.2019.22247]
[28]
Chikhalia, K.H.; Vashi, D.B.; Patel, M.J. Synthesis of a novel class of some 1,3,4-oxadiazole derivatives as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 617-622.
[http://dx.doi.org/10.1080/14756360802318936] [PMID: 18642158]
[29]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Ultrasound and deep eutectic solvent (DES): A novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason. Sonochem., 2013, 20(1), 287-293.
[http://dx.doi.org/10.1016/j.ultsonch.2012.06.003] [PMID: 22784641]
[30]
Lokeshwari, D. M.; Prabhudeva, M. G.; Kumar, K. A. Synthesis, characterization of novel isoxazoles: Biological evaluation for their Antifungal and radical scavenging potencies. IOSR J. Appl. Chem., 2020, 13(10), 08-12.
[31]
Ahmadzadeh, M.; Zarnegar, Z.; Safari, J. Sonochemical synthesis of methyl-4-(hetero)arylmethylene isoxazole-5(4 H)-ones using Sn II -montmorillonite. Green Chem. Lett. Rev., 2018, 11(2), 78-85.
[http://dx.doi.org/10.1080/17518253.2018.1434564]
[32]
Mohsen, G.L. abdula, A.M.; Jassim, A.M.; Rodhan, W.F.; Ayrim, N.B. New 3,5-disubstituted-4,5-dihydroisoxazole derivatives: Synthesis, antimicrobial, antioxidant and docking study against glucosamine-6-phosphate synthase. J. Phys. Conf. Ser., 2021, 1853(1), 012042.
[http://dx.doi.org/10.1088/1742-6596/1853/1/012042]
[33]
Muhammad-Ali, M.A.; Hamza Salman, H.; Jasim, E. Antioxidant activity of some newly prepared symmetrically azo dyes derived from sulfa drugs. Asian J. Pharm. Clin. Res., 2019, 12(2), 479-483.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i2.30326]
[34]
Asirvatham, S.; Mahajan, S. Synthesis, biological evaluation and QSAR studies of newer isoxazole derivatives. Antiinflamm. Antiallergy Agents Med. Chem., 2015, 14(2), 128-137.
[http://dx.doi.org/10.2174/1871523014666150812162343] [PMID: 26265199]
[35]
Rakesh; Bruhn, D.; Madhura, D.B.; Maddox, M.; Lee, R.B.; Trivedi, A.; Yang, L.; Scherman, M.S.; Gilliland, J.C.; Gruppo, V.; McNeil, M.R.; Lenaerts, A.J.; Meibohm, B.; Lee, R.E. Antitubercular nitrofuran isoxazolines with improved pharmacokinetic properties. Bioorg. Med. Chem., 2012, 20(20), 6063-6072.
[http://dx.doi.org/10.1016/j.bmc.2012.08.023] [PMID: 22995771]
[36]
Pappula, N.; Sharabu, R. Synthesis, characterization, biological activity and molecular docking of novel isoxazole chalcones. High Technol. Lett., 2021, 27(1), 41-47.
[37]
Sahoo, B.M.; Sahoo, B.; Panda, J.; Kumar, A. Microwave-induced synthesis of substituted isoxazoles as potential antimicrobial agents. Curr. Microw. Chem., 2017, 4(2), 146-151.
[http://dx.doi.org/10.2174/2213335603666160926101734]
[38]
Al-Naseeri, A. Synthesis and characterization of some new pyrazoline and isoxazoline derivatives as antibacterial agents. Baghdad Sci. J, 2016, 13(3), 568-577.
[http://dx.doi.org/10.21123/bsj.2016.13.3.0568]
[39]
Yousif, O.A.; Mahdi, M.F.; Raauf, A.M.R. Design, synthesis, preliminary pharmacological evaluation, molecular docking and ADME studies of some new pyrazoline, isoxazoline and pyrimidine derivatives bearing nabumetone moiety targeting cyclooxygenase enzyme. J. Contemp. Med. Sci, 2019, 5(1), 41-50.
[40]
Habeeb, A.G.; Praveen Rao, P.N.; Knaus, E.E. Design and synthesis of 4,5-diphenyl-4-isoxazolines: Novel inhibitors of cyclooxygenase-2 with analgesic and anti-inflammatory activity. J. Med. Chem., 2001, 44(18), 2921-2927.
[http://dx.doi.org/10.1021/jm0101287] [PMID: 11520200]
[41]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[42]
Manikala, V.; Rao, V.M. Synthesis and biological evaluation of chalcone tethered quinoline derivatives as anticancer agents. Chem. Data Collect, 2020, 28, 100423.
[http://dx.doi.org/10.1016/j.cdc.2020.100423]
[43]
Kapoor, G.; Bhutani, R.; Pathak, D.P.; Chauhan, G.; Kant, R.; Grover, P.; Nagarajan, K.; Siddiqui, S.A. Current advancement in the Oxadiazole-Based Scaffolds as Anti-cancer Agents. Polycycl. Aromat. Compd., 2021, 2021, 1-33.
[http://dx.doi.org/10.1080/10406638.2021.1886123]
[44]
Desai, S.; Desai, V.; Shingade, S. In-vitro anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem., 2020, 94, 103382.
[http://dx.doi.org/10.1016/j.bioorg.2019.103382] [PMID: 31662214]
[45]
Taia, A.; Essaber, M.; Oubella, A.; Aatif, A.; Bodiguel, J.; Jamart-Grégoire, B.; Ait Itto, M.Y.; Morjani, H. Synthesis, characterization, and biological evaluation of new heterocyclic systems 1, 2, 3-triazole-isoxazoline from eugenol by the mixed condensation reactions. Synth. Commun., 2020, 50(13), 2052-2065.
[http://dx.doi.org/10.1080/00397911.2020.1762224]
[46]
Çalışkan, B.; Sinoplu, E.; İbiş, iK.; Akhan Güzelcan, E.; Çetin Atalay, R.; Banoglu, E. Synthesis and cellular bioactivities of novel isoxazole derivatives incorporating an arylpiperazine moiety as anticancer agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1352-1361.
[http://dx.doi.org/10.1080/14756366.2018.1504041] [PMID: 30251900]
[47]
Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431.
[http://dx.doi.org/10.2478/acph-2014-0035] [PMID: 25531783]
[48]
Kumar, G.; Shankar, R. 2Isoxazolines: A synthetic and medicinal overview. ChemMedChem, 2021, 16(3), 430-447.
[http://dx.doi.org/10.1002/cmdc.202000575] [PMID: 33029886]
[49]
Mondal, P.; Jana, S.; Balaji, A.; Ramakrishna, R.; Kanthal, L.K. Synthesis of some new isoxazoline derivatives of chalconised indoline 2-one as a potential analgesic, antibacterial and anthelmimtic agents. J. Young Pharm., 2012, 4(1), 38-41.
[http://dx.doi.org/10.4103/0975-1483.93574] [PMID: 22523459]
[50]
Katritzky, A.R.; Wang, M.; Zhang, S.; Voronkov, M.V.; Steel, P.J. Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. J. Org. Chem., 2001, 66(20), 6787-6791.
[http://dx.doi.org/10.1021/jo0101407] [PMID: 11578235]
[51]
Manna, K.; Banik, U.; Ghosh, P.S.; Das, M. A review on synthesis and pharmacological diversity of isoxazoles & pyrazolines. Nirma Univ. J. Pharm. Sci, 2014, 1(1), 37-49.
[52]
Cipagauta Esquivel, E.C.; Rufino, V.C.; Trindade Nogueira, M.H.; Carbonaro Souza, A.C.; Pliego Júnior, J.R.; Valle, M.S. Synthesis and characterization of 1,3,5-triarylpyrazol-4-ols and 3,5-diarylisoxazol-4-ols from chalcones and theoretical studies of the stability of pyrazol-4-ol toward acid dehydration. J. Mol. Struct., 2020, 1204, 127536.
[http://dx.doi.org/10.1016/j.molstruc.2019.127536]
[53]
Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res., 2018, 27(5), 1309-1344.
[http://dx.doi.org/10.1007/s00044-018-2152-6] [PMID: 32214770]
[54]
Shaik, A.; Kishor, P.; Kancharlapalli, V. Synthesis of novel and potential antimicrobial, antioxidant and anticancer chalcones and dihydropyrazoles bearing isoxazole scaffold. Proceedings, 2020, 41(1), 16.
[http://dx.doi.org/10.3390/ecsoc-23-06476]
[55]
Nakata, Y.; Fuse, T.; Yamato, K.; Asahi, M.; Nakahira, K.; Ozoe, F.; Ozoe, Y. A single amino acid substitution in the third transmembrane region has opposite impacts on the selectivity of the parasiticides fluralaner and ivermectin for ligand-gated chloride channels. Mol. Pharmacol., 2017, 92(5), 546-555.
[http://dx.doi.org/10.1124/mol.117.109413] [PMID: 28887352]
[56]
Svejstrup, T.D.; Zawodny, W.; Douglas, J.J.; Bidgeli, D.; Sheikh, N.S.; Leonori, D. Visible-light-mediated generation of nitrile oxides for the photoredox synthesis of isoxazolines and isoxazoles. Chem. Commun. (Camb.), 2016, 52(83), 12302-12305.
[http://dx.doi.org/10.1039/C6CC06029C] [PMID: 27711298]
[57]
Kalirajan, R.; Jubie, S.; Gowramma, B. Microwave irradated synthesis, characterization and evaluation for their antibacterial and larvicidal activities of some novel chalcone and isoxazole substituted 9-anilino acridines. Open J. Chem. 2015, 1(1), 001-007.
[http://dx.doi.org/10.17352/pjmcr.000001]
[58]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[59]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[60]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential antiHIV agent—development and application. Arch. Pharm. (Weinheim), 2019, 352(9), 1900045.
[http://dx.doi.org/10.1002/ardp.201900045] [PMID: 31274223]
[61]
Ju, H.; Zhan, P.; Liu, X. Designing influenza polymerase acidic endonuclease inhibitors via ‘privileged scaffold’ re-evolution/refining strategy. Future Med. Chem., 2019, 11(4), 265-268.
[http://dx.doi.org/10.4155/fmc-2018-0489] [PMID: 30763130]
[62]
Zheng, Y.C.; Yu, B.; Chen, Z.S.; Liu, Y.; Liu, H.M. TCPs: Privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy. Epigenomics, 2016, 8(5), 651-666.
[http://dx.doi.org/10.2217/epi-2015-0002] [PMID: 27102879]
[63]
Gonçalves, I.L.; da Rosa, R.R.; Eifler-Lima, V.L.; Merlo, A.A. The use of isoxazoline and isoxazole scaffolding in the design of novel thiourea and amide liquid-crystalline compounds. Beilstein J. Org. Chem., 2020, 16, 175-184.
[http://dx.doi.org/10.3762/bjoc.16.20] [PMID: 32117474]
[64]
Vilela, G.D.; Fernandes, T.H.M.; da Rosa, R.R.; Kelly, S.M.; Kitney, S.P.; Merlo, A.A. 3-(4-Bromophenyl)-5-(4-hydroxyphenyl)isoxazole: A versatile, new molecular building block for side-chain liquid crystal oligomers and polymers. Polym. Bull., 2016, 73(4), 959-973.
[http://dx.doi.org/10.1007/s00289-015-1529-7]
[65]
Gallardo, H.; Bryk, F.R.; Vieira, A.A.; Frizon, T.E.; Conte, G.; Souza, B.S.; Eccher, J.; Bechtold, I.H. Optical and thermal properties of unsymmetrical liquid crystalline compounds based on isoxazole. Liq. Cryst., 2009, 36(8), 839-845.
[http://dx.doi.org/10.1080/02678290903072035]
[66]
da Silva, L.; Gallardo, H.; Magnago, R.F.; Begnini, I.M. Liquid crystals containing the isoxazole and tetrazole heterocycles. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2005, 432(1), 1-13.
[http://dx.doi.org/10.1080/154214090892528]
[67]
T, S.P.; Lokanatha Rai, K.M. Synthesis and characterization of new homologous series of unsymmetrical liquid crystalline compounds based on chalcones and 3, 5-disubstituted isoxazoles. J. Chem. Sci., 2017, 129(1), 67-73.
[http://dx.doi.org/10.1007/s12039-016-1205-y]
[68]
Sowmya, P.T.; Rai, K.M.L.; Ibrahim, S.; Sudhir, A.; Deepakumari, H.N. Synthesis and mesomorphic properties of 3, 5-disubstituted -4,5-dihydroisoxazole derivatives. J. Appl. Chem, 2019, 8(4), 1731-1738.
[69]
Yang, X.; Guo, X.; Qin, M.; Yuan, X.; Jing, H.; Chen, B. Metal-free iodine(III)-promoted synthesis of 2,5-diaryloxazoles. Org. Biomol. Chem., 2018, 16(17), 3104-3108.
[http://dx.doi.org/10.1039/C8OB00401C] [PMID: 29645044]
[70]
Ritter, O.M.S.; Giacomelli, F.C.; Passo, J.A.; da Silveira, N.P.; Merlo, A.A. Synthesis of 3,5- disubstituted isoxazolines as a template for liquid-crystalline polymers. Polym. Bull., 2006, 56(6), 549-561.
[http://dx.doi.org/10.1007/s00289-006-0526-2]
[71]
Vilela, G.D.; da Rosa, R.R.; Merlo, A.A. Isoxazole derivatives with potential applications in polymers and semiconductors. Proceedings of the Brazilian Meeting on Organic Synthesis, Brasilia, BrasilSeptember 01-05, 20112013, pp. 32-32.
[http://dx.doi.org/10.5151/chempro-14bmos-R0032-1]
[72]
Townsend, J.D.; Kelley, W., Jr; Rose, K.L.; Schady, D.A.; Downs, J.R.; Greer, H.A.; Pastine, S.J.; Beam, C.F. The preparation of 4,5-dihydro-5-phenyl-5-(2-phenylethenyl)isoxazoles, 4,5-dihydro-5-methyl-5-(2-phenylethenyl)isoxazoles, or 4,5-dihydro-5,5-di-(2- phenylethenyl)isoxazoles from dilithiated c(α), o -oximes and select α,β-unsaturated ketones. Synth. Commun., 2000, 30(12), 2175-2189.
[http://dx.doi.org/10.1080/00397910008087396]
[73]
Deng, T.; Wang, H.; Cai, C. Application of bis(oxazoline) in asymmetric amination of chalcones. New J. Chem., 2015, 39(1), 102-105.
[http://dx.doi.org/10.1039/C4NJ01660B]
[74]
Shah, T.; Desai, V. Synthesis and antibacterial studies of some novel isoxazoline derivatives. J. Serb. Chem. Soc., 2007, 72(5), 443-449.
[http://dx.doi.org/10.2298/JSC0705443S]
[75]
Desai, V.G.; Tilve, S.G. A novel and convenient method for the synthesis of 3, 5- diarylisoxazoles. Synth. Commun., 1999, 29(17), 3017-3020.
[http://dx.doi.org/10.1080/00397919908086477]
[76]
Stephens, C.E.; Arafa, R.K. 3,5-Diarylisoxazoles: Individualized three-step synthesis and isomer determination using 13C NMR or mass spectroscopy. J. Chem. Educ., 2006, 83(9), 1336.
[http://dx.doi.org/10.1021/ed083p1336]
[77]
Shang, Y.; Ren, L.; Wu, J. Novel method for solublepolymersupported synthesis of 3,4,5 trisubstituted isoxazoles. Synth. Commun., 2008, 38(4), 583-594.
[http://dx.doi.org/10.1080/00397910701797988]
[78]
Desai, V.G.; Naik, S.R.; Dhumaskar, K.L. o -Iodoxy benzoic acid–mediated synthesis of 3,5-diarylisoxazoles and isoxazole-3-carboxylic acids. Synth. Commun., 2014, 44(10), 1453-1460.
[http://dx.doi.org/10.1080/00397911.2013.854916]
[79]
Zhu, X.; Wang, Y.F.; Ren, W.; Zhang, F.L.; Chiba, S. TEMPO-mediated aliphatic C-H oxidation with oximes and hydrazones. Org. Lett., 2013, 15(13), 3214-3217.
[http://dx.doi.org/10.1021/ol4014969] [PMID: 23767852]
[80]
Bhatt, A.; Singh, R.K.; Kant, R. Trichloroisocyanuric acid mediated one-pot synthesis of 3,5-diarylisoxazoles from α,β-unsaturated ketones. Synth. Commun., 2019, 49(8), 1083-1091.
[http://dx.doi.org/10.1080/00397911.2019.1590848]
[81]
Jen, T.; Mendelsohn, B.A.; Ciufolini, M.A. Oxidation of oxo-oximes to nitrile α-oxides with hypervalent iodine reagents. J. Org. Chem., 2011, 76(2), 728-731.
[http://dx.doi.org/10.1021/jo102241s] [PMID: 21175144]
[82]
Kurangi, R.F.; Kawthankar, R.; Sawal, S.; Desai, V.G.; Tilve, S.G. Convenient synthesis of 3,5-disubstituted isoxazoles. ChemInform, 2007, 38(32), 585-587.
[http://dx.doi.org/10.1002/chin.200732131]
[83]
Vilela, G.D.; da Rosa, R.R.; Schneider, P.H.; Bechtold, I.H.; Eccher, J.; Merlo, A.A. Expeditious preparation of isoxazoles from Δ2-isoxazolines as advanced intermedi-ates for functional materials. Tetrahedron Lett., 2011, 52(49), 6569-6572.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.122]
[84]
Kenanda, E.O.; Omosa, L.K. Pyrazole, isoxazoline and bypyrimidine derivatives from polygonum senegalense and psiadia punctulata flavonoids and their anti-microbial activities. Pharmacogn. Commun., 2017, 7(1), 47-52.
[http://dx.doi.org/10.5530/pc.2017.1.7]
[85]
Voskienė, A.; Mickevičius,V Cyclization of chalcones to isoxazole and pyrazole derivatives. Chem. Heterocycl. Compd., 2009, 45(12), 1485-1488.
[http://dx.doi.org/10.1007/s10593-010-0455-8]
[86]
Solankee, A.; Prajapati, Y. An efficient synthesis of some new fluorine containing acetyl pyrazoline and isoxazole derivatives and their antibacterial activity. Rasayan J. Chem., 2009, 2(1), 23-27.
[87]
Velikorodov, A.V.; Ionova, V.A.; Temirbulatova, S.I.; Titova, O.L.; Stepkina, N.N. Synthesis and application of chalcones to the preparation of heterocyclic structures. Russ. J. Org. Chem., 2013, 49(11), 1610-1616.
[http://dx.doi.org/10.1134/S1070428013110080]
[88]
Moustafa, O.S.; Ahmad, R.A. Synthesis and antimicrobial activity of some new cyanopyridines, isoxazoles, pyrazoles, and pyrimidines bearing sulfonamide moiety. Phosphorus Sulfur Silicon Relat. Elem., 2003, 178(3), 475-484.
[http://dx.doi.org/10.1080/10426500307933]
[89]
Zhang, T.; Dong, M.; Zhao, J.; Zhang, X.; Mei, X. Synthesis and antifungal activity of novel pyrazolines and isoxazolines derived from cuminaldehyde. J. Pestic. Sci., 2019, 44(3), 181-185.
[http://dx.doi.org/10.1584/jpestics.D19-028] [PMID: 31530976]
[90]
Kalirajan, R.; Sivakumar, S.U.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chemtech Res., 2009, 1(1), 8.
[91]
Abdel-Rahman, A.A.H.; Abdel-Megied, A.E.S.; Hawata, M.A.M.; Kasem, E.R.; Shabaan, M.T. ‘Synthesis and antimicrobial evaluation of some chalcones and their de-rived pyrazoles, pyrazolines, isoxazolines, and 5,6-dihydropyrimidine-2-(1h)-thiones’, Monatshefte Für Chem. Monatsh. Chem., 2007, 138(9), 889-897.
[http://dx.doi.org/10.1007/s00706-007-0700-8]
[92]
Patil, P.O.; Bari, S.B. An efficient method for the synthesis of isoxazolines under microwave irradiation and solvent-free conditions. Asian J. Chem., 2013, 25(7), 3588-3590.
[http://dx.doi.org/10.14233/ajchem.2013.13662]
[93]
Kalirajan, R.; Rafick, M.H.M.; Sankar, S.; Gowramma, B. Green synthesis of some novel chalcone and isoxazole substituted 9-anilinoacridine derivatives and evaluation of their antimicrobial and larvicidal activities. Indian J. Chem., 2018, 57B, 583-590.
[94]
Reddy, S.P.; Yamini, G.; Sowmya, D.V.; Padmavathi, V.; Padmaja, A. Synthesis and antimicrobial activity of some new 3,5-disubstituted pyrazoles and isoxazoles. Med. Chem. (Los Angeles), 2017, 7(12), 371-380.
[http://dx.doi.org/10.4172/2161-0444.1000483]
[95]
Ismail, A.H.; Abdula, A.M.; Tomi, I.H.R.; Al-Daraji, A.H.R.; Baqi, Y. Synthesis, antimicrobial evaluation and docking study of novel 3,5-disubstituted-2-isoxazoline and 1,3,5- trisubstituted-2-pyrazoline derivatives. Med. Chem., 2021, 17(5), 462-473.
[http://dx.doi.org/10.2174/1573406415666191107121757] [PMID: 31702515]
[96]
Mohammadi Ziarani, G. kheilkordi, Z.; Gholamzadeh, P. Ultrasound-assisted synthesis of heterocyclic compounds. Mol. Divers., 2020, 24(3), 771-820.
[http://dx.doi.org/10.1007/s11030-019-09964-1] [PMID: 31165431]
[97]
Kumar, K.A.; Govindaraju, M.; Renuka, N.; Kumar, G.V. Isoxazolines: An insight to their synthesis and diverse applications. J. Chem. Pharm. Res., 2015, 7(3), 250-257.
[98]
Rizvana; Krishnakumar, K.; Hareeshbabu, E. Synthesis and antimicrobial screening of modified isoxazoles: A short review. Int. J. Pharm. Pharm. Res., 2019, 15(3), 137-148.
[99]
Bondarenko, O.B.; Zyk, N.V. The main directions and recent trends in the synthesis and use of isoxazoles. Chem. Heterocycl. Compd., 2020, 56(6), 694-707.
[http://dx.doi.org/10.1007/s10593-020-02718-0]
[100]
Paplal, B.; Nagaraju, S.; Sridhar, B.; Kashinath, D. Regioselective synthesis of functionalized 1,2,3-triazoles via oxidative [3+2]-cycloaddition using Zn(OAc)2 - tBuOOH or ZnO nanoparticle as catalyst system in aqueous medium. Catal. Commun., 2017, 99, 115-120.
[http://dx.doi.org/10.1016/j.catcom.2017.05.006]
[101]
Kaji, E.; Zen, S. Synthesis of 4-(β-D-Ribofuranosyl)Isoxazoline N-Oxide Derivatives. Synth. Commun., 1979, 9(3), 165-170.
[http://dx.doi.org/10.1080/00397917908066692]
[102]
Lucescu, L.; Ghinet, A.; Shova, S.; Magnez, R.; Thuru, X.; Farce, A.; Rigo, B.; Belei, D.; Dubois, J.; Bîcu, E. Exploring isoxazoles and pyrrolidinones decorated with the 4,6dimethoxy1,3,5triazine unit as human farnesyltransferase inhibitors. Arch. Pharm. (Weinheim), 2019, 352(5), 1800227.
[http://dx.doi.org/10.1002/ardp.201800227] [PMID: 30947375]
[103]
Kaur, N. Perspectives of ionic liquids applications for the synthesis of five- and six-membered O,N -heterocycles. Synth. Commun., 2018, 48(5), 473-495.
[http://dx.doi.org/10.1080/00397911.2017.1406521]
[104]
Liu, D.; Yu, J.; Cheng, J. Copper-catalyzed oxidative cyclization of chalcone and benzylic amine leading to 2,5-diaryl oxazoles via carbon–carbon double bond cleavage. Tetrahedron, 2014, 70(6), 1149-1153.
[http://dx.doi.org/10.1016/j.tet.2013.12.077]
[105]
Iranpoor, N.; Firouzabadi, H.; Etemadi-Davan, E. Phosphine- and copper-free palladium catalyzed one-pot four-component carbonylation reaction for the synthesis of isoxazoles and pyrazoles. Tetrahedron Lett., 2016, 57(8), 837-840.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.053]
[106]
Jeyaveeran, J.C.; Praveen, C.; Arun, Y.M.; Prince, A.A.; Perumal, P.T. Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cyto-toxic evaluation of isoxazoles and pyrazoles. J. Chem. Sci., 2016, 128(1), 73-83.
[http://dx.doi.org/10.1007/s12039-015-0993-9]
[107]
Wu, X.F.; Neumann, H.; Beller, M. A general and convenient palladium-catalyzed carbonylative Sonogashira coupling of aryl bromides. Chemistry, 2010, 16(40), 12104-12107.
[http://dx.doi.org/10.1002/chem.201001864] [PMID: 20848625]
[108]
Mohamed Ahmed, M.S.; Kobayashi, K.; Mori, A. One-pot construction of pyrazoles and isoxazoles with palladium-catalyzed four-component coupling. Org. Lett., 2005, 7(20), 4487-4489.
[http://dx.doi.org/10.1021/ol051841j] [PMID: 16178565]
[109]
Singh, V.; Hutait, S.; Yadav, G.P.; Maulik, P.R.; Batra, S. Unusual retention of isoxazole ring under the influence of 3-(substituted nitrophenyl)-2-isoxazoline during catalytic hydrogenation of isoxazoline-substituted isoxazole systems. J. Heterocycl. Chem., 2009, 46(4), 762-769.
[http://dx.doi.org/10.1002/jhet.87]
[110]
Dou, G.; Xu, P.; Li, Q.; Xi, Y.; Huang, Z.; Shi, D. Clean and efficient synthesis of isoxazole derivatives in aqueous media. Molecules, 2013, 18(11), 13645-13653.
[http://dx.doi.org/10.3390/molecules181113645] [PMID: 24196411]
[111]
Bondarenko, O.B.; Gavrilova, A.Y.; Saginova, L.G.; Zyk, N.V.; Zefirov, N.S. 4,5- Dihydroisoxazoles from arylcyclopropanes by reactions with nitrosyl chloride activat-ed with sulfur trioxide. ChemInform, 2003, 34(41), 41130.
[http://dx.doi.org/10.1002/chin.200341130]
[112]
Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem., 2014, 79(5), 2049-2058.
[http://dx.doi.org/10.1021/jo4027116] [PMID: 24512630]
[113]
Alshamari, A.; Al-Qudah, M.; Hamadeh, F.; Al-Momani, L.; Abu-Orabi, S. Synthesis, antimicrobial and antioxidant activities of 2-isoxazoline derivatives. Molecules, 2020, 25(18), 4271.
[http://dx.doi.org/10.3390/molecules25184271] [PMID: 32961855]
[114]
Kaur, N. Microwave-assisted synthesis of five-membered O,N -heterocycles. Synth. Commun., 2014, 44(24), 3509-3537.
[http://dx.doi.org/10.1080/00397911.2013.800214]
[115]
Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Synthesis of enaminones via copper-catalyzed decarboxylative coupling reaction under redox-neutral condi-tions. Chem. Commun. (Camb.), 2017, 53(22), 3228-3231.
[http://dx.doi.org/10.1039/C7CC00260B] [PMID: 28251207]
[116]
Hua, T.B.; Liu, C.X.; Hu, W.M.; Wang, L.; Yang, Q.Q. Mild synthesis of isoxazoline derivatives via an efficient [4 + 1] annulation reaction of transient nitrosoalkenes and sulfur ylides. Sci. Rep., 2021, 11(1), 2078.
[http://dx.doi.org/10.1038/s41598-021-81370-w] [PMID: 33483530]
[117]
Flores, A.F.C.; Flores, D.C.; Piovesan, L.A.; Malavolta, J.L.; Martins, M.A.P. Heterocyclization of ω-Bromo-2-trichloroacetyl Cycloalkanones to Isoxazole Derivatives. Synth. Commun., 2009, 39(11), 1893-1902.
[http://dx.doi.org/10.1080/00397910802618448]
[118]
Jadhav, N.L.; Pandit, A.B.; Pinjari, D.V. Green approach for the synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one) using concentrated solar radiation. Sol. Energy, 2017, 147, 232-239.
[http://dx.doi.org/10.1016/j.solener.2017.03.047]
[119]
Hussein, F.H.; Abbas, A.F.; Hussein, M.A. Synthesis and characterization of some new heterocyclic compounds derived from 1,3-bis(4-nitrophenyl) prop-2-en-1-one. Res. J. Pharm. Biol. Chem. Sci., 2016, 6(7), 1837-1841.
[120]
Rajput, D.S.S.; Patole, S.S. Synthesis and uses of chalcone in hetrocyclic synthesis. World J. Pharm. Res., 2015, 4(07), 26.
[121]
Albuquerque, H.; Santos, C.; Cavaleiro, J.; Silva, A. Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles. Curr. Org. Chem., 2014, 18(21), 2750-2775.
[http://dx.doi.org/10.2174/1385272819666141013224253]
[122]
Sudhir, P.; Rajashree, C.; Ashok, B. Synthesis and biological evaluation of mannich bases of isoxazoline derivatives as novel anti-microbial agents. E-J. Chem., 2012, 9(4), 1760-1772.
[http://dx.doi.org/10.1155/2012/386428]
[123]
Agrawal, N.N.; Soni, P.A. Synthesis of pyrazole and isoxazole in triethanolamine medium. ChemInform, 2007, 38(29), 532-534.
[http://dx.doi.org/10.1002/chin.200729039]
[124]
Majeed, N.S.; Mohsen, H.F.; Aldujaili, R.A.B. Synthesis, characterization and biological activity of some new heterocyclic compounds derived from 4- aminoacetophe-none. Biochem. Cell. Arch., 2018, 18(1), 1107-1116.
[125]
Dhirbassi, S.D.; Dighade, S.R.; Khawale, D.S. Synthesis of chalcones and 3, 5-diaryl-Δ2- isoxazolines. Int. J. Chem. Sci., 2012, 10(2), 777-782.
[126]
Gupta, R.A.; Kaskhedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22(8), 3863-3880.
[http://dx.doi.org/10.1007/s00044-012-0385-3]
[127]
Elarfi, M.J.; Al-Difar, H.A. Synthesis of some heterocyclic compounds derived from chalcones. Sci. Rev. Chem. Commun., 2012, 2(2), 103-107.
[128]
Sharma, V.; Sharma, K.V. Synthesis and biological activity of some 3, 5-diarylisoxazoline derivatives: Reaction of substituted chalcones with hydroxylamine hydro-chloride. E-J. Chem., 2010, 7(1), 203-209.
[http://dx.doi.org/10.1155/2010/426383]
[129]
Kadnor, V.A.; Pandhare, G.R.; Gadhave, A.G.; Uphade, B.K. Synthesis and antibacterial activity of some fluorinated isoxazoline derivatives. Rasayan J. Chem., 2011, 4(2), 437-441.
[130]
Mohsen, G.L.; Abdula, A.M.; Jassim, A.M.N. Synthesis, antimicrobial, antioxidant and docking study of novel isoxazoline derivatives. ACTA Pharm. Sci., 2018, 56(3), 71.
[http://dx.doi.org/10.23893/1307-2080.APS.05619]
[131]
Tomma, J.H.; Hussein, D.F.; Jamel, N.M. Synthesis and characterization of some new quinoline-2-one, schiff bases, pyrazole and pyrazoline compounds derived from hydrazide containing isoxazoline or pyrimidine cycles. Iraqi J. Sci., 2016, 57, 17.
[132]
Ali, Y.; Hamid, S.A.; Rashid, U. Biomedical applications of aromatic azo compounds. Mini Rev. Med. Chem., 2018, 18(18), 1548-1558.
[http://dx.doi.org/10.2174/1389557518666180524113111] [PMID: 29792144]
[133]
Saadi, L.; Adna, S. Synthesis and characterization of some heterocyclic. J. Glob. Pharma Technol., 2017, 10(9), 179-206.
[134]
Mehta, K.V. Studies on some isoxazoline-azo compounds and their colourant performance and fastness evaluation on synthetic fabric. Int. J. Chemtech Res., 2012, 4(1), 409-414.
[135]
Behzadi, S.A.; Sheikhhosseini, E.; Ahmadi, S.A.; Ghazanfari, D.; Akhgar, M. Synthesis and characterization of novel biological tetracoumarin derivatives bearing ether moieties. Heterocycl. Commun., 2020, 26(1), 60-67.
[http://dx.doi.org/10.1515/hc-2020-0009]
[136]
El-Husseiny, W.M.; El-Sayed, M.A.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; Ahmed, E.R.; Abdel-Aziz, A.A.M. Synthesis, antitumour and antioxidant activities of novel α,β-unsaturated ketones and related heterocyclic analogues: EGFR inhibition and molecular modelling study. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 507-518.
[http://dx.doi.org/10.1080/14756366.2018.1434519] [PMID: 29455554]
[137]
Kini, S.G.; Bhat, A.; Pan, Z.; Dayan, F.E. Synthesis and antitubercular activity of heterocycle substituted diphenyl ether derivatives. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 730-736.
[http://dx.doi.org/10.3109/14756361003671045] [PMID: 20443682]
[138]
Gautam, K.C.; Singh, D.P. Synthesis and antimicrobial activity of some isoxazole derivatives of thiophene. Chem. Sci. Trans., 2013, 2(3), 992-996.
[http://dx.doi.org/10.7598/cst2013.478]
[139]
Joshi, V.D.; Kshirsagar, M.D.; Singhal, S. Synthesis and biological evaluation of some novel isoxazoles and benzodiazepines. J. Chem. Pharm. Res., 2012, 4(6), 3234-3238.
[140]
Mandawad, G.G.; Kamble, R.D.; Hese, S.V.; More, R.A.; Gacche, R.N.; Kodam, K.M.; Dawane, B.S. An efficient synthesis of isoxazoline libraries of thiophene analogs and its antimycobacterial investigation. Med. Chem. Res., 2014, 23(10), 4455-4463.
[http://dx.doi.org/10.1007/s00044-014-1016-y]
[141]
Alizadeh, M. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J. Inflamm. Res., 2020, 13, 451-463.
[http://dx.doi.org/10.2147/JIR.S262132]
[142]
Abbas, A.F.; Turki, A.A.; Hameed, A.J. Synthesis, characterization and computational study of some new heterocyclic derived from 1-(biphenyl-4-yl)-3-(furan-2-yl)prop-2-en-1-one. J. Mater. Environ. Sci., 2012, 3(6), 1071-1078.
[143]
Ahmed, M.H.; El-Hashash, M.A.; Marzouk, M.I.; El-Naggar, A.M. Design, synthesis, and biological evaluation of novel pyrazole, oxazole, and pyridine derivatives as potential anticancer agents using mixed chalcone. J. Heterocycl. Chem., 2019, 56(1), 114-123.
[http://dx.doi.org/10.1002/jhet.3380]
[144]
Kumar, J.; Chawla, G.; Akhtar, M.; Sahu, K.; Rathore, V.; Sahu, S. Design, synthesis and pharmacological evaluation of some novel derivatives of 1-[3-(furan-2-yl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl-4-methyl piperazine. Arab. J. Chem., 2017, 10(1), 141-149.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.027]
[145]
Dawood, K.M.; Raslan, M.A.; Abbas, A.A.; Mohamed, B.E.; Abdellattif, M.H.; Nafie, M.S.; Hassan, M.K. Novel bis-thiazole derivatives: Synthesis and potential cyto-toxic activity through apoptosis with molecular docking approaches. Front Chem., 2021, 9, 694870.
[http://dx.doi.org/10.3389/fchem.2021.694870] [PMID: 34458233]
[146]
Bondock, S.; Fouda, A.M. Synthesis and evaluation of some new 5-(hetaryl)thiazoles as potential antimicrobial agents. Synth. Commun., 2018, 48(5), 561-573.
[http://dx.doi.org/10.1080/00397911.2017.1412465]
[147]
Ali, S.A.; Awad, S.M.; Said, A.M.; Mahgoub, S.; Taha, H.; Ahmed, N.M. Design, synthesis, molecular modelling and biological evaluation of novel 3-(2-naphthyl)-1-phenyl-1H-pyrazole derivatives as potent antioxidants and 15-Lipoxygenase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 847-863.
[http://dx.doi.org/10.1080/14756366.2020.1742116] [PMID: 32216479]
[148]
Suresh, G.; Venkata Nadh, R.; Srinivasu, N.; Kaushal, K. Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial activities. Synth. Commun., 2016, 46(24), 1972-1980.
[http://dx.doi.org/10.1080/00397911.2016.1242748]
[149]
D’souza, A.; Kumar, P.; Kumar, A.; Rai, S.M.; Nayak, P. Synthesis, insilico and antibacterial activity studies of substituted dihydro-1, 2-oxazole benzopyran-2-one hybrids. J. Pharm. Res. Int., 2021, 33(35A), 134-144.
[http://dx.doi.org/10.9734/jpri/2021/v33i35A31882]
[150]
Nasseri, M.A.; Zakerinasab, B.; Kamayestani, S. ‘Proficient procedure for preparation of quinoline derivatives catalyzed by NbCl5 in glycerol as green solvent. J. Appl. Chem. (Cairo), 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/743094]
[151]
El-Gamal, K.M.; Hagrs, M.S.; Abulkhair, H.S. Synthesis, characterization and antimicrobial evaluation of some novel quinoline derivatives bearing different heterocyclic moieties. Bull. Fac. Pharm. Cairo Univ., 2016, 54(2), 263-273.
[http://dx.doi.org/10.1016/j.bfopcu.2016.08.002]
[152]
Hagras, M.; El Deeb, M.A.; Elzahabi, H.S.A.; Elkaeed, E.B.; Mehany, A.B.M.; Eissa, I.H. Discovery of new quinolines as potent colchicine binding site inhibitors: De-sign, synthesis, docking studies, and anti-proliferative evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 640-658.
[http://dx.doi.org/10.1080/14756366.2021.1883598] [PMID: 33588683]
[153]
Panda, S.S.; Chowdary, P.V.R.; Jayashree, B.S. Synthesis, antiinflammatory and antibacterial activity of novel indolyl-isoxazoles. Indian J. Pharm. Sci., 2009, 71(6), 684-687.
[http://dx.doi.org/10.4103/0250-474X.59554] [PMID: 20376225]
[154]
Aganagowda, G.; Thamyongkit, P.; Petsom, A. Synthesis and antimicrobial activities of benzothiophene derivatives. J. Chil. Chem. Soc., 2012, 57(1), 1043-1047.
[http://dx.doi.org/10.4067/S0717-97072012000100019]
[155]
Arshad, M. Heterocyclic compounds bearing pyrimidine, oxazole and pyrazole moieties: Design, computational, synthesis, characterization, antibacterial and molecular docking screening. SN Appl. Sci., 2020, 2(3), 467.
[http://dx.doi.org/10.1007/s42452-020-2243-0]
[156]
El-All, A.S.A.; Osman, S.A.; Roaiah, H.M.F.; Abdalla, M.M.; El Aty, A.A.A. Med. Chem. Res., 2015, 24, 4093-4104.
[http://dx.doi.org/10.1007/s00044-015-1460-3]
[157]
Bondock, S.; Albormani, O.; Fouda, A.M.; Abu Safieh, K.A. Progress in the chemistry of 5-acetylthiazoles. Synth. Commun., 2016, 46(13), 1081-1117.
[http://dx.doi.org/10.1080/00397911.2016.1180700]
[158]
Raslan, M.A.; Khalil, M.A.; Sayed, S.M. Synthesis and reactivity of cyanomethyl thiazolyl ketone: A facile synthesis of some new azoles, chromene, pyridine, thiophene, pyrazolo[3,4- b]pyridine and pyrimido[1,2-a]benzimidazole derivatives. Heterocycles, 2015, 91(3), 610-625.
[http://dx.doi.org/10.3987/COM-15-13169]
[159]
Nassar, E. Synthesis, (in vitro) antitumor and antimicrobial activity of some pyrazoline, pyridine, and pyrimidine derivatives linked to indole moiety. J. Am. Sci., 2010, 6(8), 338-347.
[160]
Al-Rawi, M.S. Synthesis of some new heterocyclic compounds via chalcone derivatives. Ibn Al-Haitham J. Pure Appl. Sci., 2015, 28(1), 88-99.
[161]
Gantala, M.; Ghanta, D.M.R.; Mittapelli, D.V. A facile synthesis and in vitro biological evaluation of a series of substituted benzofurans as antitubercular agents. World J. Pharm. Res., 2017, 6(2), 1392-1411.
[162]
Ali, M.F.; Khlafulla, A.M. Synthesis of benzimidazole derived chalcones and their heterocyclic derivatives. Int. J. Eng. Appl. Sci., 2016, 3(6), 13-16.
[163]
Hassan, S. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[164]
Hassan, M.M.; Farouk, O. Synthesis and antimicrobial evaluation of some functionalized heterocycles derived from novel quinolinyl chalcone: Synthesis and antimi-crobial evaluation of some functionalized heterocycles derived from novel quinolinyl chalcone. J. Heterocycl. Chem., 2017, 54(6), 3133-3142.
[http://dx.doi.org/10.1002/jhet.2927]
[165]
Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from tria-zolelinked chalcone derivatives. ChemistrySelect, 2018, 3(23), 6338-6343.
[http://dx.doi.org/10.1002/slct.201800905]
[166]
Tiwari, U.; Ameta, C.; Sharma, S.; Sharma, M.; Kumar, A.; Punjabi, P.B. Clean and efficient microwave assisted synthesis of some new pyrimidine, pyrazoline and isoxa-zoline derivatives from 3-(3-nitrophenyl)-n- phenyl-prop-2-enamide. Eur. Chem. Bull., 2013, 2(5), 242-246.
[167]
El-Sayed, W.A.; Nassar, I.F.; Abdel-Rahman, A.A.H. C-Furyl glycosides, II: Synthesis and antimicrobial evaluation of C-furyl glycosides bearing pyrazolines, isoxa-zolines, and 5,6-dihydropyrimidine-2(1H)-thiones. Monatsh. Chem., 2009, 140(4), 365-370.
[http://dx.doi.org/10.1007/s00706-008-0033-2]
[168]
Kaur, N.; Kishore, D. Application of chalcones in heterocycles synthesis: Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. J. Chem. Sci., 2013, 125(3), 555-560.
[http://dx.doi.org/10.1007/s12039-013-0412-z]
[169]
Ahmad, A.; Wani, M.Y.; Patel, M.; Sobral, A.J.F.N.; Duse, A.G.; Aqlan, F.M.; Al-Bogami, A.S. Synergistic antifungal effect of cyclized chalcone derivatives and flucona-zole against Candida albicans. MedChemComm, 2017, 8(12), 2195-2207.
[http://dx.doi.org/10.1039/C7MD00440K] [PMID: 30108736]
[170]
Gomha, S.; Riyadh, S.; Abdalla, M. Solvent-drop grinding method: Efficient synthesis, dpph radical scavenging and anti-diabetic activities of chalcones, bis-chalcones, azolines, and bis-azolines. Curr. Org. Synth., 2015, 12(2), 220-228.
[http://dx.doi.org/10.2174/1570179412666150122230447]
[171]
Sayed, O.M.; Moustafa, H.; Mekky, A.E.M.; Farag, A.M.; Elwahy, A.H.M. Synthesis, reactions and DFT calculations of novel bis(chalcones) linked to a thienothiophene core through an oxyphenyl bridge. RSC Advances, 2016, 6(13), 10949-10961.
[http://dx.doi.org/10.1039/C5RA27322F]
[172]
Mohsein, H.F.; Majeed, N.S.; Al-Ameerhelal, T.A. Synthesis and characterization of some new heterocyclic compounds containing a sulfonamide moiety. RJPT, 2019, 12(7), 3282.
[http://dx.doi.org/10.5958/0974-360X.2019.00555.9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy