Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Key Diagnostic Markers and Immune Infiltration in Osteoarthritis

Author(s): Mingyue Yan, Haibo Zhao, Zewen Sun, Jinli Chen, Yi Zhang, Jiake Gao and Tengbo Yu*

Volume 26, Issue 2, 2023

Published on: 02 June, 2022

Page: [410 - 423] Pages: 14

DOI: 10.2174/1386207325666220426083526

Price: $65

conference banner
Abstract

Background: Osteoarthritis (OA) is a worldwide chronic disease of the articulating joints. An increasing body of data demonstrates the immune system's involvement in osteoarthritis. The molecular mechanisms of OA are still unclear. This study aimed to search for OA immunerelated hub genes and determine appropriate diagnostic markers to help the detection and treatment of the disease.

Methods: Gene expression data were downloaded from the GEO database. Firstly, we analyzed and identified the differentially expressed genes (DEGs) using R packages. Meanwhile, ssGSEA was used to determine the activation degree of immune-related genes (IRGs), and WGCNA analysis was applied to search for co-expressed gene modules associated with immune cells. Then, critical networks and hub genes were found in the PPI network. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyzed the biological functions of genes. The ability of the hub genes to differentiate OA from controls was assessed by the area under the ROC curve. A miRNA and transcription factor (TF) regulatory network was constructed according to their relationship with hub genes. Finally, the validation of hub genes was carried out by qPCR.

Results: In total, 353 DEGs were identified in OA patients compared with controls, including 222 upregulated and 131 downregulated genes. WGCNA successfully identified 34 main functional modules involved in the pathogenesis of OA. The most crucial functional module involved in OA included 89 genes. 19 immune-related genes were obtained by overlapping DEGs with the darkgrey module. The String database was constructed using the protein-protein interaction (PPI) network of 19 target genes, and 7 hub genes were identified by MCODE. ROC curve showed that 7 hub genes were potential biomarkers of OA. The expression levels of hub genes were validated by qPCR, and the results were consistent with those from bioinformatic analyses.

Conclusion: Immune-related hub genes, including TYROBP, ITGAM, ITGB2, C1QC, MARCO, C1QB, and TLR8, may play critical roles in OA development. ITGAM had the highest correction on immune cells.

Keywords: Osteoarthritis, GEO, immune cells, immune infiltration, bioinformatics, ITGAM.

Graphical Abstract

[1]
Barbour, K.E.; Helmick, C.G.; Boring, M.; Brady, T.J. Vital Signs: Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation - United States, 2013-2015. MMWR Morb. Mortal. Wkly. Rep., 2017, 66(9), 246-253.
[http://dx.doi.org/10.15585/mmwr.mm6609e1] [PMID: 28278145]
[2]
Vincent, T.L. Targeting mechanotransduction pathways in osteoarthritis: A focus on the pericellular matrix. Curr. Opin. Pharmacol., 2013, 13(3), 449-454.
[http://dx.doi.org/10.1016/j.coph.2013.01.010] [PMID: 23428386]
[3]
Mandl, L.A. Osteoarthritis year in review 2018: Clinical. Osteoarthritis Cartilage, 2019, 27(3), 359-364.
[http://dx.doi.org/10.1016/j.joca.2018.11.001] [PMID: 30453055]
[4]
Monteagudo, S.; Cornelis, F.M.F.; Aznar-Lopez, C.; Yibman-tasiri, P.; Guns, L.A.; Carmeliet, P.; Cailotto, F.; Lories, R.J. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat. Commun., 2017, 8, 15889.
[http://dx.doi.org/10.1038/ncomms15889] [PMID: 28627522]
[5]
Jüni, P.; Hari, R.; Rutjes, A.W.; Fischer, R.; Silletta, M.G.; Reichenbach, S.; da Costa, B.R. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev., 2015, 10, CD005328.
[PMID: 26490760]
[6]
Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12(10), 580-592.
[http://dx.doi.org/10.1038/nrrheum.2016.136] [PMID: 27539668]
[7]
Wang, T.; He, C. Pro-inflammatory cytokines: The link be-tween obesity and osteoarthritis. Cytokine Growth Factor Rev., 2018, 44, 38-50.
[http://dx.doi.org/10.1016/j.cytogfr.2018.10.002] [PMID: 30340925]
[8]
Zheng, L.; Wang, Y.; Qiu, P.; Xia, C.; Fang, Y.; Mei, S.; Fang, C.; Shi, Y.; Wu, K.; Chen, Z.; Fan, S.; He, D.; Lin, X.; Chen, P. Primary chondrocyte exosomes mediate osteoarthritis pro-gression by regulating mitochondrion and immune reactivity. Nanomedicine (Lond.), 2019, 14(24), 3193-3212.
[http://dx.doi.org/10.2217/nnm-2018-0498] [PMID: 31855117]
[9]
Pemmari, A.; Leppänen, T.; Hämäläinen, M.; Moilanen, T.; Vuolteenaho, K.; Moilanen, E. Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Res. Ther., 2020, 22(1), 271.
[http://dx.doi.org/10.1186/s13075-020-02289-7] [PMID: 33203447]
[10]
Lin, R.; Deng, C.; Li, X.; Liu, Y.; Zhang, M.; Qin, C.; Yao, Q.; Wang, L.; Wu, C. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regenera-tion of cartilage/bone interface. Theranostics, 2019, 9(21), 6300-6313.
[http://dx.doi.org/10.7150/thno.36120] [PMID: 31534552]
[11]
Li, S.; Wan, J.; Anderson, W.; Sun, H.; Zhang, H.; Peng, X. Downregulation of IL-10 secretion by Treg cells in osteoar-thritis is associated with a reduction in Tim-3 expression. Biomed. Pharmacother., 2016, 79, 159-165.
[12]
Lopes, E.B.P.; Filiberti, A.; Husain, S.A.; Humphrey, M.B. Immune contributions to osteoarthritis. Curr. Osteoporos. Rep., 2017, 15(6), 593-600.
[http://dx.doi.org/10.1007/s11914-017-0411-y] [PMID: 29098574]
[13]
Woodell-May, J.E.; Sommerfeld, S.D. Role of inflammation and the immune system in the progression of osteoarthritis. J. Orthop. Res., 2020, 38(2), 253-257.
[14]
Kalaitzoglou, E.; Griffin, T.M.; Humphrey, M.B. Innate im-mune responses and osteoarthritis. Curr. Rheumatol. Rep., 2017, 19(8), 45.
[http://dx.doi.org/10.1007/s11926-017-0672-6] [PMID: 28718060]
[15]
Kaneva, M.K. Neutrophil elastase and its inhibitors-overlooked players in osteoarthritis. FEBS J., 2022, 289(1), 113-116.
[PMID: 34580987]
[16]
Muley, M.M.; Reid, A.R.; Botz, B.; Bölcskei, K.; Helyes, Z.; McDougall, J.J. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2. Br. J. Pharmacol., 2016, 173(4), 766-777.
[http://dx.doi.org/10.1111/bph.13237] [PMID: 26140667]
[17]
Lieben, L. Osteoarthritis: Osteophyte formation involves PAR2. Nat. Rev. Rheumatol., 2016, 12(2), 70-71.
[http://dx.doi.org/10.1038/nrrheum.2016.6] [PMID: 26794862]
[18]
Huesa, C.; Ortiz, A.C.; Dunning, L.; McGavin, L.; Bennett, L.; McIntosh, K.; Crilly, A.; Kurowska-Stolarska, M.; Plevin, R.; van ’t Hof, R.J.; Rowan, A.D.; McInnes, I.B.; Goodyear, C.S.; Lockhart, J.C.; Ferrell, W.R. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Ann. Rheum. Dis., 2016, 75(11), 1989-1997.
[http://dx.doi.org/10.1136/annrheumdis-2015-208268] [PMID: 26698846]
[19]
Huang, X.; Ni, B.; Xi, Y.; Chu, X.; Zhang, R.; You, H. Prote-ase-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY), 2019, 11(24), 12532-12545.
[http://dx.doi.org/10.18632/aging.102586] [PMID: 31841119]
[20]
Ni, Z.; Kuang, L.; Chen, H.; Xie, Y.; Zhang, B.; Ouyang, J.; Wu, J.; Zhou, S.; Chen, L.; Su, N.; Tan, Q.; Luo, X.; Chen, B.; Chen, S.; Yin, L.; Huang, H.; Du, X.; Chen, L. The exosome-like vesicles from osteoarthritic chondrocyte enhanced ma-ture IL-1β production of macrophages and aggravated syno-vitis in osteoarthritis. Cell Death Dis., 2019, 10(7), 522.
[http://dx.doi.org/10.1038/s41419-019-1739-2] [PMID: 31285423]
[21]
Cui, Z.; Crane, J.; Xie, H.; Jin, X.; Zhen, G.; Li, C.; Xie, L.; Wang, L.; Bian, Q.; Qiu, T.; Wan, M.; Xie, M.; Ding, S.; Yu, B.; Cao, X. Halofuginone attenuates osteoarthritis by inhibi-tion of TGF-β activity and H-type vessel formation in sub-chondral bone. Ann. Rheum. Dis., 2016, 75(9), 1714-1721.
[http://dx.doi.org/10.1136/annrheumdis-2015-207923] [PMID: 26470720]
[22]
Zhang, H.; Lin, C.; Zeng, C.; Wang, Z.; Wang, H.; Lu, J.; Liu, X.; Shao, Y.; Zhao, C.; Pan, J.; Xu, S.; Zhang, Y.; Xie, D.; Cai, D.; Bai, X. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann. Rheum. Dis., 2018, 77(10), 1524-1534.
[http://dx.doi.org/10.1136/annrheumdis-2018-213450] [PMID: 29991473]
[23]
Dai, M.; Sui, B.; Xue, Y.; Liu, X.; Sun, J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhib-iting apoptosis and hypertrophy of chondrocytes. Biomaterials, 2018, 180, 91-103.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.011] [PMID: 30031224]
[24]
Shen, P.C.; Wu, C.L.; Jou, I.M.; Lee, C.H.; Juan, H.Y.; Lee, P.J.; Chen, S.H.; Hsieh, J.L. T helper cells promote disease progression of osteoarthritis by inducing macrophage in-flammatory protein-1γ. Osteoarthritis Cartilage, 2011, 19(6), 728-736.
[http://dx.doi.org/10.1016/j.joca.2011.02.014] [PMID: 21376128]
[25]
Assirelli, E.; Pulsatelli, L.; Dolzani, P.; Mariani, E.; Lisignoli, G.; Addimanda, O.; Meliconi, R. Complement Expression and Activation in Osteoarthritis Joint Compartments. Front. Immunol., 2020, 11, 535010.
[http://dx.doi.org/10.3389/fimmu.2020.535010] [PMID: 33193305]
[26]
Kalchishkova, N.; Fürst, C.M.; Heinegård, D.; Blom, A.M. NC4 Domain of cartilage-specific collagen IX inhibits com-plement directly due to attenuation of membrane attack for-mation and indirectly through binding and enhancing activity of complement inhibitors C4B-binding protein and factor H. J. Biol. Chem., 2011, 286(32), 27915-27926.
[http://dx.doi.org/10.1074/jbc.M111.242834] [PMID: 21659506]
[27]
Yamasaki, K.; Muto, J.; Taylor, K.R.; Cogen, A.L.; Audish, D.; Bertin, J.; Grant, E.P.; Coyle, A.J.; Misaghi, A.; Hoffman, H.M.; Gallo, R.L. NLRP3/cryopyrin is necessary for interleu-kin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem., 2009, 284(19), 12762-12771.
[http://dx.doi.org/10.1074/jbc.M806084200] [PMID: 19258328]
[28]
Ramírez-Bello, J.; Sun, C.; Valencia-Pacheco, G.; Singh, B.; Barbosa-Cobos, R.E.; Saavedra, M.A.; López-Villanueva, R.F.; Nath, S.K. ITGAM is a risk factor to systemic lupus erythematosus and possibly a protection factor to rheumatoid arthritis in patients from Mexico. PLoS One, 2019, 14(11), e0224543.
[http://dx.doi.org/10.1371/journal.pone.0224543] [PMID: 31774828]
[29]
Hom, G.; Graham, R.R.; Modrek, B.; Taylor, K.E.; Ortmann, W.; Garnier, S.; Lee, A.T.; Chung, S.A.; Ferreira, R.C.; Pant, P.V.; Ballinger, D.G.; Kosoy, R.; Demirci, F.Y.; Kamboh, M.I.; Kao, A.H.; Tian, C.; Gunnarsson, I.; Bengtsson, A.A.; Rantapää-Dahlqvist, S.; Petri, M.; Manzi, S.; Seldin, M.F.; Rönnblom, L.; Syvänen, A.C.; Criswell, L.A.; Gregersen, P.K.; Behrens, T.W. Association of systemic lupus erythema-tosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med., 2008, 358(9), 900-909.
[http://dx.doi.org/10.1056/NEJMoa0707865] [PMID: 18204098]
[30]
Ehirchiou, D.; Bernabei, I.; Chobaz, V.; Castelblanco, M.; Hügle, T.; So, A.; Zhang, L.; Busso, N.; Nasi, S. CD11b sig-naling prevents chondrocyte mineralization and attenuates the severity of osteoarthritis. Front. Cell Dev. Biol., 2020, 86, 11757.
[http://dx.doi.org/10.3389/fcell.2020.611757] [PMID: 33392201]
[31]
Ascone, G.; Di Ceglie, I.; Walgreen, B.; Sloetjes, A.W.; Lind-hout, E.; Bot, I.; van de Loo, F.A.J.; Koenders, M.I.; van der Kraan, P.M.; Blom, A.B.; van den Bosch, M.H.J.; van Lent, P.L.E.M. High LDL levels lessen bone destruction during an-tigen-induced arthritis by inhibiting osteoclast formation and function. Bone, 2020, 130, 115140.
[http://dx.doi.org/10.1016/j.bone.2019.115140] [PMID: 31712132]
[32]
Sun, Y.; Mauerhan, D.R.; Honeycutt, P.R.; Kneisl, J.S.; Nor-ton, J.H.; Hanley, E.N., Jr; Gruber, H.E. Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet. Disord., 2010, 11, 19.
[http://dx.doi.org/10.1186/1471-2474-11-19] [PMID: 20109188]
[33]
Canhão, H.; Fonseca, J.E.; Leandro, M.J.; Romeu, J.C.; Pi-mentão, J.B.; Costa, J.T.; Queiroz, M.V. Cross-sectional study of 50 patients with calcium pyrophosphate dihydrate crystal arthropathy. Clin. Rheumatol., 2001, 20(2), 119-122.
[http://dx.doi.org/10.1007/s100670170081] [PMID: 11346223]
[34]
Lubbers, R.; van Schaarenburg, R.A.; Kwekkeboom, J.C.; Levarht, E.W.N.; Bakker, A.M.; Mahdad, R.; Monteagudo, S.; Cherifi, C.; Lories, R.J.; Toes, R.E.M.; Ioan-Facsinay, A.; Trouw, L.A. Complement component C1q is produced by isolated articular chondrocytes. Osteoarthritis Cartilage, 2020, 28(5), 675-684.
[http://dx.doi.org/10.1016/j.joca.2019.09.007] [PMID: 31634584]
[35]
Sieker, J.T.; Ayturk, U.M.; Proffen, B.L.; Weissenberger, M.H.; Kiapour, A.M.; Murray, M.M. Immediate administra-tion of intraarticular triamcinolone acetonide after joint injury modulates molecular outcomes associated with early synovi-tis. Arthritis Rheumatol., 2016, 68(7), 1637-1647.
[http://dx.doi.org/10.1002/art.39631] [PMID: 26866935]
[36]
Mendez, M.E.; Sebastian, A.; Murugesh, D.K.; Hum, N.R.; McCool, J.L. Hsia, AW LPS-induced inflammation prior to in-jury exacerbates the development of post-traumatic osteoar-thritis in mice. J. Bone Miner. Res., 2020, 35(11), 2229-2241.
[37]
Guiducci, C.; Gong, M.; Cepika, A.M.; Xu, Z.; Tripodo, C.; Bennett, L.; Crain, C.; Quartier, P.; Cush, J.J.; Pascual, V.; Coffman, R.L.; Barrat, F.J. RNA recognition by human TLR8 can lead to autoimmune inflammation. J. Exp. Med., 2013, 210(13), 2903-2919.
[http://dx.doi.org/10.1084/jem.20131044] [PMID: 24277153]
[38]
Han, Y.; Wu, J.; Gong, Z.; Zhou, Y.; Li, H.; Wang, B.; Qian, Q. Identification and development of a novel 5-gene diagnos-tic model based on immune infiltration analysis of osteoar-thritis. J. Transl. Med., 2021, 19(1), 522.
[http://dx.doi.org/10.1186/s12967-021-03183-9] [PMID: 34949204]
[39]
Cao, J.; Ding, H.; Shang, J.; Ma, L.; Wang, Q.; Feng, S. Weighted gene co-expression network analysis reveals specif-ic modules and hub genes related to immune infiltration of osteoarthritis. Ann. Transl. Med., 2021, 9(20), 1525.
[http://dx.doi.org/10.21037/atm-21-4566] [PMID: 34790731]
[40]
Tang, C.; Liu, Q.; Zhang, Y.; Liu, G.; Shen, G. Identification of CIRBP and TRPV4 as immune-related diagnostic bi-omarkers in osteoarthritis. Int. J. Gen. Med., 2021, 14, 10235-10245.
[http://dx.doi.org/10.2147/IJGM.S342286] [PMID: 35002293]
[41]
Fedorov, D.G.; Li, H.; Mironov, V.; Alexeev, Y. Computa-tional methods for biochemical simulations implemented in GAMESS. Methods Mol. Biol., 2020, 2114, 123-142.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_8] [PMID: 32016890]
[42]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Hetero-geneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy