Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Effect of the Ruan Jian Qing Mai Recipe on Wound Healing in Diabetic Mice and Prediction of its Potential Targets

Author(s): Pei Zhang, Zefeng Wang, Yongjia Shi, Guangtao Yao*, Yemin Cao* and Jiange Zhang*

Volume 26, Issue 2, 2023

Published on: 21 June, 2022

Page: [392 - 409] Pages: 18

DOI: 10.2174/1386207325666220418095316

Price: $65

conference banner
Abstract

Background: The “Ruan Jian Qing Mai (RJQM) recipe” is a traditional Chinese medicine (TCM), which has been found to have significant curative effects on diabetic ulcers in the clinic for a long time. Previous research has shown that RJQM can improve diabetic skin wound healing and promote angiogenesis. However, the active ingredients of the RJQM recipe and its pharmacological mechanism of treatment for diabetic skin wound healing still remain unclear.This study aims to investigate the effect of the RJQM recipe on diabetic wound healing, and to identify the possible active ingredients and their mechanism.

Methods: First, a skin injury model was established in diabetic mice, and wound healing was evaluated by hematoxylin-eosin (HE) staining, quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and western blot analysis. Second, the chemical constituents of the RJQM recipe were analyzed and identified by ultra pressure liquid chromatography-mass spectrometry (UPLC-MS). Finally, the possible targets of drug treatment for diabetic skin injury were analyzed by network pharmacology and verified by in vitro experiments using cell culture.

Results: (1) In the full-thickness skin injury model, the skin wound healing rate and healing area were significantly increased in mice treated with the RJQM recipe compared with those of the model group. The results of immunofluorescence staining showed that the RJQM recipe could increase the expression of VEGF protein and promote the proliferation of vascular smooth muscle cells and the formation of microvessels, and RT-qPCR results found that the mRNA expression of angiogenesis-related factors in the RJQM recipe group was significantly higher than that in the model group. (2) A total of 25 compounds were identified by UPLC-MS. (3) According to the results of network pharmacology, the therapeutic effect of the RJQM recipe on diabetic skin injury may be related to S6 (quercetin), S1 (typhaneoside), S18 (isoliquiritigenin), protein kinase B-α (Akt1), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), insulin-like growth factor I receptor (IGF1R), vascular endothelial growth factor-a (VEGF-a), signal transducer and activator of transcription-3 (STAT3) and phosphoinositide 3-kinase-protein kinase B (PI3K-Akt) signaling pathways. Based on the predictions by network pharmacology, we proved that the drug could treat diabetic skin damage by activating the PI3K-Akt-VEGF signaling pathway.

Conclusion: The RJQM recipe promotes the formation of granulation tissue during the process of wound healing and exerts a good therapeutic effect on diabetic skin wound healing.

Keywords: Ruan Jian Qing Mai, Skin wound healing, Diabetic, Network pharmacology, PI3K-Akt-VEGF signaling pathway, vascular endothelial growth factor.

[1]
Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Patho-gene-sis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother., 2019, 112, 108615.
[http://dx.doi.org/10.1016/j.biopha.2019.108615] [PMID: 30784919]
[2]
Andrade, T.A.M.; Masson-Meyers, D.S.; Caetano, G.F.; Terra, V.A.; Ovidio, P.P.; Jordão-Júnior, A.A.; Frade, M.A.C. Skin changes in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun., 2017, 490(4), 1154-1161.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.166] [PMID: 28668393]
[3]
Demirseren, D.D.; Emre, S.; Akoglu, G.; Arpacı, D.; Arman, A.; Metin, A.; Cakır, B. Relationship be-tween skin diseases and extracutaneous complications of diabetes mellitus: Clinical analysis of 750 pa-tients. Am. J. Clin. Dermatol., 2014, 15(1), 65-70.
[http://dx.doi.org/10.1007/s40257-013-0048-2] [PMID: 24135944]
[4]
Apelqvist, J.; Bakker, K.; van Houtum, W.H.; Nabuurs-Franssen, M.H.; Schaper, N.C. Interna-tional consensus and practical guidelines on the management and the prevention of the diabetic foot. Diabetes Metab. Res. Rev., 2000, 16(S1)(Suppl. 1), S84-S92.
[http://dx.doi.org/10.1002/1520-7560(200009/10)16:1+<:AID-DMRR113>3.0.CO;2-S] [PMID: 11054895]
[5]
Zhao, W.; Liang, J.; Chen, Z.; Diao, Y.; Miao, G. Combined analysis of circRNA and mRNA pro-files and interactions in patients with diabetic foot and diabetes mellitus. Int. Wound J., 2020, 17(5), 1183-1193.
[http://dx.doi.org/10.1111/iwj.13420] [PMID: 32573975]
[6]
Duan, S.; Niu, L.; Yin, T.; Li, L.; Gao, S.; Yuan, D.; Hu, M. A novel strategy for screening bioa-vailable quality markers of traditional Chinese medicine by integrating intestinal absorption and net-work pharmacology: Application to Wu Ji Bai Feng Pill. Phytomedicine, 2020, 76, 153226.
[http://dx.doi.org/10.1016/j.phymed.2020.153226] [PMID: 32521487]
[7]
Song, F. Experimental Study on the protection of ruanjian qingmai granules against is chemic vas-cular injury in lower limbs; Shanghai University of Traditional Chinese Medicine, 2019, pp. 1-68.
[8]
Tao, W.; Yang, N.; Duan, J.A.; Wu, D.; Guo, J.; Tang, Y.; Qian, D.; Zhu, Z. Simultaneous deter-mina-tion of eleven major flavonoids in the pollen of Typha angustifolia by HPLC-PDA-MS. Phytochem. Anal., 2011, 22(5), 455-461.
[http://dx.doi.org/10.1002/pca.1302] [PMID: 22033915]
[9]
Jia, R.B.; Wu, J.; Li, Z.R.; Ou, Z.R.; Lin, L.; Sun, B.; Zhao, M. Structural characterization of poly-sac-charides from three seaweed species and their hypoglycemic and hypolipidemic activities in type 2 di-abetic rats. Int. J. Biol. Macromol., 2020, 155, 1040-1049.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.068] [PMID: 31712146]
[10]
Nguyen, T.D.; Thuong, P.T.; Hwang, I.H.; Hoang, T.K.H.; Nguyen, M.K.; Nguyen, H.A.; Na, M. An-ti-hyperuricemic, anti-inflammatory and analgesic effects of siegesbeckia orientalis L. resulting from the fraction with high phenolic content. BMC Complement. Altern. Med., 2017, 17(1), 191.
[http://dx.doi.org/10.1186/s12906-017-1698-z] [PMID: 28376775]
[11]
Pradhan, S.K.; Gupta, R.C.; Goel, R.K. Differential content of secondary metabolites in diploid and tetraploid cytotypes of Siegesbeckia orientalis L. Nat. Prod. Res., 2018, 32(20), 2476-2482.
[http://dx.doi.org/10.1080/14786419.2017.1423298] [PMID: 29334256]
[12]
Li, S.; Qian, Y.; Xie, R.; Li, Y.; Jia, Z.; Zhang, Z.; Huang, R.; Tuo, L.; Quan, Y.; Yu, Z.; Liu, J.; Xiang, M. Exploring the protective effect of ShengMai-Yin and Ganmaidazao decoction combination against type 2 diabetes mellitus with nonalcoholic fatty liver disease by network pharmacology and validation in KKAy mice. J. Ethnopharmacol., 2019, 242, 112029.
[http://dx.doi.org/10.1016/j.jep.2019.112029] [PMID: 31216433]
[13]
Chen, M.; Sun, Q. Systemic pharmacology understanding of the key mechanism of Sedum sar-mento-sum Bunge in treating hepatitis. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(2), 421-430.
[http://dx.doi.org/10.1007/s00210-020-01952-9] [PMID: 32734365]
[14]
Diggikar, R.S.; Deshmukh, S.P.; Thopate, T.S.; Kshirsagar, S.R. Performance of polyaniline nano-fibers (Pani Nfs) as pani Nfs-Silver (Ag) nanocomposites (Ncs) for energy storage and antibacte-rial applications. ACS Omega, 2019, 4(3), 5741-5749.
[http://dx.doi.org/10.1021/acsomega.8b02834]
[15]
Xu, Y.W.; Xu, Z.D.; An, R.; Zhang, H.; Wang, X.H. Revealing the synergistic mechanism of Shenfu Decoction for anti-heart failure through network pharmacology strategy. Chin. J. Nat. Med., 2020, 18(7), 536-549.
[http://dx.doi.org/10.1016/S1875-5364(20)30064-9] [PMID: 32616194]
[16]
Zhai, S.; Huang, Q.; Liao, X.; Yin, S. Study on the drug targets and molecular mechanisms of Rhi-zoma Curcumae in the treatment of nasopharyngeal carcinoma based on network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020, 2606402.
[http://dx.doi.org/10.1155/2020/2606402] [PMID: 32595725]
[17]
Nishimura, Y.; Ii, M.; Qin, G.; Hamada, H.; Asai, J.; Takenaka, H.; Sekiguchi, H.; Renault, M.A.; Ju-jo, K.; Katoh, N.; Kishimoto, S.; Ito, A.; Kamide, C.; Kenny, J.; Millay, M.; Misener, S.; Thorne, T.; Losordo, D.W. CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice. J. Invest. Dermatol., 2012, 132(3 Pt 1), 711-720.
[http://dx.doi.org/10.1038/jid.2011.356] [PMID: 22048734]
[18]
Luo, X.; Huang, P.; Yuan, B.; Liu, T.; Lan, F.; Lu, X.; Dai, L.; Liu, Y.; Yin, H. Astragaloside IV en-hances diabetic wound healing involving upregulation of alternatively activated macrophages. Int. Immunopharmacol., 2016, 35, 22-28.
[http://dx.doi.org/10.1016/j.intimp.2016.03.020] [PMID: 27016716]
[19]
Buszewska-Forajta, M.; Siluk, D.; Daghir-Wojtkowiak, E.; Sejda, A.; Staśkowiak, D.; Biernat, W.; Kaliszan, R. Studies of the effect of grasshopper abdominal secretion on wound healing with the use of murine model. J. Ethnopharmacol., 2015, 176, 413-423.
[http://dx.doi.org/10.1016/j.jep.2015.11.004] [PMID: 26549269]
[20]
Biswas, T.K.; Pandit, S.; Chakrabarti, S.; Banerjee, S.; Poyra, N.; Seal, T. Evaluation of Cynodon dactylon for wound healing activity. J. Ethnopharmacol., 2017, 197, 128-137.
[http://dx.doi.org/10.1016/j.jep.2016.07.065] [PMID: 27457694]
[21]
Yang, N.; Chen, H.; Gao, Y.; Zhang, S.; Lin, Q.; Ji, X.; Li, N.; Xu, W.; Liu, Y.; Jin, S. Tanshinone IIA exerts therapeutic effects by acting on endogenous stem cells in rats with liver cirrho-sis. Biomed. Pharmacother., 2020, 132, 110815.
[http://dx.doi.org/10.1016/j.biopha.2020.110815] [PMID: 33113421]
[22]
Hamada, N.; Kawano, K.I.; Yusoff, F.M.; Furukawa, K.; Nakashima, A.; Maeda, M.; Yasuda, H.; Maruhashi, T.; Higashi, Y. Ionizing irradiation induces vascular damage in the aorta of wild-type mice. Cancers (Basel), 2020, 12(10), 12103030.
[http://dx.doi.org/10.3390/cancers12103030] [PMID: 33081026]
[23]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantita-tive PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[24]
Yin, H.; Li, X.; Hu, S.; Liu, T.; Yuan, B.; Gu, H.; Ni, Q.; Zhang, X.; Zheng, F. IL-33 accelerates cu-taneous wound healing involved in upregulation of alternatively activated macrophages. Mol. Immunol., 2013, 56(4), 347-353.
[http://dx.doi.org/10.1016/j.molimm.2013.05.225] [PMID: 23911389]
[25]
Li, W.; Mao, X.; Wu, H.; Guo, M.; Su, X.; Lu, J.; Guo, Q.; Li, T.; Wang, X.; Su, W.; Zhang, Y.; Lin, N. Deciphering the chemical profile and pharmacological mechanisms of Baihu-Guizhi decoction us-ing ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry coupled with network pharmacology-based investigation. Phytomedicine, 2020, 67, 153156.
[http://dx.doi.org/10.1016/j.phymed.2019.153156] [PMID: 31901568]
[26]
Zeng, Z.; Zhu, B.H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J. Ethnopharmacol., 2014, 154, 653-662.
[http://dx.doi.org/10.1016/j.jep.2014.04.038] [PMID: 24794013]
[27]
Taha, K.F.; Khalil, M.; Abubakr, M.S.; Shawky, E. Identifying cancer-related molecular targets of Nandina domestica Thunb. by network pharmacology-based analysis in combination with chemical profiling and molecular docking studies. J. Ethnopharmacol., 2020, 249, 112413.
[http://dx.doi.org/10.1016/j.jep.2019.112413] [PMID: 31760157]
[28]
Ying, L.; Wang, D.; Du, G. Analysis of bioactive components in the fruit, roots, and leaves of Alpinia oxyphylla by UPLC-MS/MS. Evid. Based Complement. Alternat. Med., 2021, 2021, 5592518.
[http://dx.doi.org/10.1155/2021/5592518] [PMID: 34335828]
[29]
Zhang, C.; Liu, C.; Qu, Y.; Cao, Y.; Liu, R.; Sun, Y.; Nyima, T.; Zhang, S.; Sun, Y. LC-MS-based qualitative analysis and pharmacokinetic integration network pharmacology strategy reveals the mech-anism of Phlomis brevidentata H.W.Li treatment of pneumonia. ACS Omega, 2021, 6(6), 4495-4505.
[http://dx.doi.org/10.1021/acsomega.0c06201] [PMID: 33623855]
[30]
Chanda, J.; Mukherjee, P.K.; Biswas, R.; Singha, S.; Kar, A.; Haldar, P.K. Lagenaria siceraria and it’s bioactive constituents in carbonic anhydrase inhibition: A bioactivity guided LC-MS/MS ap-proach. Phytochem. Anal., 2021, 32(3), 298-307.
[http://dx.doi.org/10.1002/pca.2975] [PMID: 32683785]
[31]
Ismail, B.B.; Pu, Y.; Fan, L.; Dandago, M.A.; Guo, M.; Liu, D. Characterizing the phenolic con-stitu-ents of baobab (Adansonia digitata) fruit shell by LC-MS/QTOF and their in vitro biological ac-tivities. Sci. Total Environ., 2019, 694, 133387.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.193] [PMID: 31386951]
[32]
Gao, K.; Song, Y.P.; Du, X.; Chen, H.; Zhao, L.T. Exploring multiple mechanisms of Qingjie Fang-gan prescription for prevention and treatment of influenza based on systems pharmacology. Comput. Biol. Chem., 2020, 88, 107307.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107307] [PMID: 32622176]
[33]
Deng, Y.; Gao, X.; Feng, T.; Wang, Z.; Xiao, W.; Xiong, Z.; Zhao, L. Systematically character-ized mechanism of treatment for lumbar disc herniation based on Yaobitong capsule ingredient analy-sis in rat plasma and its network pharmacology strategy by UPLC-MS/MS. J. Ethnopharmacol., 2020, 260, 113097.
[http://dx.doi.org/10.1016/j.jep.2020.113097] [PMID: 32531413]
[34]
Li, A.P.; Yang, L.; Cui, T.; Zhang, L.C.; Liu, Y.T.; Yan, Y.; Li, K.; Qin, X.M. Uncovering the mech-anism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharma-cology. Phytomedicine, 2020, 77, 153274.
[http://dx.doi.org/10.1016/j.phymed.2020.153274] [PMID: 32771537]
[35]
Huang, X.F.; Zhang, J.L.; Huang, D.P.; Huang, A.S.; Huang, H.T.; Liu, Q.; Liu, X.H.; Liao, H.L. A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin com-bined with in vitro transcriptomics and proteomics. Int. Immunopharmacol., 2020, 86, 106727.
[http://dx.doi.org/10.1016/j.intimp.2020.106727] [PMID: 32593158]
[36]
Yu, B.; Diao, N.N.; Zhang, Y.; Li, X.Z.; Yu, N.; Ding, Y.F.; Shi, Y.L. Network pharmacology-based identification for therapeutic mechanisms of dangguikushen pill in acne vulgaris. Dermatol. Ther. (Heidelb.), 2020, e14061.
[37]
Liu, C.; Liu, L.; Li, J.; Zhang, Y.; Meng, D.L. Virtual screening of active compounds from Jasminum lanceolarium and potential targets against primary dysmenorrhea based on network pharmacology. Nat. Prod. Res., 2020, 1-4.
[PMID: 32693616]
[38]
Liu, C.; He, L.; Wang, J.; Wang, Q.; Sun, C.; Li, Y.; Jia, K.; Wang, J.; Xu, T.; Ming, R.; Wang, Q.; Lin, N. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways. J. Ethnopharmacol., 2020, 260, 113039.
[http://dx.doi.org/10.1016/j.jep.2020.113039] [PMID: 32497675]
[39]
Shabhay, A.; Horumpende, P.; Shabhay, Z.; Mganga, A.; Van Baal, J.; Msuya, D.; Chilonga, K.; Chugulu, S. Clinical profiles of diabetic foot ulcer patients undergoing major limb amputation at a ter-tiary care center in North-eastern Tanzania. BMC Surg., 2021, 21(1), 34.
[http://dx.doi.org/10.1186/s12893-021-01051-3] [PMID: 33435942]
[40]
Chandran, R.; Abrahamse, H.; Parimelazhagan, T.; Durai, G. Syzygium mundagam bark methanol ex-tract restores skin to normal in diabetic wounded rats. Biomed. Pharmacother., 2017, 94, 781-786.
[http://dx.doi.org/10.1016/j.biopha.2017.07.114] [PMID: 28802230]
[41]
Wang, Y.; Zhao, G.; Li, X.; Liu, L.; Cao, W.; Wei, Q. Electrochemiluminescent competitive im-munosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1. Biosens. Bioelectron., 2018, 101, 290-296.
[http://dx.doi.org/10.1016/j.bios.2017.10.042] [PMID: 29096368]
[42]
Lim, Y.C.; Bhatt, M.P.; Kwon, M.H.; Park, D.; Na, S.; Kim, Y.M.; Ha, K.S. Proinsulin C-peptide prevents impaired wound healing by activating angiogenesis in diabetes. J. Invest. Dermatol., 2015, 135(1), 269-278.
[http://dx.doi.org/10.1038/jid.2014.285] [PMID: 25007043]
[43]
Ul Haq, F.; Ali, A.; Akhtar, N.; Aziz, N.; Khan, M.N.; Ahmad, M.; Musharraf, S.G. A high-throughput method for dereplication and assessment of metabolite distribution in Salvia species using LC-MS/MS. J. Adv. Res., 2020, 24, 79-90.
[http://dx.doi.org/10.1016/j.jare.2020.02.001] [PMID: 32211205]
[44]
Zhong, Y.; Li, M.; Zhang, X.; Chen, L.; Wang, Y.; Xu, Y. Dissecting chemical composition and car-dioprotective effects of fuzhengkangfu decoction against doxorubicin-induced cardiotoxicity by LC-MS and bioinformatics approaches. ACS Omega, 2020, 5(23), 14051-14060.
[http://dx.doi.org/10.1021/acsomega.0c01494] [PMID: 32566871]
[45]
Hu, Z.; Yang, M.; Yang, L.; Xie, C.; Gao, H.; Fu, X.; Xie, H.; Liu, Y. Network pharmacology-based identification of the mechanisms of Shen-Qi compound formula in treating diabetes mellitus. Evid. Based Complement. Alternat. Med., 2020, 2020, 5798764.
[http://dx.doi.org/10.1155/2020/5798764] [PMID: 32595730]
[46]
Shi, L.; Wu, Q.G.; Zhang, J.C.; Yang, G.M.; Liu, W.; Wang, Z.F. Mechanism of Shuang-Huang-Lian oral liquid for treatment of mycoplasmal pneumonia in children on network pharmacology. Comb. Chem. High Throughput Screen., 2020, 23(9), 955-971.
[http://dx.doi.org/10.2174/1386207323666200514073428] [PMID: 32407262]
[47]
Chen, J.; Liang, Z.Q.; Hu, C.; Gao, Y.; Wang, Y.K.; Yang, J.W.; Zhao, C.; Cao, Y.M.; Cao, Y.B. Protection against peripheral artery disease injury by Ruan Jian Qing Mai formula via metabolic pro-gramming. Biotechnol. Appl. Biochem., 2021, 68(2), 366-380.
[http://dx.doi.org/10.1002/bab.1934] [PMID: 32374895]
[48]
Chen, J.; Wang, Y.K.; Gao, Y.; Hu, L.S.; Yang, J.W.; Wang, J.R.; Sun, W.J.; Liang, Z.Q.; Cao, Y.M.; Cao, Y.B. Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed. Pharmacother., 2020, 129, 110281.
[http://dx.doi.org/10.1016/j.biopha.2020.110281] [PMID: 32554251]
[49]
Tellechea, A.; Leal, E.C.; Kafanas, A.; Auster, M.E.; Kuchibhotla, S.; Ostrovsky, Y.; Tecilazich, F.; Baltzis, D.; Zheng, Y.; Carvalho, E.; Zabolotny, J.M.; Weng, Z.; Petra, A.; Patel, A.; Panagiotidou, S.; Pradhan-Nabzdyk, L.; Theoharides, T.C.; Veves, A. Mast cells regulate wound healing in diabetes. Diabetes, 2016, 65(7), 2006-2019.
[http://dx.doi.org/10.2337/db15-0340] [PMID: 27207516]
[50]
Makrantonaki, E.; Jiang, D.; Hossini, A.M.; Nikolakis, G.; Wlaschek, M.; Scharffetter-Kochanek, K.; Zouboulis, C.C. Diabetes mellitus and the skin. Rev. Endocr. Metab. Disord., 2016, 17(3), 269-282.
[http://dx.doi.org/10.1007/s11154-016-9373-0] [PMID: 27432328]
[51]
Balaji, S.; Han, N.; Moles, C.; Shaaban, A.F.; Bollyky, P.L.; Crombleholme, T.M.; Keswani, S.G. An-giopoietin-1 improves endothelial progenitor cell-dependent neovascularization in diabetic wounds. Surgery, 2015, 158(3), 846-856.
[http://dx.doi.org/10.1016/j.surg.2015.06.034] [PMID: 26266763]
[52]
Bhatt, V.; Kumari, S.; Upadhyay, P.; Agrawal, P. Anmol; Sahal, D.; Sharma, U. Chemical pro-filing and quantification of potential active constituents responsible for the antiplasmodial activity of Cis-sampelos pareira. J. Ethnopharmacol., 2020, 262, 113185.
[http://dx.doi.org/10.1016/j.jep.2020.113185] [PMID: 32726676]
[53]
Zeng, Q.; Li, L.; Siu, W.; Jin, Y.; Cao, M.; Li, W.; Chen, J.; Cong, W.; Ma, M.; Chen, K.; Wu, Z. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomed. Pharmacother., 2019, 120, 109370.
[http://dx.doi.org/10.1016/j.biopha.2019.109370] [PMID: 31563815]
[54]
Martins, I.J. Anti-aging genes improve appetite regulation and reverse cell senescence and apop-tosis in global populations. Adv. Aging Res., 2016, 5(1), 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[55]
Martins, I.J. Diet and nutrition reverse type 3 diabetes and accelerated aging linked to global chronic diseases., 2016.
[56]
Pillai, V.B.; Sundaresan, N.R.; Gupta, M.P. Regulation of Akt signaling by sirtuins: Its implica-tion in cardiac hypertrophy and aging. Circ. Res., 2014, 114(2), 368-378.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300536] [PMID: 24436432]
[57]
Chai, R.; Fu, H.; Zheng, Z.; Liu, T.; Ji, S.; Li, G. Resveratrol inhibits proliferation and migration through SIRT1 mediated post-translational modification of PI3K/AKT signaling in hepatocellular car-cinoma cells. Mol. Med. Rep., 2017, 16(6), 8037-8044.
[http://dx.doi.org/10.3892/mmr.2017.7612] [PMID: 28983625]
[58]
Zhang, H.; He, S.; Spee, C.; Ishikawa, K.; Hinton, D.R. SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by Resveratrol and its relevance to choroidal neovascularization. Cytokine, 2015, 76(2), 549-552.
[http://dx.doi.org/10.1016/j.cyto.2015.06.019] [PMID: 26174951]
[59]
Martins, I.J. Nutrition therapy regulates caffeine metabolism with relevance to nafld and induc-tion of type 3 diabetes., 2017.
[60]
Zhuang, Z.; Wen, J.; Zhang, L.; Zhang, M.; Zhong, X.; Chen, H.; Luo, C. Can network pharma-cology identify the anti-virus and anti- inflammatory activities of Shuanghuanglian oral liquid used in Chi-nese medicine for respiratory tract infection? Eur. J. Integr. Med., 2020, 37, 101139.
[http://dx.doi.org/10.1016/j.eujim.2020.101139] [PMID: 32501408]
[61]
Jing, C.; Sun, Z.; Xie, X.; Zhang, X.; Wu, S.; Guo, K.; Bi, H. Network pharmacology-based iden-tifi-cation of the key mechanism of Qinghuo Rougan Formula acting on uveitis. Biomed. Pharmacother., 2019, 120, 109381.
[http://dx.doi.org/10.1016/j.biopha.2019.109381] [PMID: 31542616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy