Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

Venomous Peptides as Cardiac Ion Channel’s Modulators

Author(s): Sree Vandana Yerramsetty, Hitesh Chopra, Viajaya Nirmala Pangi, Veera Bramhachari Pallaval, Anitha Jaganathan, Yugal Kishore Mohanta, Mohammad Amjad Kamal* and Sunil Junapudi*

Volume 2, Issue 2, 2022

Published on: 24 June, 2022

Article ID: e250422204018 Pages: 9

DOI: 10.2174/2666121702666220425130212

Price: $65

Abstract

Venoms from the deadliest animals, including spiders, scorpians, bees, and centipedes, are composed of a complex mixture of various peptides developed to catch prey and defend other animals. Venoms are composed of several bioactive molecules such as proteins and peptides that modify physiological conditions in other organisms. These bioactive peptides penetrate tissues and blood vessels to encounter numerous receptors and modulate ion channel their activities. Venoms are used to treat various medical issues, including cardiovascular diseases. Venom peptides regulate several ion channel behaviors, such as voltage-gated sodium (Nav), calcium (Cav) and potassium (Kv) channels, and are set as a therapeutic approach. In this perspective, we emphasize the effect of isolated lethal venomous peptides on cardiac ionic channels and their mechanisms of action for the cure. We also summarize the highlights and molecular details of their toxin-receptor interactions and prospects to develop peptide therapeutics for respective cardiac electrophysiological diseases.

Keywords: Venoms, peptides, cardiac diseases, ion channels, currents, voltage gated channels.

Graphical Abstract

[1]
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly proteomes: A practical guide to proteotranscriptomics of animal venoms. Proteomics 2020; 20(17-18): e1900324.
[http://dx.doi.org/10.1002/pmic.201900324] [PMID: 32820606]
[2]
Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov 2003; 2(10): 790-802. Available from: www.nature.com/reviews/drugdisc
[http://dx.doi.org/10.1038/nrd1197] [PMID: 14526382]
[3]
Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y. Proteotranscriptomic analysis and discovery of the profile and diversity of toxin-like proteins in centipede. Mol Cell Proteomics Elsevier Inc. 2018; 17: pp. 709-20.
[http://dx.doi.org/10.1074/mcp.RA117.000431]
[4]
Chu Y, Qiu P, Yu R. Toxins centipede venom peptides acting on ion channels. Toxins (Basel) 2020; 12(4): 1-18. Available from: www.mdpi.com/journal/toxins
[http://dx.doi.org/10.3390/toxins12040230]
[5]
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011; 11(11): 1469-84.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[6]
Olivera BM, Essay EEEE. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 1997; 8(11): 2101-9.
[http://dx.doi.org/10.1091/mbc.8.11.2101] [PMID: 9362055]
[7]
Dutertre SÃ, Lewis RJ. Use of Venom Peptides to Probe ion channels structure and function. J Biol Chem 2010; 285: 13315-20.
[http://dx.doi.org/10.1074/jbc.R109.076596]
[8]
Baron A, Diochot S, Salinas M, Deval E, Noël J, Lingueglia E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon Pergamon 2013; 75: 187-204.
[http://dx.doi.org/10.1016/j.toxicon.2013.04.008] [PMID: 23624383]
[9]
Rong M, Yang S, Wen B, Mo G, Kang D, Liu J. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J Proteomics 2015; 114: 28-37.
[10]
González-Morales L, Pedraza-Escalona M, Diego-Garcia E, Restano-Cassulini R, Batista CVF, Gutiérrez M del C. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. J Proteomics 2014; 111: 224-37.
[11]
Terlau H, Olivera BM. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiol Rev 2004; 84(1): 41-68.
[http://dx.doi.org/10.1152/physrev.00020.2003] [PMID: 14715910]
[12]
Sonoda Y, Hada N, Kaneda T, et al. A synthetic glycosphingolipid-induced antiproliferative effect in melanoma cells is associated with suppression of FAK, Akt, and Erk activation. Biol Pharm Bull 2008; 31(6): 1279-83.
[http://dx.doi.org/10.1248/bpb.31.1279] [PMID: 18520069]
[13]
Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y. Ion Channels and vascular diseases. Arterioscler Thromb Vasc Biol 2019; 39(5): e146-56.
[http://dx.doi.org/10.1161/ATVBAHA.119.312004] [PMID: 31017824]
[14]
Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem 1995; 64: 493-531.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.002425] [PMID: 7574491]
[15]
Yu S, Li G, Huang CL-H, Lei M, Wu L. Late sodium current associated cardiac electrophysiological and mechanical dysfunction. Pflugers Arch 2018; 470(3): 461-9.
[http://dx.doi.org/10.1007/s00424-017-2079-7] [PMID: 29127493]
[16]
Ufret-Vincenty CA, Baro DJ, Lederer WJ, Rockman HA, Quiñones LE, Santana LF. Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J Biol Chem 2001; 276(30): 28197-203.
[http://dx.doi.org/10.1074/jbc.M102548200] [PMID: 11369778]
[17]
Roth GA, Johnson CO, Abate KH, et al. Global Burden of Cardiovascular Diseases Collaboration. The burden of cardiovascular diseases among US States, 1990-2016. JAMA Cardiol 2018; 3(5): 375-89.
[http://dx.doi.org/10.1001/jamacardio.2018.0385] [PMID: 29641820]
[18]
Ferraz CR, Arrahman A, Xie C, et al. Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Front Ecol Evol 2019; 7: 218. Available from: https://www.frontiersin.org/article/10.3389/fevo.2019.00218 [Internet]
[http://dx.doi.org/10.3389/fevo.2019.00218]
[19]
Pal SK, Gomes A, Dasgupta SC, Gomes A. Snake venom as therapeutic agents: From toxin to drug development. Indian J Exp Biol 2002; 40(12): 1353-8.
[PMID: 12974396]
[20]
Konshina AG, Krylov NA, Efremov RG. Cardiotoxins: Functional role of local conformational changes. J Chem Inf Model 2017; 57: 2799-810.
[http://dx.doi.org/10.1021/acs.jcim.7b00395]
[21]
Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 2020; 181: 114105.
[http://dx.doi.org/10.1016/j.bcp.2020.114105] [PMID: 32579959]
[22]
Song W, Shou W. Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia. Pediatr Cardiol 2012; 33(6): 943-9.
[http://dx.doi.org/10.1007/s00246-012-0303-y] [PMID: 22460359]
[23]
Han D, Tan H, Sun C, Li G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood) 2018; 243(10): 852-63.
[http://dx.doi.org/10.1177/1535370218777972] [PMID: 29806494]
[24]
Wu Z, Yang Y, Xie L, et al. Toxicity and distribution of tetrodotoxin-producing bacteria in puffer fish Fugu rubripes collected from the Bohai sea of China. Toxicon 2005; 46(4): 471-6.
[http://dx.doi.org/10.1016/j.toxicon.2005.06.002] [PMID: 16051296]
[25]
Wu Y, Ma H, Zhang F, Zhang C, Zou X, Cao Z. Selective voltage-gated sodium channel peptide toxins from animal venom: Pharmacological probes and analgesic drug development. ACS Chem Neurosci 2018; 9: 187-97.
[http://dx.doi.org/10.1021/acschemneuro.7b00406]
[26]
Liavas A, Lignani G, Schorge S. Conservation of alternative splicing in sodium channels reveals evolutionary focus on release from inactivation and structural insights into gating. J Physiol 2017; 595(16): 5671-85.
[http://dx.doi.org/10.1113/JP274693] [PMID: 28621020]
[27]
Gonçalves TC, Boukaiba R, Molgó J, et al. Direct evidence for high affinity blockade of NaV1.6 channel subtype by huwentoxin-IV spider peptide, using multiscale functional approaches. Neuropharmacology 2018; 133: 404-14.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.016] [PMID: 29474819]
[28]
Priest BT, Blumenthal KM, Smith JJ, Warren VA, Smith MM. ProTx-I and ProTx-II: Gating modifiers of voltage-gated sodium channels. Toxicon 2007; 49(2): 194-201.
[http://dx.doi.org/10.1016/j.toxicon.2006.09.014] [PMID: 17087985]
[29]
Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 2002; 41: 14734-47.
[http://dx.doi.org/10.1021/bi026546a]
[30]
Li X. Animal toxins influence voltage-gated sodium channel. Physiol Behav 2016.
[31]
Belcher S, Zerillo C, Levenson R, Ritchie J, Howe J, Pande VS, et al. Cloning of a sodium channel alpha subunit from rabbit Schwann cells. PNAS 2012; 92: 11034-8. Available from: https://www.pnas.org/content/109/44/18102
[32]
Jiang D, Tonggu L, Gamal El-Din TM, et al. Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nat Commun 2021; 12(1): 128.
[http://dx.doi.org/10.1038/s41467-020-20078-3] [PMID: 33397917]
[33]
Lopez L, Montnach J, Nicolas S, Jaquillard L, Beroud R, De Waard M. High-throughput screening of animal venoms for identification of compounds active on the cardiac Nav1.5 channel. Arch Cardiovasc Dis Suppl. Elsevier Masson 2020; 12: 258-9.
[34]
Medler S. Anesthetic MS-222 eliminates nerve and muscle activity in frogs used for physiology teaching laboratories. Adv Physiol Educ 2019; 43(1): 69-75.
[http://dx.doi.org/10.1152/advan.00114.2018] [PMID: 30694709]
[35]
Huang W-C, Hsieh Y-S, Chen I-H, Wang C-H, Chang H-W, Yang C-C. Combined use of MS-222 (Tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 2010; 7: 297-304.
[http://dx.doi.org/10.1089/zeb.2010.0653]
[36]
Sansom MSP, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC. Potassium channels: Structures, models, simulations. Biochim Biophys Acta Biomembr 2002; 1565: 294-307.
[http://dx.doi.org/10.1016/S0005-2736(02)00576-X]
[37]
Yellen G. The voltage-gated potassium channels and their relatives. Nature 2002; 419(6902): 35-42.
[http://dx.doi.org/10.1038/nature00978] [PMID: 12214225]
[38]
Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015; 72(19): 3677-93.
[http://dx.doi.org/10.1007/s00018-015-1948-5] [PMID: 26070303]
[39]
Yarov-Yarovoy V, Baker D, Catterall WA. Voltage sensor conformations in the open and closed states in ROSETTA structural models of K channels. Proceedings of the National Academy of Sciences 2006; 103(19): 7292-. Available from: http://www.pnas.orgcgidoi10.1073pnas.0602350103
[40]
Guéguinou M, ChantÔme A, Fromont G, et al. KCa and Ca2+ channels: The complex thought. Biochim Biophys Acta Mol Cell Res 2014; 1843: 2322-33.
[41]
Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E. Pharmacology of cardiac potassium channels. Cardiovasc Res 2004; 62(1): 9-33.
[http://dx.doi.org/10.1016/j.cardiores.2003.12.026] [PMID: 15023549]
[42]
Schmitt N, Grunnet M, Olesen S-P. Cardiac potassium channel subtypes: New roles in repolarization and arrhythmia. Physiol Rev 2014.
[http://dx.doi.org/10.1152/physrev.00022.2013]
[43]
Grant AO. Basic science for the clinical electrophysiologist cardiac ion channels the cardiac action potential general properties of ion channels. Circ Arrhythm Electrophysiol 2009; 2: 185-94. Available from: http://ahajournals.org
[44]
Klint JK, Senff S, Rupasinghe DB, et al. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon Pergamon 2012; 60(4): 478-91.
[http://dx.doi.org/10.1016/j.toxicon.2012.04.337] [PMID: 22543187]
[45]
Csoti A, Alvarado D, Cardoso-Arenas S, et al. Novel spider peptide that affects the voltage gated potassium channel kv1.5. Biophys J 2021; 120(3): 246a-7a.
[http://dx.doi.org/10.1016/j.bpj.2020.11.1610]
[46]
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ channels: Structure, function, and clinical significance. Physiol Rev 2012; 92: 1393-478.
[http://dx.doi.org/10.1152/physrev.00036.2011]
[47]
Wanke E, Restano-Cassulini R. Toxins interacting with ether-à-go-go-related gene voltage-dependent potassium channels. Toxicon 2007; 49(2): 239-48.
[http://dx.doi.org/10.1016/j.toxicon.2006.09.025] [PMID: 17097705]
[48]
Gunay BC, Yurtsever M, Durdagi S. Elucidation of interaction mechanism of hERG1 potassium channel with scorpion toxins BeKm-1 and BmTx3b. J Mol Graph Model 2020; 96: 107504.
[49]
Angelo K, Korolkova YV, Grunnet M, et al. A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1. Pflugers Arch 2003; 447(1): 55-63.
[http://dx.doi.org/10.1007/s00424-003-1125-9] [PMID: 12905030]
[50]
Evans MH. Mechanism of saxitoxin and tetrodotoxin poisoning. Br Med Bull 1969; 25(3): 263-7.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a070715] [PMID: 5812102]
[51]
Wang J, Salata JJ, Bennett PB. Saxitoxin is a gating modifier of HERG K+ channels. J Gen Physiol 2003; 121(6): 583-98.
[http://dx.doi.org/10.1085/jgp.200308812] [PMID: 12771193]
[52]
Wang Y, Luo Z, Lei S, Li S, Li X, Yuan C. Effects and mechanism of gating modifier spider toxins on the hERG channel. Toxicon Pergamon 2021; 189: 56-64.
[http://dx.doi.org/10.1016/j.toxicon.2020.11.008] [PMID: 33212100]
[53]
Kanjhan R, Coulson EJ, Adams DJ, Bellingham MC. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner. J Pharmacol Exp Ther 2005; 314(3): 1353-61.
[http://dx.doi.org/10.1124/jpet.105.085928] [PMID: 15947038]
[54]
Isomoto S, Kondo C, Kurachi Y. Inwardly rectifying potassium channels: Their molecular heterogeneity and function. Jpn J Physiol 1997; 47(1): 11-39.
[http://dx.doi.org/10.2170/jjphysiol.47.11] [PMID: 9159640]
[55]
Bidaud I, Chong ACY, Carcouet A, et al. Inhibition of G protein-gated K+ channels by tertiapin-Q rescues sinus node dysfunction and atrioventricular conduction in mouse models of primary bradycardia. Sci Rep 2020; 10(1): 9835.
[http://dx.doi.org/10.1038/s41598-020-66673-8] [PMID: 32555258]
[56]
Yu H, Lin Z, Mattmann ME, Zou B, Terrenoire C, Zhang H. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels. Proc Natl Acad Sci 2013; 110: 8732-7. Available from: https://www.pnas.org/content/110/21/8732
[http://dx.doi.org/10.1073/pnas.1300684110]
[57]
Liu Z-C, Zhang R, Zhao F, Chen Z-M, Liu H-W, Wang Y-J. Venomic and transcriptomic analysis of centipede scolopendra subspinipes dehaani. J Proteome Res 2012; 11: 6197-212.
[http://dx.doi.org/10.1021/pr300881d]
[58]
Luo L, Li B, Wang S, Wu F, Wang X, Liang P. Centipedes subdue giant prey by blocking KCNQ channels. Proc Natl Acad Sci USA 2018; 115: 1646-51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29358396
[http://dx.doi.org/10.1073/pnas.1714760115]
[59]
Dash TS, Shafee T, Harvey PJ, et al. A centipede toxin family defines an ancient class of csαβ defensins. Cell Press 2019; 27(2): 315-326.e7.
[http://dx.doi.org/10.1016/j.str.2018.10.022] [PMID: 30554841]
[60]
Chen M, Li J, Zhang F, Liu Z. Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. Ltd 2014; 20(3): 159-64.
[http://dx.doi.org/10.1002/psc.2588] [PMID: 24464516]
[61]
Öztekin Long M. Bone 2008; 23: 1-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
[62]
Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011; 3(8): a003947.
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[63]
Laver DR. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Biophys J 2007; 92(10): 3541-55.
[http://dx.doi.org/10.1529/biophysj.106.099028] [PMID: 17351009]
[64]
Lee S. Pharmacological inhibition of voltage-gated Ca2+ channels for chronic pain relief. Curr Neuropharmacol 2013; 11(6): 606-20.
[http://dx.doi.org/10.2174/1570159X11311060005] [PMID: 24396337]
[65]
Diochot S, Richard S, Baldy-Moulinier M, Nargeot J, Valmier J. Dihydropyridines, phenylalkylamines and benzothiazepines block N-, P/Q- and R-type calcium currents. Pflugers Arch 1995; 431(1): 10-9.
[http://dx.doi.org/10.1007/BF00374372] [PMID: 8584405]
[66]
Hwang I-W, Shin MK, Lee Y-J, et al. N-type Cav channel inhibition by spider venom peptide of Argiope bruennichi. Mol Cell Toxicol 2021; 17(1): 59-67.
[http://dx.doi.org/10.1007/s13273-020-00109-2]
[67]
Cardoso FC, Castro J, Grundy L, et al. A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain 2021; 162(2): 569-81. Available from: https://journals.lww.com/pain/Fulltext/2021/02000/A_spider_venom_peptide_with_multitarget_activity.22.aspx
[http://dx.doi.org/10.1097/j.pain.0000000000002041] [PMID: 32826759]
[68]
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57(4): 411-25. Available from: http://pharmrev.aspetjournals.org
[http://dx.doi.org/10.1124/pr.57.4.5] [PMID: 16382099]
[69]
Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon Pergamon 2013; 76: 328-42.
[http://dx.doi.org/10.1016/j.toxicon.2013.07.012] [PMID: 23891887]
[70]
Vieira LB, Kushmerick C, Hildebrand ME, Garcia E, Stea A, Cordeiro MN, et al. Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J Pharmacol Exp Ther 2005; 314: 1370-7. Available from: http://jpet.aspetjournals.org/content/314/3/1370 abstract
[71]
Leão RM, Cruz JS, Diniz CR, Cordeiro MN, Beirão PSL. Inhibition of neuronal high-voltage activated calcium channels by the ω-phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology 2000; 39(10): 1756-67.
[http://dx.doi.org/10.1016/S0028-3908(99)00267-1] [PMID: 10884557]
[72]
Bourinet E, Stotz SC, Spaetgens RL, et al. Interaction of SNX482 with domains III and IV inhibits activation gating of α(1E) (Ca(V)2.3) calcium channels. Biophys J 2001; 81(1): 79-88.
[http://dx.doi.org/10.1016/S0006-3495(01)75681-0] [PMID: 11423396]
[73]
Tottene A, Volsen S, Pietrobon D. Subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J Neurosci 2000; 20: 171-8. Available from: http://www.jneurosci.org/content/20/1/171 abstract
[74]
Peng K, Chen XD, Liang SP. The effect of Huwentoxin-I on Ca(2+) channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon 2001; 39(4): 491-8.
[http://dx.doi.org/10.1016/S0041-0101(00)00150-1] [PMID: 11024489]
[75]
Wang M, Guan X, Liang S. The cross channel activities of spider neurotoxin huwentoxin-I on rat dorsal root ganglion neurons. Biochem Biophys Res Commun 2007; 357: 579-83.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.168]
[76]
Cherki RS, Kolb E, Langut Y, Tsveyer L, Bajayo N, Meir A. Two tarantula venom peptides as potent and differential Na(V) channels blockers. Toxicon Pergamon 2014; 77: 58-67.
[http://dx.doi.org/10.1016/j.toxicon.2013.10.029] [PMID: 24211312]
[77]
Cardoso FC. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem Pharmacol 2020; 181: 114107.
[http://dx.doi.org/10.1016/j.bcp.2020.114107] [PMID: 32579958]
[78]
Souza AH, Ferreira J, Cordeiro M do N, et al. Analgesic effect in rodents of native and recombinant Phα1β toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain 2008; 140: 115-26.
[79]
Doupnik CA. Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 2017; 127: 161-72.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.011] [PMID: 28716449]
[80]
Yi H, Cao Z, Yin S, Dai C, Wu Y, Li W. Interaction simulation of hERG K+ channel with its specific BeKm-1 Peptide:  Insights into the selectivity of molecular recognition. J Proteome Res 2007; 6: 611-20.
[http://dx.doi.org/10.1021/pr060368g]
[81]
Suchyna TM, Johnson JH, Hamer K, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 2000; 115(5): 583-98.
[http://dx.doi.org/10.1085/jgp.115.5.583] [PMID: 10779316]
[82]
Filippovich I, Sorokina N, Masci PP, et al. A family of textilinin genes, two of which encode proteins with antihaemorrhagic properties. Br J Haematol 2002; 119(2): 376-84.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03878.x] [PMID: 12406072]
[83]
Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature 2001; 409(6816): 35-6.
[http://dx.doi.org/10.1038/35051165] [PMID: 11343101]
[84]
Sharpe IA, Gehrmann J, Loughnan ML, et al. Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat Neurosci 2001; 4(9): 902-7.
[http://dx.doi.org/10.1038/nn0901-902] [PMID: 11528421]
[85]
Sharpe IA, Thomas L, Loughnan M, Motin L, Palant E, Croker DE. Allosteric α1-adrenoreceptor antagonism by the conopeptide ρ-TIA. J Biol Chem 2003; 278: 34451-7.
[http://dx.doi.org/10.1074/jbc.M305410200]
[86]
Nicolas JP, Lin Y, Lambeau G, Ghomashchi F, Lazdunski M, Gelb MH. Localization of structural elements of bee venom phospholipase A2 involved in N-type receptor binding and neurotoxicity. J Biol Chem 1997; 272: 7173-81.
[http://dx.doi.org/10.1074/jbc.272.11.7173]
[87]
Džavík V, Lavi S, Thorpe K, Yip PM, Plante S, Ing D, et al. Interventional cardiology The sPLA 2 inhibition to decrease enzyme release after percutaneous coronary intervention (SPIDERPCI) trial. Circ is 2010; 122: 2411-8. Available from: http://circ.ahajournals.org

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy