Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Mesenchymal Stem Cells Derived from Umbilical Cord Blood Having Excellent Stemness Properties with Therapeutic Benefits - a New Era in Cancer Treatment

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 17, Issue 4, 2022

Published on: 12 May, 2022

Page: [328 - 338] Pages: 11

DOI: 10.2174/1574888X17666220425102154

Price: $65

Abstract

Mesenchymal stem cells (MSCs) are the most promising candidates for cellular therapies, and most therapeutic applications have focused on MSCs produced from adult bone marrow, despite mounting evidence that MSCs are present in a wide range of conditions. Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells, but its therapeutic potential extends beyond the hematopoietic component, which also suggests solid organ regenerative potential. With potential ranging from embryonic- like to lineage-committed progenitor cells, many different stems and progenitor cell populations have been postulated. MSC is currently inferred by numerous clinical applications for human UCB. As stem cell therapy kicks off some new research and these cells show such a boon to stem cell therapy, it is nevertheless characteristic that the prospect of UCB conservation is gaining momentum. Taken together, the experience described here shows that MSCs derived from UCB are seen as attractive therapeutic candidates for various human disorders including cancer. It is argued that a therapeutic stem cell transplant, using stem cells from UCB, provides a reliable repository of early precursor cells that can be useful in a large number of different conditions, considering issues of safety, availability, transplant methodology, rejection, and side effects. In particular, we focus on the concept of isolation and expansion, comparing the phenotype with MSC derived from the UCB, describing the ability to differentiate, and lastly, the therapeutic potential concerning stromal support, stemness characteristic, immune modulation, and cancer stem cell therapy. Thus it is an overview of the therapeutic application of UCB derived MSCs, with a special emphasis on cancer. Besides, the current evidence on the double-edged sword of MSCs in cancer treatment and the latest advances in UCB-derived MSC in cancer research will be discussed.

Keywords: Mesenchymal stem cells, umbilical cord blood, stemness, therapeutic potential, cancer treatment, progenitor cells.

Graphical Abstract

[1]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[2]
Kim M, Bae YK, Um S, et al. A small-sized population of human umbilical cord blood-derived mesenchymal stem cells shows high stem-ness properties and therapeutic benefit. Stem Cells Int 2020; 2020: 5924983.
[http://dx.doi.org/10.1155/2020/5924983] [PMID: 32399043]
[3]
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 2020; 11(1): 519.
[http://dx.doi.org/10.1186/s13287-020-02011-z] [PMID: 33261658]
[4]
Mastrolia I, Foppiani EM, Murgia A, et al. Challenges in clinical development of mesenchymal stromal/stem cells: Concise review. Stem Cells Transl Med 2019; 8(11): 1135-48.
[http://dx.doi.org/10.1002/sctm.19-0044] [PMID: 31313507]
[5]
Phinney DG. Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. J Cell Biochem 2012; 113(9): 2806-12.
[http://dx.doi.org/10.1002/jcb.24166] [PMID: 22511358]
[6]
Rennerfeldt DA, Van Vliet KJ. Concise review: When colonies are not clones: Evidence and implications of intracolony heterogeneity in mesenchymal stem cells. Stem Cells 2016; 34(5): 1135-41.
[http://dx.doi.org/10.1002/stem.2296] [PMID: 26840390]
[7]
Noronha NC, Mizukami A, Caliári-Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based thera-pies. Stem Cell Res Ther 2019; 10(1): 131.
[http://dx.doi.org/10.1186/s13287-019-1224-y] [PMID: 31046833]
[8]
Zha K, Li X, Yang Z, et al. Heterogeneity of mesenchymal stem cells in cartilage regeneration: From characterization to application. NPJ Regen Med 2021; 6(1): 14.
[http://dx.doi.org/10.1038/s41536-021-00122-6] [PMID: 33741999]
[9]
Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 2015; 16(3): 239-53.
[http://dx.doi.org/10.1016/j.stem.2015.02.019] [PMID: 25748931]
[10]
Pustlauk W, Paul B, Brueggemeier S, Gelinsky M, Bernhardt A. Modulation of chondrogenic differentiation of human mesenchymal stem cells in jellyfish collagen scaffolds by cell density and culture medium. J Tissue Eng Regen Med 2017; 11(6): 1710-22.
[http://dx.doi.org/10.1002/term.2065] [PMID: 26178016]
[11]
Sessarego N, Parodi A, Podestà M, et al. Multipotent mesenchymal stromal cells from amniotic fluid: Solid perspectives for clinical appli-cation. Haematologica 2008; 93(3): 339-46.
[http://dx.doi.org/10.3324/haematol.11869] [PMID: 18268281]
[12]
Lin W, Huang L, Li Y, et al. Mesenchymal stem cells and cancer: Clinical challenges and opportunities. BioMed Res Int 2019; 2019: 2820853.
[http://dx.doi.org/10.1155/2019/2820853] [PMID: 31205939]
[13]
Gao LR, Zhang NK, Ding QA, et al. Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton’s jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transplant 2013; 22(10): 1883-900.
[http://dx.doi.org/10.3727/096368912X662444] [PMID: 23394400]
[14]
Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells 2020; 12(12): 1511-28.
[http://dx.doi.org/10.4252/wjsc.v12.i12.1511] [PMID: 33505598]
[15]
Zakrzewski W. Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[16]
Lee SH. The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporos Sarcopenia 2018; 4(4): 150.
[http://dx.doi.org/10.1016/j.afos.2018.11.083] [PMID: 30775559]
[17]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12.
[http://dx.doi.org/10.1186/1478-811X-9-12] [PMID: 21569606]
[18]
Waller-Wise R. Umbilical cord blood: Information for childbirth educators. J Perinat Educ 2011; 20(1): 54-60.
[http://dx.doi.org/10.1891/1058-1243.20.1.54] [PMID: 22211060]
[19]
Cavusoglu T, Kilic KD, Yigitturk G, Tomruk C, Turgut M, Uyanikgil Y. Clinical use and patentability of cord blood. Recent Pat Endocr Metab Immune Drug Discov 2017; 11(1): 13-21.
[http://dx.doi.org/10.2174/1872214812666180314121241] [PMID: 29542426]
[20]
Harris DT, Rogers I. Umbilical cord blood: A unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther 2007; 2(4): 301-9.
[http://dx.doi.org/10.2174/157488807782793790] [PMID: 18220914]
[21]
Chelluboina B, Dinh DH, Veeravalli KK. Transdifferentiation of differentiated stem cells contributes to remyelination. Stem Cell Res Ther 2015; 6(1): 191.
[http://dx.doi.org/10.1186/s13287-015-0186-y] [PMID: 26437650]
[22]
Pelosi E, Castelli G, Martin-Padura I, et al. Human haemato-endothelial precursors: Cord blood CD34+ cells produce haemogenic endo-thelium. PLoS One 2012; 7(12): e51109.
[http://dx.doi.org/10.1371/journal.pone.0051109] [PMID: 23226561]
[23]
Brown KS, Rao MS, Brown HL. The future state of newborn stem cell banking. J Clin Med 2019; 8(1): 117.
[http://dx.doi.org/10.3390/jcm8010117] [PMID: 30669334]
[24]
Ballen KK, Verter F, Kurtzberg J. Umbilical cord blood donation: Public or private? Bone Marrow Transplant 2015; 50(10): 1271-8.
[http://dx.doi.org/10.1038/bmt.2015.124] [PMID: 26030051]
[25]
Dessels C, Alessandrini M, Pepper MS. Factors influencing the umbilical cord blood stem cell industry: An evolving treatment landscape. Stem Cells Transl Med 2018; 7(9): 643-50.
[http://dx.doi.org/10.1002/sctm.17-0244] [PMID: 29777574]
[26]
Kurtzberg J. A history of cord blood banking and transplantation. Stem Cells Transl Med 2017; 6(5): 1309-11.
[http://dx.doi.org/10.1002/sctm.17-0075] [PMID: 28456005]
[27]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: Cell biology to clinical pro-gress. NPJ Regen Med 2019; 4(1): 22.
[http://dx.doi.org/10.1038/s41536-019-0083-6] [PMID: 31815001]
[28]
Arutyunyan I, Fatkhudinov T, Sukhikh G. Umbilical cord tissue cryopreservation: A short review. Stem Cell Res Ther 2018; 9(1): 236.
[http://dx.doi.org/10.1186/s13287-018-0992-0] [PMID: 30219095]
[29]
Can A, Balci D. Isolation, culture, and characterization of human umbilical cord stroma-derived mesenchymal stem cells. Methods Mol Biol 2011; 698: 51-62.
[http://dx.doi.org/10.1007/978-1-60761-999-4_5] [PMID: 21431510]
[30]
Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art. Int J Clin Exp Med 2010; 3(4): 248-69.
[PMID: 21072260]
[31]
Page KM, Mendizabal A, Betz-Stablein B, et al. Optimizing donor selection for public cord blood banking: Influence of maternal, infant, and collection characteristics on cord blood unit quality. Transfusion 2014; 54(2): 340-52.
[PMID: 23711284]
[32]
Mazzoccoli G, Miscio G, Fontana A, et al. Time related variations in stem cell harvesting of umbilical cord blood. Sci Rep 2016; 6(1): 21404.
[http://dx.doi.org/10.1038/srep21404] [PMID: 26906327]
[33]
Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A. The role and potential of umbilical cord blood in an era of new therapies: A review. Stem Cell Res Ther 2015; 6(1): 123.
[http://dx.doi.org/10.1186/s13287-015-0113-2] [PMID: 26133757]
[34]
Maillacheruvu PF, Engel LM, Crum IT, Agrawal DK, Peeples ES. From cord to caudate: Characterizing umbilical cord blood stem cells and their paracrine interactions with the injured brain. Pediatr Res 2018; 83(1-2): 205-13.
[http://dx.doi.org/10.1038/pr.2017.251] [PMID: 28981488]
[35]
Le Blanc K, Davies LC. MSCs-cells with many sides. Cytotherapy 2018; 20(3): 273-8.
[http://dx.doi.org/10.1016/j.jcyt.2018.01.009] [PMID: 29434007]
[36]
Iaffaldano L, Nardelli C, D’Alessio F, et al. Altered bioenergetic profile in umbilical cord and amniotic mesenchymal stem cells from newborns of obese women. Stem Cells Dev 2018; 27(3): 199-206.
[http://dx.doi.org/10.1089/scd.2017.0198] [PMID: 29205089]
[37]
Capobianco V, Caterino M, Iaffaldano L, et al. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals im-paired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity. Sci Rep 2016; 6(1): 25270.
[http://dx.doi.org/10.1038/srep25270] [PMID: 27125468]
[38]
Sutton MT, Kaur S, Brown KS, et al. Anti-inflammatory therapeutic development and optimization of umbilical cord tissue derived mes-enchymal stem cells. J Stem Cell Res Ther 2018; 8(8): 435.
[http://dx.doi.org/10.4172/2157-7633.1000435]
[39]
Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: Identification of a novel role in improving insulin sensitivity. Diabetes Metab Res Rev 2012; 61(6): 1616-25.
[http://dx.doi.org/10.2337/db11-1141] [PMID: 22618776]
[40]
van Velthoven CT, Sheldon RA, Kavelaars A, et al. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 2013; 44(5): 1426-32.
[http://dx.doi.org/10.1161/STROKEAHA.111.000326] [PMID: 23539530]
[41]
Jones J, Estirado A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther 2015; 23(1): 130-8.
[http://dx.doi.org/10.1038/mt.2014.143] [PMID: 25070719]
[42]
Liu CB, Huang H, Sun P, et al. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med 2016; 5(8): 1004-13.
[http://dx.doi.org/10.5966/sctm.2015-0298] [PMID: 27334487]
[43]
Ozeki N, Muneta T, Koga H, et al. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis Cartilage 2016; 24(6): 1061-70.
[http://dx.doi.org/10.1016/j.joca.2015.12.018] [PMID: 26880531]
[44]
Capilla-González V, López-Beas J, Escacena N, et al. PDGF restores the defective phenotype of adipose-derived mesenchymal stromal cells from diabetic patients. Mol Ther 2018; 26(11): 2696-709.
[http://dx.doi.org/10.1016/j.ymthe.2018.08.011] [PMID: 30195725]
[45]
Chau MJ, Deveau TC, Gu X, et al. Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and func-tional recovery after ischemic stroke in mice. BMC Neurosci 2018; 19(1): 20.
[http://dx.doi.org/10.1186/s12868-018-0418-z] [PMID: 29649974]
[46]
Řehořová M, Vargová I, Forostyak S, et al. A combination of intrathecal and intramuscular application of human mesenchymal stem cells partly reduces the activation of necroptosis in the spinal cord of SOD1(G93A). Stem Cells Transl Med 2019; 8(6): 535-47.
[http://dx.doi.org/10.1002/sctm.18-0223] [PMID: 30802001]
[47]
Soria B, Martin-Montalvo A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy. Front Cell Neurosci 2019; 13: 204.
[http://dx.doi.org/10.3389/fncel.2019.00204] [PMID: 31156392]
[48]
Ballini A, Scacco S, Coletti D, Pluchino S, Tatullo M. Mesenchymal stem cells as promoters, enhancers, and playmakers of the transla-tional regenerative medicine. Stem Cells Int 2017; 2017: 3292810.
[http://dx.doi.org/10.1155/2017/3292810] [PMID: 28740512]
[49]
Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: Tissue specificity and regenerative potential. Stem Cells Int 2017; 2017: 5173732.
[http://dx.doi.org/10.1155/2017/5173732] [PMID: 28286525]
[50]
Rady D, Abbass MMS, El-Rashidy AA, et al. Mesenchymal stem/progenitor cells: The prospect of human clinical translation. Stem Cells Int 2020; 2020: 8837654.
[http://dx.doi.org/10.1155/2020/8837654] [PMID: 33953753]
[51]
Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: An update. J Transl Med 2020; 18(1): 42.
[http://dx.doi.org/10.1186/s12967-020-02234-x] [PMID: 32000804]
[52]
Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells Int 2018; 2018: 6901983.
[http://dx.doi.org/10.1155/2018/6901983] [PMID: 29887893]
[53]
Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 2010; 5(2): 103-10.
[http://dx.doi.org/10.2174/157488810791268564] [PMID: 19941460]
[54]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[http://dx.doi.org/10.1155/2018/3057624] [PMID: 30013600]
[55]
Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 2019; 8(5): 467.
[http://dx.doi.org/10.3390/cells8050467] [PMID: 31100966]
[56]
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol 2020; 8: 43.
[http://dx.doi.org/10.3389/fbioe.2020.00043] [PMID: 32117924]
[57]
Nancarrow-Lei R, Mafi P, Mafi R, Khan W. A systemic review of adult mesenchymal stem cell sources and their multilineage differentia-tion potential relevant to musculoskeletal tissue repair and regeneration. Curr Stem Cell Res Ther 2017; 12(8): 601-10.
[http://dx.doi.org/10.2174/1574888X12666170608124303] [PMID: 28595566]
[58]
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557-63.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
[59]
Khalid A, Wolfram J, Ferrari I, et al. Recent advances in discovering the role of CCL5 in metastatic breast cancer. Mini Rev Med Chem 2015; 15(13): 1063-72.
[http://dx.doi.org/10.2174/138955751513150923094709] [PMID: 26420723]
[60]
Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 2020; 12(7): 1765.
[http://dx.doi.org/10.3390/cancers12071765] [PMID: 32630699]
[61]
An G, Wu F, Huang S, et al. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tu-mor associated macrophages. Oncol Rep 2019; 42(6): 2499-511.
[http://dx.doi.org/10.3892/or.2019.7344] [PMID: 31578575]
[62]
Li W, Zhou Y, Yang J, et al. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of inter-leukin-8. J Exp Clin Cancer Res 2015; 34(1): 52.
[http://dx.doi.org/10.1186/s13046-015-0172-3] [PMID: 25986392]
[63]
Guo X, Zhao Y, Yan H, et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 2017; 31(3): 247-59.
[http://dx.doi.org/10.1101/gad.294348.116] [PMID: 28223311]
[64]
Powell D, Lou M, Barros Becker F, Huttenlocher A. Cxcr1 mediates recruitment of neutrophils and supports proliferation of tumor-initiating astrocytes in vivo. Sci Rep 2018; 8(1): 13285.
[http://dx.doi.org/10.1038/s41598-018-31675-0] [PMID: 30185911]
[65]
Trivanović D, Krstić J, Djordjević IO, et al. The roles of mesenchymal stromal/stem cells in tumor microenvironment associated with inflammation. Mediators Inflamm 2016; 2016: 7314016.
[http://dx.doi.org/10.1155/2016/7314016] [PMID: 27630452]
[66]
Rivera-Cruz CM, Shearer JJ, Figueiredo Neto M, Figueiredo ML. The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int 2017; 2017: 4015039.
[http://dx.doi.org/10.1155/2017/4015039] [PMID: 29181035]
[67]
Baird SK. Mesenchymal stem cells: How can we realize their therapeutic potential in cancer therapy? J Clin Exp Pathol 2015; 5: 1.
[68]
Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 2013; 4(3): 70.
[http://dx.doi.org/10.1186/scrt221] [PMID: 23763837]
[69]
Li GC, Zhang HW, Zhao QC, et al. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol Lett 2016; 11(2): 1089-94.
[http://dx.doi.org/10.3892/ol.2015.3997] [PMID: 26893697]
[70]
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev 2016; 30(9): 1002-19.
[http://dx.doi.org/10.1101/gad.279737.116] [PMID: 27151975]
[71]
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13(1): 136.
[http://dx.doi.org/10.1186/s13045-020-00966-3] [PMID: 33059744]
[72]
Hass R. Role of MSC in the tumor microenvironment. Cancers (Basel) 2020; 12(8): 2107.
[http://dx.doi.org/10.3390/cancers12082107] [PMID: 32751163]
[73]
Chen YC, Gonzalez ME, Burman B, et al. Mesenchymal stem/stromal cell engulfment reveals metastatic advantage in breast cancer. Cell Rep 2019; 27(13): 3916-3926.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.05.084] [PMID: 31242423]
[74]
Akimoto K, Kimura K, Nagano M, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesen-chymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2013; 22(9): 1370-86.
[http://dx.doi.org/10.1089/scd.2012.0486] [PMID: 23231075]
[75]
Yuan Z, Kolluri KK, Sage EK, Gowers KH, Janes SM. Mesenchymal stromal cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy. Cytotherapy 2015; 17(7): 885-96.
[http://dx.doi.org/10.1016/j.jcyt.2015.03.603] [PMID: 25888191]
[76]
Naimi A, Movassaghpour AA, Hagh MF, et al. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hema-tological malignancies. Biomed Pharmacother 2018; 98: 566-76.
[http://dx.doi.org/10.1016/j.biopha.2017.12.082] [PMID: 29288972]
[77]
Lu L, Chen G, Yang J, et al. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112: 108625.
[http://dx.doi.org/10.1016/j.biopha.2019.108625] [PMID: 30784920]
[78]
Zhuang WZ, Lin YH, Su LJ, et al. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28(1): 28.
[http://dx.doi.org/10.1186/s12929-021-00725-7] [PMID: 33849537]
[79]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[80]
Ai J, Ketabchi N, Verdi J, Gheibi N, Khadem Haghighian H, Kavianpour M. Mesenchymal stromal cells induce inhibitory effects on hepa-tocellular carcinoma through various signaling pathways. Cancer Cell Int 2019; 19(1): 329.
[http://dx.doi.org/10.1186/s12935-019-1038-0] [PMID: 31827403]
[81]
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review. Stem Cell Res Ther 2018; 9(1): 336.
[http://dx.doi.org/10.1186/s13287-018-1078-8] [PMID: 30526687]
[82]
Tao H, Han Z, Han ZC, Li Z. Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int 2016; 2016: 1314709.
[http://dx.doi.org/10.1155/2016/1314709] [PMID: 26880933]
[83]
Lee MW, Ryu S, Kim DS, et al. Mesenchymal stem cells in suppression or progression of hematologic malignancy: Current status and challenges. Leukemia 2019; 33(3): 597-611.
[http://dx.doi.org/10.1038/s41375-018-0373-9] [PMID: 30705410]
[84]
Xu X, Zheng L, Yuan Q, et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6(1): 2.
[http://dx.doi.org/10.1038/s41413-017-0005-4] [PMID: 29423331]
[85]
Dong M, How T, Kirkbride KC, et al. The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 2007; 117(1): 206-17.
[http://dx.doi.org/10.1172/JCI29293] [PMID: 17160136]
[86]
Jovanović B, Pickup MW, Chytil A, et al. TβRIII expression in human breast cancer stroma and the role of soluble TβRIII in breast cancer associated fibroblasts. Cancers (Basel) 2016; 8(11): 100.
[http://dx.doi.org/10.3390/cancers8110100] [PMID: 27827906]
[87]
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: Key players in cancer progression. Mol Cancer 2017; 16(1): 31.
[http://dx.doi.org/10.1186/s12943-017-0597-8] [PMID: 28148268]
[88]
Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM. Macrophage migration inhibitory factor-CXCR4 is the dominant chemo-tactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 2015; 194(7): 3463-74.
[http://dx.doi.org/10.4049/jimmunol.1402097] [PMID: 25712213]
[89]
Wobus M, List C, Dittrich T, et al. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesen-chymal stromal cells by interfering with CXCL12. Int J Cancer 2015; 136(1): 44-54.
[http://dx.doi.org/10.1002/ijc.28960] [PMID: 24806942]
[90]
Kalimuthu S, Oh JM, Gangadaran P, et al. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int 2017; 2017: 8085637.
[http://dx.doi.org/10.1155/2017/8085637] [PMID: 28740515]
[91]
Bhoopathi P, Chetty C, Gogineni VR, et al. MMP-2 mediates mesenchymal stem cell tropism towards medulloblastoma tumors. Gene Ther 2011; 18(7): 692-701.
[http://dx.doi.org/10.1038/gt.2011.14] [PMID: 21368903]
[92]
Almalki SG, Agrawal DK. Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res Ther 2016; 7(1): 129.
[http://dx.doi.org/10.1186/s13287-016-0393-1] [PMID: 27612636]
[93]
Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 2018; 17(1): 178.
[http://dx.doi.org/10.1186/s12943-018-0926-6] [PMID: 30593276]
[94]
Maacha S, Sidahmed H, Jacob S, et al. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem Cells Int 2020; 2020: 4356359.
[http://dx.doi.org/10.1155/2020/4356359] [PMID: 32215017]
[95]
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: A focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54(3): 165-74.
[http://dx.doi.org/10.5045/br.2019.54.3.165] [PMID: 31730689]
[96]
Barcellos-de-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal stem cells are recruited and activated into carcinoma-associated fi-broblasts by prostate cancer microenvironmentderived TGF-beta1. Stem Cells 2016; 34(10): 2536-47.
[http://dx.doi.org/10.1002/stem.2412] [PMID: 27300750]
[97]
Aoto K, Ito K, Aoki S. Complex formation between platelet-derived growth factor receptor β and transforming growth factor β receptor regulates the differentiation of mesenchymal stem cells into cancer-associated fibroblasts. Oncotarget 2018; 9(75): 34090-102.
[http://dx.doi.org/10.18632/oncotarget.26124] [PMID: 30344924]
[98]
Samadi P, Saki S, Manoochehri H, Sheykhhasan M. Therapeutic applications of mesenchymal stem cells: A comprehensive review. Curr Stem Cell Res Ther 2021; 16(3): 323-53.
[http://dx.doi.org/10.2174/1574888X15666200914142709] [PMID: 32928093]
[99]
Aravindhan S, Ejam SS, Lafta MH, Markov A, Yumashev AV, Ahmadi M. Mesenchymal stem cells and cancer therapy: Insights into targeting the tumour vasculature. Cancer Cell Int 2021; 21(1): 158.
[http://dx.doi.org/10.1186/s12935-021-01836-9] [PMID: 33685452]
[100]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 10.
[http://dx.doi.org/10.1155/2019/9628536]
[101]
Pérez LM, de Lucas B, Gálvez BG. Unhealthy stem cells: When health conditions upset stem cell properties. Cell Physiol Biochem 2018; 46(5): 1999-2016.
[http://dx.doi.org/10.1159/000489440] [PMID: 29723858]
[102]
Rivera FJ, de la Fuente AG, Zhao C, et al. Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendro-cytes during remyelination. Glia 2019; 67(8): 1510-25.
[http://dx.doi.org/10.1002/glia.23624] [PMID: 31038798]
[103]
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6(9): 638-53.
[http://dx.doi.org/10.1007/s13238-015-0179-8] [PMID: 26088192]
[104]
Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 2007; 15(3): 467-80.
[http://dx.doi.org/10.1038/sj.mt.6300084] [PMID: 17264853]
[105]
Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res 2018; 5(1): 7.
[http://dx.doi.org/10.1186/s40779-018-0154-9] [PMID: 29502528]
[106]
Sheets KT, Bagó JR, Hingtgen SD. Delivery of cytotoxic mesenchymal stem cells with biodegradable scaffolds for treatment of postopera-tive brain cancer. Methods Mol Biol 2018; 1831: 49-58.
[http://dx.doi.org/10.1007/978-1-4939-8661-3_5] [PMID: 30051424]
[107]
Aliperta R, Welzel PB, Bergmann R, et al. Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy. Sci Rep 2017; 7(1): 42855.
[http://dx.doi.org/10.1038/srep42855] [PMID: 28205621]
[108]
Escacena N, Quesada-Hernández E, Capilla-Gonzalez V, Soria B, Hmadcha A. Bottlenecks in the efficient use of advanced therapy medic-inal products based on mesenchymal stromal cells. Stem Cells Int 2015; 2015: 895714.
[http://dx.doi.org/10.1155/2015/895714] [PMID: 26273307]
[109]
Ray SK, Mukherjee S. Cancer stem cells: Current status and therapeutic implications in cancer therapy-a new paradigm. Curr Stem Cell Res Ther 2021; 16(8): 970-9. Epub ahead of print
[http://dx.doi.org/10.2174/1574888X16666210203105800] [PMID: 33563175]
[110]
Levy O, Kuai R, Siren EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv 2020; 6(30): eaba6884.
[http://dx.doi.org/10.1126/sciadv.aba6884] [PMID: 32832666]
[111]
Haylock DN, Nilsson SK. Expansion of umbilical cord blood for clinical transplantation. Curr Stem Cell Res Ther 2007; 2(4): 324-35.
[http://dx.doi.org/10.2174/157488807782793745] [PMID: 18220916]
[112]
Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22(6): 824-33.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy