Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

HSC and miRNA Regulation with Implication for Foetal Haemoglobin Induction in Beta Haemoglobinopathies

Author(s): Chinwe Okeke*, Ufele Silas, Obiageli Nnodu and Odoh Clementina

Volume 17, Issue 4, 2022

Published on: 12 April, 2022

Page: [339 - 347] Pages: 9

DOI: 10.2174/1574888X17666220221104711

Price: $65

Abstract

Sickle cell disease (SCD) is one of the most common haemoglobinopathies worldwide, with up to 70 % of global SCD annual births occurring in sub-Saharan Africa. Reports have shown that 50 to 80 % of affected children in these countries die annually. Efforts geared towards understanding and controlling HbF production in SCD patients could lead to strategies for effective control of globin gene expression and therapeutic approaches that could be beneficial to individuals with haemoglobinopathies. Hemopoietic stem cells (HSCs) are characterized by a specific miRNA signature in every state of differentiation. The role of miRNAs has become evident both in the maintenance of the “stemness” and in the early induction of differentiation by modulation of the expression of the master pluripotency genes and during early organogenesis. miRNAs are extra regulatory mechanisms in hematopoietic stem cells (HSCs) via influencing transcription profiles together with transcript stability. miRNAs have been reported to be used to reprogram primary somatic cells toward pluripotency. Their involvement in cell editing holds the potential for therapy for many genetic diseases. This review provides a snapshot of miRNA involvement in cell fate decisions, haemoglobin induction pathway, and their journey as some emerge prime targets for therapy in beta haemoglobinopathies.

Keywords: miRNA, stem cells, haemoglobin F, sickle cell, hemopoietic, regulation.

Graphical Abstract

[1]
Nkya S, Mwita L, Mgaya J, et al. Identifying genetic variants and pathways associated with extreme levels of fetal hemoglobin in sickle cell disease in Tanzania. BMC Med Genet 2020; 21(1): 125.
[http://dx.doi.org/10.1186/s12881-020-01059-1] [PMID: 32503527]
[2]
World health organization. Sickle disease prevention and control. Nigeria: WHO Country Office 2014.
[3]
Adewoyin AS. Management of sickle cell disease: A review for physician education in Nigeria (sub-saharan Africa). Anemia 2015; 2015: 791498.
[http://dx.doi.org/10.1155/2015/791498] [PMID: 25667774]
[4]
Weatherall DJ. Phenotype-genotype relationships in monogenic disease: Lessons from the thalassaemias. Nat Rev Genet 2001; 2(4): 245-55.
[http://dx.doi.org/10.1038/35066048] [PMID: 11283697]
[5]
Dampier C, Ely E, Eggleston B, Brodecki D, O’Neal P. Physical and cognitive-behavioral activities used in the home management of sickle pain: A daily diary study in children and adolescents. Pediatr Blood Cancer 2004; 43(6): 674-8.
[http://dx.doi.org/10.1002/pbc.20162] [PMID: 15390278]
[6]
Platt OS, Thorington BD, Brambilla DJ, et al. Pain in sickle cell disease. Rates and risk factors. N Engl J Med 1991; 325(1): 11-6.
[http://dx.doi.org/10.1056/NEJM199107043250103] [PMID: 1710777]
[7]
Manning LR, Russell JE, Padovan JC, et al. Human embryonic, fetal, and adult hemoglobins have different subunit interface strengths. Correlation with lifespan in the red cell. Protein Sci 2007; 16(8): 1641-58.
[http://dx.doi.org/10.1110/ps.072891007] [PMID: 17656582]
[8]
Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol 2009; 145(4): 455-67.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07650.x] [PMID: 19344402]
[9]
He Y, Lin W, Luo J. Influences of genetic variation on fetal hemoglobin. Pediatr Hematol Oncol 2011; 28(8): 708-17.
[http://dx.doi.org/10.3109/08880018.2011.616573] [PMID: 22023465]
[10]
Mosca A, Paleari R, Ivaldi G, Galanello R, Giordano PC. The role of haemoglobin A(2) testing in the diagnosis of thalassaemias and related haemoglobinopathies. J Clin Pathol 2009; 62(1): 13-7.
[http://dx.doi.org/10.1136/jcp.2008.056945] [PMID: 19103851]
[11]
Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 2007; 39(10): 1197-9.
[http://dx.doi.org/10.1038/ng2108] [PMID: 17767159]
[12]
Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematologic variables: A twin heritability study. Blood 2000; 95(1): 342-6.
[http://dx.doi.org/10.1182/blood.V95.1.342] [PMID: 10607722]
[13]
Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA 2007; 104(27): 11346-51.
[http://dx.doi.org/10.1073/pnas.0611393104] [PMID: 17592125]
[14]
Eltaweel NH, ElKamah GY, Khairat R, Atia HAE, Amr KS. Epigenetic effects toward new insights as potential therapeutic target in B-thalassemia. J Genet Eng Biotechnol 2021; 19(1): 51.
[http://dx.doi.org/10.1186/s43141-021-00138-x] [PMID: 33788050]
[15]
Siatecka M, Bieker JJ, Dc W. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 2011; 118(8): 2044-54.
[http://dx.doi.org/10.1182/blood-2011-03-331371] [PMID: 21613252]
[16]
Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med 2013; 3(1): a011643.
[http://dx.doi.org/10.1101/cshperspect.a011643] [PMID: 23209159]
[17]
Jiang J, Best S, Menzel S, et al. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 2006; 108(3): 1077-83.
[http://dx.doi.org/10.1182/blood-2006-01-008912] [PMID: 16861354]
[18]
Ng AP, Alexander WS. Haematopoietic stem cells: Past, present and future. Cell Death Discov 2017; 3: 17002.
[http://dx.doi.org/10.1038/cddiscovery.2017.2] [PMID: 28180000]
[19]
Frank JT. StaalCell intrinsic regulation of external hematopoietic stem cell stress. Stem Cell Investig 2018; 22: 277.
[20]
Sato Y, Yano H, Shimizu Y, Tanaka H, Ohshima T. Optic nerve input-dependent regulation of neural stem cell proliferation in the optic tectum of adult zebrafish. Dev Neurobiol 2017; 77(4): 474-82.
[http://dx.doi.org/10.1002/dneu.22423] [PMID: 27480480]
[21]
Kleppe M, Spitzer MH, Li S, et al. Jak1 integrates cytokine sensing to regulate hematopoietic stem cell function and stress hematopoiesis. Cell Stem Cell 2018; 22(2): 277.
[http://dx.doi.org/10.1016/j.stem.2017.12.018] [PMID: 29395057]
[22]
Roden C, Lu J. MicroRNAs in control of stem cells in normal and malignant hematopoiesis. Curr Stem Cell Rep 2016; 2(3): 183-96.
[http://dx.doi.org/10.1007/s40778-016-0057-1] [PMID: 27547713]
[23]
Lee S, Lee KS, Huh S, et al. Polo kinase phosphorylates miro to control ER-mitochondria contact sites and mitochondrial Ca(2+) homeo-stasis in neural stem cell development. Dev Cell 2016; 37(2): 174-89.
[http://dx.doi.org/10.1016/j.devcel.2016.03.023] [PMID: 27093086]
[24]
Liu N, Schoch K, Luo X, et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Hum Mol Genet 2018; 27(14): 2454-65.
[http://dx.doi.org/10.1093/hmg/ddy146] [PMID: 29726930]
[25]
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol 2020; 182(1): 51-62.
[http://dx.doi.org/10.1104/pp.19.00931] [PMID: 31636103]
[26]
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci 2016; 17(10): 1712.
[http://dx.doi.org/10.3390/ijms17101712]
[27]
Much C, Auchynnikava T, Pavlinic D, et al. Endogenous mouse dicer is an exclusively cytoplasmic protein. PLoS Genet 2016; 12(6): e1006095.
[http://dx.doi.org/10.1371/journal.pgen.1006095] [PMID: 27254021]
[28]
Chung SS, Hu W, Park CY. The role of MicroRNAs in hematopoietic stem cell and leukemic stem cell function. Ther Adv Hematol 2011; 2(5): 317-34.
[http://dx.doi.org/10.1177/2040620711410772] [PMID: 23556099]
[29]
Kalantari R, Hicks JA, Li L, et al. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA 2016; 22(7): 1085-98.
[http://dx.doi.org/10.1261/rna.056499.116] [PMID: 27198507]
[30]
Megha S, Basu U, Kav NNV. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ 2018; 41(1): 1-15.
[http://dx.doi.org/10.1111/pce.12956] [PMID: 28346818]
[31]
Krivdova G, Schoof E. Microrna-130a regulates hematopoietic stem cell self-renewal by repressing chromatin modifiers and shaping the accessible chromatin landscape. Blood 2018; 132(Suppl. 1): 3824.
[http://dx.doi.org/10.1182/blood-2018-99-116866]
[32]
Michelle MJ, Mens MG. Cell cycle regulation of stem cells by microRNAs. Stem Cell Rev 2018; 14(3): 309-22.
[http://dx.doi.org/10.1007/s12015-018-9808-y]
[33]
Wojtowicz EE, Lechman ER, Hermans KG, et al. Ectopic miR-125a expression induces long-term repopulating stem cell capacity in mouse and human hematopoietic progenitors. Cell Stem Cell 2016; 19(3): 383-96.
[http://dx.doi.org/10.1016/j.stem.2016.06.008] [PMID: 27424784]
[34]
Khalaj M, Woolthuis CM, Hu W, et al. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal. J Exp Med 2017; 214(8): 2453-70.
[35]
Jee D, Yang JS, Park SM, et al. Dual strategies for Argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol Cell 2018; 69(2): 265-278.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.12.027] [PMID: 29351846]
[36]
Chou CH, Chang NW, Shrestha S, et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2016; 44(D1): D239-47.
[http://dx.doi.org/10.1093/nar/gkv1258]
[37]
Hao J, Duan FF, Wang Y. MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogram-ming. Curr Opin Genet Dev 2017; 46: 95-103.
[http://dx.doi.org/10.1016/j.gde.2017.07.001] [PMID: 28753462]
[38]
Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007; 25(7): 803-16.
[http://dx.doi.org/10.1038/nbt1318] [PMID: 17572666]
[39]
Mitalipov S, Wolf D. Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 2009; 114: 185-99.
[PMID: 19343304]
[40]
Ilic D, Polak JM. Stem cells in regenerative medicine: Introduction. Br Med Bull 2011; 98: 117-26.
[http://dx.doi.org/10.1093/bmb/ldr012] [PMID: 21565803]
[41]
Lu F, Zhang Y. Cell totipotency: Molecular features, induction, and maintenance. Natl Sci Rev 2015; 2(2): 217-25.
[http://dx.doi.org/10.1093/nsr/nwv009] [PMID: 26114010]
[42]
Chakraborty S, Ghosh Z. MicroRNAs shaping cellular reprogramming. AGO-Driven Non-Coding RNAs 2019; 2019: 75-97.
[http://dx.doi.org/10.1016/B978-0-12-815669-8.00004-X]
[43]
Waddington CH. The strategy of the genes; a discussion of some aspects of theoretical biology. Crows Nest, Australia: Allen & Unwin 1957.
[44]
Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958; 182(4627): 64-5.
[http://dx.doi.org/10.1038/182064a0] [PMID: 13566187]
[45]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[46]
Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC. MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 2009; 18(5): 749-58.
[http://dx.doi.org/10.1089/scd.2008.0247] [PMID: 19284351]
[47]
Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011; 8(6): 633-8.
[http://dx.doi.org/10.1016/j.stem.2011.05.001] [PMID: 21620789]
[48]
Yang CS, Li Z, Rana TM. microRNAs modulate iPS cell generation. RNA 2011; 17(8): 1451-60.
[http://dx.doi.org/10.1261/rna.2664111] [PMID: 21693621]
[49]
Anokye-Danso F, Snitow M, Morrisey EE. How microRNAs facilitate reprogramming to pluripotency. J Cell Sci 2012; 125(Pt 18): 4179-87.
[http://dx.doi.org/10.1242/jcs.095968] [PMID: 23077173]
[50]
Rowe RG, Mandelbaum J, Zon LI, Daley GQ. Engineering hematopoietic stem cells: Lessons from development. Cell Stem Cell 2016; 18(6): 707-20.
[http://dx.doi.org/10.1016/j.stem.2016.05.016] [PMID: 27257760]
[51]
Seo Yoojin, Kyung-Hwa S, Kim HH, Kim H-S. Current advances in red blood cell generation using stem cells from diverse sources. Stem Cells Int 2019; 2019: 9281329.
[http://dx.doi.org/10.1155/2019/9281329]
[52]
Slukvin II. Generating human hematopoietic stem cells in vitro -exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Lett 2016; 590(22): 4126-43.
[http://dx.doi.org/10.1002/1873-3468.12283] [PMID: 27391301]
[53]
Zittersteijn Hidde A, Harteveld Cornelis L. Small key for a heavy door: Genetic therapies for the treatment of hemoglobinopathies. Front Genome Edit 2021; 2: 34. Available from: www.frontiersin.org/article/10.3389/fgeed.2020.617780
[54]
Brendel C, Guda S, Renella R, et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest 2016; 126(10): 3868-78.
[http://dx.doi.org/10.1172/JCI87885] [PMID: 27599293]
[55]
Lüningschrö P, Hauser S, Kaltschmidt C. MicroRNAs inpluripotency, reprogramming and cell fate induction. Biochim Biophys Acta 1833; 8: 1894-903.
[56]
Lin S-L, Chang DC, Lin C-H, Ying S-Y, Leu D, Wu DTS. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 2011; 3(1): 1054-65.
[http://dx.doi.org/10.1093/nar/gkq850]
[57]
Li Z, Yang CS, Nakashima K, Rana TM. Small RNA-mediated regulation of iPS cell generation. EMBO J 2011; 30(5): 823-34.
[http://dx.doi.org/10.1038/emboj.2011.2] [PMID: 21285944]
[58]
Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012; 151(7): 1617-32.
[http://dx.doi.org/10.1016/j.cell.2012.11.039] [PMID: 23260147]
[59]
Liao B, Bao X, Liu L, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 2011; 286(19): 17359-64.
[http://dx.doi.org/10.1074/jbc.C111.235960] [PMID: 21454525]
[60]
Choi YJ, Lin CP, Ho JJ, et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 2011; 13(11): 1353-60.
[http://dx.doi.org/10.1038/ncb2366] [PMID: 22020437]
[61]
Guo X, Liu Q, Wang G, et al. microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Res 2013; 23(1): 142-56.
[http://dx.doi.org/10.1038/cr.2012.180] [PMID: 23266889]
[62]
Judson RL, Greve TS, Parchem RJ, Blelloch R. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol 2013; 20(10): 1227-35.
[http://dx.doi.org/10.1038/nsmb.2665] [PMID: 24037508]
[63]
O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D. MicroRNAs enriched in hematopoietic stem cells differen-tially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 2010; 107(32): 14235-40.
[http://dx.doi.org/10.1073/pnas.1009798107] [PMID: 20660734]
[64]
Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009; 86(2): 237-50.
[http://dx.doi.org/10.1189/jlb.0209097] [PMID: 19498045]
[65]
Aron DC. Insulin-like growth factor I and erythropoiesis. Biofactors 1992; 3(4): 211-6.
[PMID: 1376602]
[66]
Morison IM, Eccles MR, Reeve AE. Imprinting of insulin-like growth factor 2 is modulated during hematopoiesis. Blood 2000; 96(9): 3023-8.
[http://dx.doi.org/10.1182/blood.V96.9.3023] [PMID: 11049980]
[67]
Eguchi M, Eguchi-Ishimae M, Tojo A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999; 93(4): 1355-63.
[http://dx.doi.org/10.1182/blood.V93.4.1355] [PMID: 9949179]
[68]
Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 2012; 64(5): 402-10.
[http://dx.doi.org/10.1002/iub.1024] [PMID: 22431075]
[69]
Cui S, Tanabe O, Sierant M, et al. Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Blood 2015; 125(9): 1477-87.
[http://dx.doi.org/10.1182/blood-2014-10-605022] [PMID: 25561507]
[70]
Wang X, Chu Y, Wang W, Yuan W. mTORC signaling in hematopoiesis. Int J Hematol 2016; 103(5): 510-8.
[http://dx.doi.org/10.1007/s12185-016-1944-z] [PMID: 26791377]
[71]
Krivdova G, Lechman ER, Schoof EM, et al. MicroRNA-130a regulates hematopoietic stem cell self-renewal and erythroid differentia-tion. Clin Cancer Res 2017; 23(24)(Suppl.): PR07.
[http://dx.doi.org/10.1158/1557-3265.HEMMAL17-PR07]
[72]
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10(10): 704-14.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[73]
Garzon R, Fabbri M, Cimmino A, Calin GA, Croce Carlo M. MicroRNA expression and function in cancer. Trends Mol Med 2006; 12: 12.
[http://dx.doi.org/10.1016/j.molmed.2006.10.006]
[74]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[75]
He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435(7043): 828-33.
[http://dx.doi.org/10.1038/nature03552] [PMID: 15944707]
[76]
Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 2005; 102(10): 3627-32.
[http://dx.doi.org/10.1073/pnas.0500613102] [PMID: 15738415]
[77]
Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207(2): 243-9.
[http://dx.doi.org/10.1002/path.1825] [PMID: 16041695]
[78]
Argiropoulos B, Humphries RK. Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26(47): 6766-76.
[http://dx.doi.org/10.1038/sj.onc.1210760] [PMID: 17934484]
[79]
Liu Y, Elf SE, Miyata Y, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009; 4(1): 37-48.
[http://dx.doi.org/10.1016/j.stem.2008.11.006] [PMID: 19128791]
[80]
Isken F, Steffen B, Merk S, et al. Identification of acute myeloid leukaemia associated microRNA expression patterns. Br J Haematol 2008; 140(2): 153-61.
[http://dx.doi.org/10.1111/j.1365-2141.2007.06915.x] [PMID: 18173753]
[81]
Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26(5): 745-52.
[http://dx.doi.org/10.1016/j.molcel.2007.05.010] [PMID: 17540599]
[82]
Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26(5): 731-43.
[http://dx.doi.org/10.1016/j.molcel.2007.05.017] [PMID: 17540598]
[83]
Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6(13): 1586-93.
[http://dx.doi.org/10.4161/cc.6.13.4436] [PMID: 17554199]
[84]
Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441(7092): 475-82.
[http://dx.doi.org/10.1038/nature04703] [PMID: 16598206]
[85]
Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441(7092): 518-22.
[http://dx.doi.org/10.1038/nature04747] [PMID: 16633340]
[86]
Costa D, Capuano M, Sommese L, Napoli C. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies. Blood Cells Mol Dis 2015; 55(2): 95-100.
[http://dx.doi.org/10.1016/j.bcmd.2015.05.004]
[87]
Benhoosh T, Fatemeh A, Shaban A, et al. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression. Artif Cells Nanomed Biotechnol 2017; 45: 146156.
[http://dx.doi.org/10.3109/21691401.2016.1138487]
[88]
Lessard S, Beaudoin M, Orkin SH, Bauer DE, Lettre G. 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Hum Mol Genet 2018; 27(8): 1411-20.
[http://dx.doi.org/10.1093/hmg/ddy051] [PMID: 29432581]
[89]
Khuthala M, Mazandu GK, Mario J, et al. Hydroxyurea-induced miRNA expression in sickle cell disease patients in Africa. Front Genet 2019; 10: 509. Available from: www.frontiersin.org/article/10.3389/fgene.2019.00509 DOI=10.3389/fgene.2019.00509
[90]
Maryam F, Masoumeh A, Zahra D. S Neda H, A Farnoosh, K Seyed E. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Curr Stem Cell Res Ther 2019; 14(3): 278-89.
[http://dx.doi.org/10.2174/1574888X14666190123162402]
[91]
Gangaraju VK, Lin H. MicroRNAs: Key regulators of stem cells. Nat Rev Mol Cell Biol 2009; 10(2): 116-25.
[http://dx.doi.org/10.1038/nrm2621] [PMID: 19165214]
[92]
Fard AD, Hosseini SA, Shahjahani M, Salari F, Jaseb K. Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol Oncol Stem Cell Res 2013; 7(3): 47-54.
[PMID: 24505535]
[93]
McGann PT, Ware RE. Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf 2015; 14(11): 1749-58.
[http://dx.doi.org/10.1517/14740338.2015.1088827] [PMID: 26366626]
[94]
Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ. Fetal hemoglobin in sickle cell anemia: Determinants of response to hydroxyurea. Blood 1997; 89(3): 1078-88.
[http://dx.doi.org/10.1182/blood.V89.3.1078] [PMID: 9028341]
[95]
Fucharoen Suthat, Siritanaratkul Noppadol, Winichagoon Pranee, et al. Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in β-thalassemia/hemoglobin E disease. Blood 1996; 87(3): 887-92.
[96]
Kovacic P. Hydroxyurea (therapeutics and mechanism): Metabolism, carbamoyl nitroso, nitroxyl, radicals, cell signaling and clinical ap-plications. Med Hypotheses 2011; 76(1): 24-31.
[http://dx.doi.org/10.1016/j.mehy.2010.08.023] [PMID: 20833482]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy