Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Attenuation of Free Radicals and Exhibition of Antibacterial Activity by Traditionally used Volatile Oils

Author(s): Arun Kumar Mishra*, Mohd. Asif, Anesh Sagar, Harpreet Singh and Amrita Mishra

Volume 18, Issue 10, 2022

Published on: 10 August, 2022

Article ID: e210422203899 Pages: 9

DOI: 10.2174/1573407218666220421130008

Price: $65

conference banner
Abstract

Background: This study aimed to isolate and analyse the essential oils of Eugenia caryophyllus flower buds and Citrus reticulata peels for antioxidant and antibacterial properties.

Methods: By using the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical method and the ferric reducing antioxidant power (FRAP) method, the antioxidant activities of total volatile oil components of both oils were assessed. Agar well diffusion and dilution were used to test antibacterial activity.

Results: Optical rotation (0.95 and 1.01), weight per mL (1.03 and 1.06), and refractive index (1.52 and 1.53) were all tested for both oils. The existence of a total of 26 and 28 most important volatile chemical components in oils produced from Eugenia caryophyllus and Citrus reticulata, respectively, was determined by GC-MS chemical analysis of the total volatile component. Retention time in a Gas Chromatography (GC) technique was used to identify the components. The mass spectral database was used to identify the values of oil components. The predominant components were eugenol (77.08%) in Eugenia caryophyllus oil and limonene (78.46%) in Citrus reticulate oil. Eugenia caryophyllus oil has strong antibacterial action against microorganisms like S. pyrogenes, with a ZOI of 15.90–26.84 mm, followed by oil from Citrus reticulata peels with a ZOI of 14.60– 22.82 mm.

Conclusion: The presence of terpenes and phenolics in both essential oils resulted in substantial antioxidant activity. Agar well diffusion and dilution were used to test antibacterial activity. In the concentration range of 5–100 mg/mL, both essential oils demonstrated good bacteriostatic and bactericidal activity against microbial strains.

Keywords: Traditional medicine, Citrus reticulate, GC-MS, characterization, anti-oxidant activity.

Graphical Abstract

[1]
Kamkar Asl, M.; Nazariborun, A.; Hosseini, M. Analgesic effect of the aqueous and ethanolic extracts of clove. Avicenna J. Phytomed., 2013, 3(2), 186-192.
[PMID: 25050273]
[2]
Sharma, P. DravyaGuna-Vigyan (Aubhid Ausadh–Dravya), Chapter Four-96-Lawanga; Chaukhambha Bhartiya Academy: Varanasi, India, 2001, p. 187.
[3]
Saikia, A.P.; Ryakala, V.K.; Sharma, P.; Goswami, P.; Bora, U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J. Ethnopharmacol., 2006, 106(2), 149-157.
[http://dx.doi.org/10.1016/j.jep.2005.11.033] [PMID: 16473486]
[4]
Sebaaly, C.; Jraij, A.; Fessi, H.; Charcosset, C.; Greige-Gerges, H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem., 2015, 178, 52-62.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.067] [PMID: 25704683]
[5]
Tian, Y.; Liu, X.; Zhou, Y.; Guo, Z. Extraction and determination of volatile constituents in leaves of Eucalyptus citriodora. Chin. J. Chrom., 2005, 23, 651-654.
[6]
International Organization for Standardization Oil of clove buds [Syzygium aromaticum (Linnaeus) Merril and Perry, syn. Eugenia caryophyllus (Sprengel) Bullock and S. Harrison]. ISO Directive 3142/1997, Geneva, Switzerland 2002. Available from: https://www.iso.org/standard/8312.htmL
[7]
Chang, K.M.; Shen, C.W. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan. Evid. Based Complement. Alternat. Med., 2011, 2011, 946537.
[http://dx.doi.org/10.1155/2011/946537] [PMID: 21584196]
[8]
Benabdelkader, T.; Zitouni, A.; Guitton, Y.; Jullien, F.; Maitre, D.; Casabianca, H.; Legendre, L.; Kameli, A. Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chem. Biodivers., 2011, 8(5), 937-953.
[http://dx.doi.org/10.1002/cbdv.201000301] [PMID: 21560242]
[9]
Sophia, A.; Faiyazuddin, M.D.; Alam, P.; Hussain, M.T.; Shakeel, F. GC–MS characterization and evaluation of antimicrobial, anticancer and wound healing efficiency of combined ethanolic extract of Tridax procumbens and Acalypha indica. J. Mol. Struct., 2022, 1250(1), 131678.
[http://dx.doi.org/10.1016/j.molstruc.2021.131678]
[10]
Nautiyal, V. Dubey, R.C. FT-IR and GC-MS analyses of potential bioactive compounds of cow urine and its antibacterial activity. Saudi J. Biol. Sci., 2021, 28(4), 2432-2437.
[http://dx.doi.org/10.1016/j.sjbs.2021.01.041] [PMID: 33935568]
[11]
Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol--from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Mol., 2012, 17, 6953-6981.
[http://dx.doi.org/10.3390/molecules17066953]
[12]
Park, J.H.; Lee, M.; Park, E. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food Sci., 2014, 19(4), 291-298.
[http://dx.doi.org/10.3746/pnf.2014.19.4.291]
[13]
Steuer, B.; Schulz, H.; Läger, E. Classification and analysis of citrus oils by NIR spectroscopy. Food Chem., 2001, 72(1), 113-117.
[http://dx.doi.org/10.1016/S0308-8146(00)00209-0]
[14]
Magiorkinis, E.; Beloukas, A.; Diamantis, A. Scurvy: past, present and future. Euro. J. Int. Med., 2011, 22(2), 147-152.
[http://dx.doi.org/10.1016/j.ejim.2010.10.006] [PMID: 21402244]
[15]
Anagnostopoulou, M.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem., 2006, 94(1), 19-25.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.047]
[16]
Caro, A.D.; Piga, A.; Vacca, V.; Agabbio, M. Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chem., 2004, 84(1), 99-105.
[17]
Fuente, M.D.L.; Sánchez, C.; Vallejo, C.; Cerro, E.D.D.; Arnalich, F.; Hernanz, A. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp. Gerontol., 2020, 142, 111118.
[http://dx.doi.org/10.1016/j.exger.2020.111118]
[18]
Jinfeng, P.; Huixing, S.; Juan, Y.; Yong, K.L. Changes in physiochemical properties of Myofibrillar protein from Silver Carp (Hypophthalmichthys mollitrix) during heat treatment. J. Food Biochem., 2011, 35(3), 939-952.
[http://dx.doi.org/10.1111/j.1745-4514.2010.00431.x]
[19]
He, F.; Wang, W.; Wu, M.; Fang, Y.; Wang, S.; Yang, Y.; Ye, C.; Xiang, F. Antioxidant and antibacterial activities of essential oil from Atractylodes lancea rhizomes. Ind. Crops Prod., 2020, 153, 112552.
[http://dx.doi.org/10.1016/j.indcrop.2020.112552]
[20]
Kimura, T.; Yamagishi, K.; Suzuki, M.; Shinmoto, H. Relative estimation of the radical scavenging activities of agricultural products. Nippon Shokuhin Kagaku Kogaku Kaishi, 2002, 45(4), 144-148.
[http://dx.doi.org/10.3136/nskkk.49.257]
[21]
Büyükokuroğlu, M.E. GülçIn, I.; Oktay, M.; Küfrevioğlu, O.I. In vitro antioxidant properties of dantrolene sodium. Pharmacol. Res., 2001, 44(6), 491-494.
[http://dx.doi.org/10.1006/phrs.2001.0890] [PMID: 11735355]
[22]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[23]
White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob. Agents Chemother., 1996, 40(8), 1914-1918.
[http://dx.doi.org/10.1128/AAC.40.8.1914] [PMID: 8843303]
[24]
Sim, J.; Jamaludin, N.S.; Khoo, C.; Cheah, Y.; Halim, S.B.A.; Seng, H.; Tiekink, E.R.T. In vitro antibacterial and time-kill evaluation of phosphanegold(I) dithiocarbamates, R3PAu[S2CN(iPr)CH2CH2OH] for R = Ph, Cy and Et, against a broad range of Gram-positive and Gram-negative bacteria. Gold Bull., 2014, 47(4), 225-236.
[http://dx.doi.org/10.1007/s13404-014-0144-y]
[25]
Amelia, B.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.; Sulistyoningrum, A.S.; Haib, J. GC-MS Analysis of Clove (Syzygium aromaticum) Bud Essential Oil from Java and Manado. Inter. Sym. Curr. Prog. Mat. Sci. 2017. AIP Conf. Proc., 1862, 030082, 030082.
[http://dx.doi.org/10.1063/1.4991186]
[26]
Golmohammadi, M.; Borghei, A.; Zenouzi, A.; Ashrafi, N.; Taherzadeh, M.J. Optimization of essential oil extraction from orange peels using steam explosion. Heliyon, 2018, 4(11), e00893.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00893] [PMID: 30426099]
[27]
Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem., 2006, 54(17), 6303-6307.
[http://dx.doi.org/10.1021/jf060608c] [PMID: 16910723]
[28]
Yadav, A.S.; Bhatnagar, D. Free radical scavenging activity, metal chelation and antioxidant power of some of the Indian spices. Biofac., 2007, 31(3-4), 219-227.
[http://dx.doi.org/10.1002/biof.5520310309]
[29]
Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Bagues, M.; Nagaz, K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS One, 2020, 15(5), e0232599.
[http://dx.doi.org/10.1371/journal.pone.0232599] [PMID: 32428000]
[30]
Singh, S.; Sankar, B.; Rajesh, S.; Sahoo, K.; Subudhi, E.; Nayak, S. Nayak. S. Chemical Composition of Turmeric Oil (Curcuma longa L. cv. Roma) and its Antimicrobial Activity against Eye Infecting Pathogens. J. Essent. Oil Res., 2011, 23(6), 11-18.
[http://dx.doi.org/10.1080/10412905.2011.9712275]
[31]
Kumar, A.; Bhatt, G.; Pandey, P.; Chauhan, A.; Upadhyay, R.K.; Saikia, D.; Verma, R.S.; Chanotiya, C.S.; Padalia, R.C. Chemical characterization, antimicrobial and antioxidant evaluation of Cymbopogon jwarancusa (Jones) Schult. essential oil. J. Essent. Oil Res., 2021, 33(4), 351-358.
[http://dx.doi.org/10.1080/10412905.2021.1886186]
[32]
Tumbas, V.T.; Ćetković, G.S.; Đilas, S.M.; Čanadanović-Brunet, J.M.; Vulić, J.J.; Željko, K.; Mojca, S. Antioxidant activity of mandarin (Citrus reticulata) peel. Acta Period. Technol., 2010, 41(41), 195-203.
[http://dx.doi.org/10.2298/APT1041195T]
[33]
Zhang, L.; Gu, B.; Wang, Y. Clove essential oil confers antioxidant activity and lifespan extension in C. elegans via the DAF-16/FOXO transcription factor. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 241, 108938.
[http://dx.doi.org/10.1016/j.cbpc.2020.108938]
[34]
da Costa, J.S.; da Cruz, E.N.S.; Setzer, W.N.; da Silva, J.K.D.R.; Maia, J.G.S.; Figueiredo, P.L.B. Essentials oils from brazilian Eugenia and Syzygium species and their biological activities. Biomolecules, 2020, 10(8), 1-36.
[http://dx.doi.org/10.3390/biom10081155] [PMID: 32781744]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy