Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Recent Updates and Technological Developments in Evaluating Cardiac Syncope in the Emergency Department

Author(s): Utkarsh Ojha*, James Ayathamattam, Kenneth Okonkwo and Innocent Ogunmwonyi

Volume 18, Issue 6, 2022

Published on: 10 June, 2022

Article ID: e210422203887 Pages: 8

DOI: 10.2174/1573403X18666220421110935

Price: $65

Abstract

Syncope is a commonly encountered problem in the emergency department (ED), accounting for approximately 3% of presenting complaints. Clinical assessment of syncope can be challenging due to the diverse range of conditions that can precipitate the symptom. Annual mortality for patients presenting with syncope ranges from 0-12%, and if the syncope is secondary to a cardiac cause, then this figure rises to 18-33%. In ED, it is paramount to accurately identify those presenting with syncope, especially patients with an underlying cardiac aetiology, initiate appropriate management, and refer them for further investigations. In 2018, the European Society of Cardiology (ESC) updated its guidelines with regard to diagnosing and managing patients with syncope. We highlight recent developments and considerations in various components of the workup, such as history, physical examination, investigations, risk stratification, and novel biomarkers, since the establishment of the 2018 ESC guidelines. We further discuss the emerging role of artificial intelligence in diagnosing cardiac syncope and postulate how wearable technology may transform evaluating cardiac syncope in ED.

Keywords: Cardiac syncope, arrhythmia, emergency department, artificial intelligence, technology, non-traumatic.

Graphical Abstract

[1]
ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope. Executive summary: A report of the american college of cardiology/american heart association task force on clinical practice guidelines and the heart rhythm society. Circulation 2017; 136(5): e60-e122.
[2]
Moya A, Sutton R, Ammirati F, et al. Guidelines for the diagnosis and management of syncope (version 2009). Eur Heart J 2009; 30(21): 2631-71.
[http://dx.doi.org/10.1093/eurheartj/ehp298] [PMID: 19713422]
[3]
Brignole M, Menozzi C, Bartoletti A, et al. A new management of syncope: Prospective systematic guideline-based evaluation of patients referred urgently to general hospitals. Eur Heart J 2006; 27(1): 76-82.
[http://dx.doi.org/10.1093/eurheartj/ehi647] [PMID: 16272210]
[4]
Sun BC. Quality-of-life, health service use, and costs associated with syncope. Prog Cardiovasc Dis 2013; 55(4): 370-5.
[http://dx.doi.org/10.1016/j.pcad.2012.10.009] [PMID: 23472773]
[5]
Lewis DA, Dhala A. Syncope in the pediatric patient. The cardiologist’s perspective. Pediatr Clin North Am 1999; 46(2): 205-19.
[http://dx.doi.org/10.1016/S0031-3955(05)70113-9] [PMID: 10218070]
[6]
Lipsitz L, Wei J, Rowe J. Syncope in an elderly, institutionalised population: Prevalence, incidence, and associated risk. QJM 1985; 55(1): 45-54.
[7]
Colman N, Nahm K, Ganzeboom KS, et al. Epidemiology of reflex syncope. Clin Auton Res 2004; 14(S1) (Suppl. 1): 9-17.
[http://dx.doi.org/10.1007/s10286-004-1003-3] [PMID: 15480937]
[8]
Kapoor WN. Evaluation and outcome of patients with syncope. Medicine (Baltimore) 1990; 69(3): 160-75.
[http://dx.doi.org/10.1097/00005792-199005000-00004] [PMID: 2189056]
[9]
Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J 2018; 39(21): 1883-948.
[http://dx.doi.org/10.1093/eurheartj/ehy037] [PMID: 29562304]
[10]
van Wijnen VK, Gans ROB, Wieling W, Ter Maaten JC, Harms MPM. Diagnostic accuracy of evaluation of suspected syncope in the emergency department: Usual practice vs. ESC guidelines. BMC Emerg Med 2020; 20(1): 59.
[http://dx.doi.org/10.1186/s12873-020-00344-9] [PMID: 32746777]
[11]
Berecki-Gisolf J, Sheldon A, Wieling W, et al. Identifying cardiac syncope based on clinical history: A literature-based model tested in four independent datasets. PLoS One 2013; 8(9): e75255.
[http://dx.doi.org/10.1371/journal.pone.0075255] [PMID: 24223233]
[12]
Colman N, Bakker A, Linzer M, Reitsma JB, Wieling W, Wilde AA. Value of history-taking in syncope patients: In whom to suspect long QT syndrome? Europace 2009; 11(7): 937-43.
[http://dx.doi.org/10.1093/europace/eup101] [PMID: 19482852]
[13]
Fazio G, Vernuccio F, Grutta G, Re GL. Drugs to be avoided in patients with long QT syndrome: Focus on the anaesthesiological management. World J Cardiol 2013; 5(4): 87-93.
[http://dx.doi.org/10.4330/wjc.v5.i4.87] [PMID: 23675554]
[14]
Lekic M, Lekic V, Riaz IB, Mackstaller L, Marcus FI. The cardiovascular physical examination - is it still relevant? Am J Cardiol 2021; 149: 140-4.
[http://dx.doi.org/10.1016/j.amjcard.2021.02.042] [PMID: 33753042]
[15]
Albassam OT, Redelmeier RJ, Shadowitz S, Husain AM, Simel D, Etchells EE. Did this patient have cardiac syncope?: The rational clinical examination systematic review. JAMA 2019; 321(24): 2448-57.
[http://dx.doi.org/10.1001/jama.2019.8001] [PMID: 31237649]
[16]
Heldeweg MLA, Jorge PJF, Ligtenberg JJM, Ter Maaten JC, Harms MPM. Orthostatic blood pressure measurements are often overlooked during the initial evaluation of syncope in the emergency department. Blood Press Monit 2018; 23(6): 294-6.
[http://dx.doi.org/10.1097/MBP.0000000000000348] [PMID: 30161039]
[17]
Saad Shaukat MH, Shabbir MA, Banerjee R, Desemone J, Lyubarova R. Is our initial evaluation of patients admitted for syncope guideline-directed and cost-effective? Eur Heart J Case Rep 2020; 4(2): 1-4.
[http://dx.doi.org/10.1093/ehjcr/ytaa032] [PMID: 32352069]
[18]
Nishijima DK, Lin AL, Weiss RE, et al. ECG predictors of cardiac arrhythmias in older adults with syncope. Ann Emerg Med 2018; 71(4): 452-461.e3.
[http://dx.doi.org/10.1016/j.annemergmed.2017.11.014] [PMID: 29275946]
[19]
Thiruganasambandamoorthy V, Rowe BH, Sivilotti MLA, et al. Duration of electrocardiographic monitoring of emergency department patients with syncope. Circulation 2019; 139(11): 1396-406.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036088] [PMID: 30661373]
[20]
Solbiati M, Dipaola F, Villa P, et al. Predictive accuracy of electrocardiographic monitoring of patients with syncope in the emergency department: The symone multicenter study. Acad Emerg Med 2020; 27(1): 15-23.
[http://dx.doi.org/10.1111/acem.13842] [PMID: 31854141]
[21]
Gaughan J, Kasteridis P, Mason A, Street A. Why are there long waits at English emergency departments? Eur J Health Econ 2020; 21(2): 209-18.
[http://dx.doi.org/10.1007/s10198-019-01121-7] [PMID: 31650441]
[22]
du Fay de Lavallaz J, Badertscher P, Nestelberger T, et al. B-type natriuretic peptides and cardiac troponins for diagnosis and risk-stratification of syncope. Circulation 2019; 139(21): 2403-18.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038358]
[23]
Badertscher P, Nestelberger T, de Lavallaz JDF, et al. Prohormones in the early diagnosis of cardiac syncope. J Am Heart Assoc 2017; 6(12): e006592.
[http://dx.doi.org/10.1161/JAHA.117.006592] [PMID: 29426039]
[24]
Sarasin FP, Junod AF, Carballo D, Slama S, Unger PF, Louis-Simonet M. Role of echocardiography in the evaluation of syncope: A prospective study. Heart 2002; 88(4): 363-7.
[http://dx.doi.org/10.1136/heart.88.4.363] [PMID: 12231593]
[25]
Probst MA, Gibson TA, Weiss RE, et al. Predictors of clinically significant echocardiography findings in older adults with syncope: A secondary analysis. J Hosp Med 2018; 13(12): 823-8.
[http://dx.doi.org/10.12788/jhm.3082] [PMID: 30255862]
[26]
Palaniswamy C, Aronow WS. Risk prediction tools for Syncope: The quest for the holy grail. Int J Cardiol 2018; 269: 192-3.
[http://dx.doi.org/10.1016/j.ijcard.2018.07.127] [PMID: 30068486]
[27]
Bozorgi A, Hosseini K, Jalali A, Tajdini M. A new feasible syncope risk score appropriate for emergency department: A prospective cohort study. Crit Pathw Cardiol 2018; 17(3): 151-4.
[http://dx.doi.org/10.1097/HPC.0000000000000146] [PMID: 30044256]
[28]
GOV.UK. Neurological disorder: Assessing fitness to drive Available from: https://www.gov.uk/guidance/neurological-disorders-assessing-fitness-to-drive [cited 2021 June 6].
[29]
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8): 500-10.
[http://dx.doi.org/10.1038/s41568-018-0016-5] [PMID: 29777175]
[30]
Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J Gastroenterol 2020; 26(46): 7287-98.
[http://dx.doi.org/10.3748/wjg.v26.i46.7287] [PMID: 33362384]
[31]
Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 2019; 25(8): 1301-9.
[http://dx.doi.org/10.1038/s41591-019-0508-1] [PMID: 31308507]
[32]
Bonzi M, Fiorelli EM, Angaroni L, et al. Predictive accuracy of triage nurses evaluation in risk stratification of syncope in the emergency department. Emerg Med J 2014; 31(11): 877-81.
[http://dx.doi.org/10.1136/emermed-2013-202813] [PMID: 23935157]
[33]
Kwon JM, Lee Y, Lee Y, Lee S, Park J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J Am Heart Assoc 2018; 7(13): e008678.
[http://dx.doi.org/10.1161/JAHA.118.008678] [PMID: 29945914]
[34]
Jang DH, Kim J, Jo YH, et al. Developing neural network models for early detection of cardiac arrest in emergency department. Am J Emerg Med 2020; 38(1): 43-9.
[http://dx.doi.org/10.1016/j.ajem.2019.04.006] [PMID: 30982559]
[35]
Jiang H, Mao H, Lu H, et al. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Int J Med Inform 2021; 145: 104326.
[http://dx.doi.org/10.1016/j.ijmedinf.2020.104326] [PMID: 33197878]
[36]
Wardrope A, Jamnadas-Khoda J, Broadhurst M, et al. Machine learning as a diagnostic decision aid for patients with transient loss of consciousness. Neurol Clin Pract 2020; 10(2): 96-105.
[http://dx.doi.org/10.1212/CPJ.0000000000000726] [PMID: 32309027]
[37]
Zhang Y, Han Y, Gao P, et al. Electronic health record-based prediction of 1-year risk of incident cardiac dysrhythmia: Prospective case-finding algorithm development and validation study. JMIR Med Inform 2021; 9(2): e23606.
[http://dx.doi.org/10.2196/23606] [PMID: 33595452]
[38]
Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron 2018; 4(4): 195-202.
[PMID: 30906922]
[39]
Raja JM, Elsakr C, Roman S, et al. Apple watch, wearables, and heart rhythm: Where do we stand? Ann Transl Med 2019; 7(17): 417.
[http://dx.doi.org/10.21037/atm.2019.06.79] [PMID: 31660316]
[40]
Turakhia MP, Desai M, Hedlin H, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am Heart J 2019; 207: 66-75.
[http://dx.doi.org/10.1016/j.ahj.2018.09.002] [PMID: 30392584]
[41]
Koh KT, Law WC, Zaw WM, et al. Smartphone electrocardiogram for detecting atrial fibrillation after a cerebral ischaemic event: A multicentre randomized controlled trial. Europace 2021; 23(7): 1016-23.
[http://dx.doi.org/10.1093/europace/euab036] [PMID: 33782701]
[42]
Reed MJ, Grubb NR, Lang CC, et al. Multi-centre randomised controlled trial of a smartphone-based event recorder alongside standard care versus standard care for patients presenting to the emergency department with palpitations and pre-syncope: The IPED (Investigation of Palpitations in the ED) study. EClinicalMedicine 2019; 8: 37-46.
[http://dx.doi.org/10.1016/j.eclinm.2019.02.005] [PMID: 31193636]
[43]
PPG to predict ejection fraction and other echographic data in the general population. Available from: https://clinicaltrials.gov/ct2/show/NCT04843371 (accessed Dec 21, 2021).
[44]
Wan EY, Ghanbari H, Akoum N, et al. HRS white paper on clinical utilization of digital health technology. Cardiovascular Digital Health Journal 2021; 2(4): 196-211.
[http://dx.doi.org/10.1016/j.cvdhj.2021.07.001]
[45]
Wyatt KD, Poole LR, Mullan AF, Kopecky SL, Heaton HA. Clinical evaluation and diagnostic yield following evaluation of abnormal pulse detected using Apple Watch. J Am Med Inform Assoc 2020; 27(9): 1359-63.
[http://dx.doi.org/10.1093/jamia/ocaa137] [PMID: 32979046]
[46]
Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: Focus on clinicians. J Med Internet Res 2020; 22(6): e15154.
[http://dx.doi.org/10.2196/15154] [PMID: 32558657]
[47]
Duncker D, Ding WY, Etheridge S, et al. Smart wearables for cardiac monitoring-real-world use beyond atrial fibrillation. Sensors (Basel) 2021; 21(7): 2539.
[http://dx.doi.org/10.3390/s21072539] [PMID: 33916371]
[48]
Soteriades ES, Evans JC, Larson MG, et al. Incidence and prognosis of syncope. N Engl J Med 2002; 347(12): 878-85.
[http://dx.doi.org/10.1056/NEJMoa012407] [PMID: 12239256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy