Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Recent Trends in Nano-Particulate Carriers for the Diagnosis and Treatment of Alzheimer’s Disease

Author(s): Farhan Mazahir and Awesh K. Yadav*

Volume 22, Issue 4, 2023

Published on: 06 July, 2022

Page: [477 - 499] Pages: 23

DOI: 10.2174/1871527321666220420133059

open access plus

Abstract

Background: Alzheimer's disease (AD) is characterized by the presence of aggregated amyloid fibers, neurodegeneration, and loss of memory. Although "Food and Drug Administration" (FDA) approved drugs are available to treat AD, drugs that target AD have limited access to the brain and cause peripheral side effects. These peripheral side effects are the results of exposure of peripheral organs to the drugs. The blood-brain barrier (BBB) is a very sophisticated biological barrier that allows the selective permeation of various molecules or substances. This selective permeation by the BBB is beneficial and protects the brain from unwanted and harmful substances. However, this kind of selective permeation hinders the access of therapeutic molecules to the brain. Thus, a peculiar drug delivery system (nanocarriers) is required.

Objective: Due to selective permeation of the “blood-brain barrier,” nanoparticulate carriers may provide special services to deliver the drug molecules across the BBB. This review article is an attempt to present the role of different nanocarriers in the diagnosis and treatment of Alzheimer's disease.

Methods: Peer-reviewed and appropriate published articles were collected for the relevant information.

Result: Nanoparticles not only traverse the blood-brain barrier but may also play roles in the detection of amyloid β, diagnosis, and drug delivery.

Conclusion: Based on published literature, it could be concluded that nano-particulate carriers may traverse the blood-brain barrier via the transcellular pathway, receptor-mediated endocytosis, transcytosis, and may enhance the bioavailability of drugs to the brain. Hence, peripheral side effects could be avoided.

Keywords: Alzheimer’s disease, amyloid β, tau-protein, nanoparticles, heat shock protein, sensors.

Graphical Abstract

[1]
Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 2005; 1739(2-3): 298-310.
[http://dx.doi.org/10.1016/j.bbadis.2004.10.011] [PMID: 15615647]
[2]
Zilka N, Kontsekova E, Novak M. Chaperone-like antibodies targeting misfolded tau protein: New vistas in the immunotherapy of neurodegenerative foldopathies. J Alzheimers Dis 2008; 15(2): 169-79.
[http://dx.doi.org/10.3233/JAD-2008-15203] [PMID: 18953106]
[3]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9(1): 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[4]
Buchman AS, Bennett DA. Loss of motor function in preclinical Alzheimer’s disease. Expert Rev Neurother 2011; 11(5): 665-76.
[http://dx.doi.org/10.1586/ern.11.57] [PMID: 21539487]
[5]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[6]
Kovacs GG. Invited review: Neuropathology of tauopathies: Principles and practice. Neuropathol Appl Neurobiol 2015; 41(1): 3-23.
[http://dx.doi.org/10.1111/nan.12208] [PMID: 25495175]
[7]
Rankin CA, Sun Q, Gamblin TC. Tau phosphorylation by GSK-3β promotes tangle-like filament morphology. Mol Neurodegener 2007; 2(1): 12.
[http://dx.doi.org/10.1186/1750-1326-2-12] [PMID: 17598919]
[8]
Dukay B, Csoboz B, Tóth ME. Heat-shock proteins in neuroinflammation. Front Pharmacol 2019; 10: 920.
[http://dx.doi.org/10.3389/fphar.2019.00920] [PMID: 31507418]
[9]
Campanella C, Pace A, Caruso Bavisotto C, et al. Heat shock proteins in Alzheimer’s disease: Role and targeting. Int J Mol Sci 2018; 19(9): 2603.
[http://dx.doi.org/10.3390/ijms19092603] [PMID: 30200516]
[10]
Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martín-Requero A, Wojda U. Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: Diagnostic prospects. J Alzheimers Dis 2015; 46(2): 329-50.
[http://dx.doi.org/10.3233/JAD-141977] [PMID: 25737047]
[11]
Zhang R, Li Y, Hou X, Miao Z, Wang Y. Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp Ther Med 2017; 14(2): 1832-6.
[http://dx.doi.org/10.3892/etm.2017.4691] [PMID: 28781634]
[12]
Finder VH, Glockshuber R. Amyloid-β aggregation. Neurodegener Dis 2007; 4(1): 13-27.
[http://dx.doi.org/10.1159/000100355] [PMID: 17429215]
[13]
Bitan G, Teplow DB. Rapid photochemical cross-linking--a new tool for studies of metastable, amyloidogenic protein assemblies. Acc Chem Res 2004; 37(6): 357-64.
[http://dx.doi.org/10.1021/ar000214l] [PMID: 15196045]
[14]
Urbanc B, Cruz L, Yun S, et al. In silico study of amyloid β-protein folding and oligomerization. Proc Natl Acad Sci USA 2004; 101(50): 17345-50.
[http://dx.doi.org/10.1073/pnas.0408153101] [PMID: 15583128]
[15]
Roychaudhuri R, Yang M, Hoshi MM, Teplow DB. Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 2009; 284(8): 4749-53.
[http://dx.doi.org/10.1074/jbc.R800036200] [PMID: 18845536]
[16]
Nelson R, Eisenberg D. Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 2006; 16(2): 260-5.
[http://dx.doi.org/10.1016/j.sbi.2006.03.007] [PMID: 16563741]
[17]
Seaks CE, Wilcock DM. Infectious hypothesis of Alzheimer disease. PLoS Pathog 2020; 16(11): e1008596.
[http://dx.doi.org/10.1371/journal.ppat.1008596] [PMID: 33180879]
[18]
Sait A, Angeli C, Doig AJ, Day PJR. Viral involvement in Alzheimer’s disease. ACS Chem Neurosci 2021; 12(7): 1049-60.
[http://dx.doi.org/10.1021/acschemneuro.0c00719] [PMID: 33687205]
[19]
Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937] [PMID: 28294067]
[20]
Maheshwari P, Eslick GD. Bacterial infection and Alzheimer’s disease: A meta-analysis. J Alzheimers Dis 2015; 43(3): 957-66.
[http://dx.doi.org/10.3233/JAD-140621] [PMID: 25182736]
[21]
Bibi F, Yasir M, Sohrab SS, et al. Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets 2014; 13(7): 1140-7.
[http://dx.doi.org/10.2174/1871527313666140917115741] [PMID: 25230225]
[22]
Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine 2007; 3(4): 246-57.
[http://dx.doi.org/10.1016/j.nano.2007.09.004] [PMID: 18068091]
[23]
Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target 2008; 16(6): 464-78.
[http://dx.doi.org/10.1080/10611860802095494] [PMID: 18604659]
[24]
Yadav AK, Agarwal A, Rai G, et al. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug Deliv 2010; 17(8): 561-72.
[http://dx.doi.org/10.3109/10717544.2010.500635] [PMID: 20738221]
[25]
Hettiarachchi SD, Zhou Y, Seven E, et al. Nanoparticle-mediated approaches for Alzheimer’s disease pathogenesis, diagnosis, and therapeutics. J Control Release 2019; 314: 125-40.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.034] [PMID: 31647979]
[26]
Pardridge WM. Alzheimer’s disease drug development and the problem of the blood-brain barrier. Alzheimers Dement 2009; 5(5): 427-32.
[http://dx.doi.org/10.1016/j.jalz.2009.06.003] [PMID: 19751922]
[27]
Khan NH, Mir M, Ngowi EE, et al. Nanomedicine: A promising way to manage Alzheimer’s disease. Front Bioeng Biotechnol 2021; 9: 630055.
[http://dx.doi.org/10.3389/fbioe.2021.630055] [PMID: 33996777]
[28]
Pandey PK, Sharma AK, Rani S, et al. MCM-41 nanoparticles for brain delivery: Better choline-esterase and amyloid formation inhibition with improved kinetics. ACS Biomater Sci Eng 2018; 4(8): 2860-9.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00335] [PMID: 33435009]
[29]
Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 1997; 18(4): 351-7.
[http://dx.doi.org/10.1016/S0197-4580(97)00056-0] [PMID: 9330961]
[30]
Morris JC, Price JL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 2001; 17(2): 101-18.
[http://dx.doi.org/10.1385/JMN:17:2:101] [PMID: 11816784]
[31]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[32]
Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993; 43(11): 2412-4.
[http://dx.doi.org/10.1212/WNL.43.11.2412-a] [PMID: 8232972]
[33]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 183-94.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x] [PMID: 15324362]
[34]
Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009; 461(7266): 916-22.
[http://dx.doi.org/10.1038/nature08538] [PMID: 19829371]
[35]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[36]
Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R) PK11195-PET and [11C] PIB-PET study. Neurobiol Dis 2008; 32(3): 412-9.
[http://dx.doi.org/10.1016/j.nbd.2008.08.001] [PMID: 18786637]
[37]
Boumenir A, Cognat E, Sabia S, et al. CSF level of β-amyloid peptide predicts mortality in Alzheimer’s disease. Alzheimers Res Ther 2019; 11(1): 29.
[http://dx.doi.org/10.1186/s13195-019-0481-4] [PMID: 30922415]
[38]
Drummond E, Wisniewski T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol 2017; 133(2): 155-75.
[http://dx.doi.org/10.1007/s00401-016-1662-x] [PMID: 28025715]
[39]
Schaeffer V, Patte-Mensah C, Eckert A, Mensah-Nyagan AG. Modulation of neurosteroid production in human neuroblastoma cells by Alzheimer’s disease key proteins. J Neurobiol 2006; 66(8): 868-81.
[http://dx.doi.org/10.1002/neu.20267] [PMID: 16673391]
[40]
Singh VK, Kumar N, Kalsan M, Saini A, Chandra R. Mechanism of induction: Induced Pluripotent Stem Cells (iPSCs). J Stem Cells 2015; 10(1): 43-62.
[PMID: 26665937]
[41]
Hou Y, Wang F, Cheng L, Luo T, Xu J, Wang H. Expression profiles of SIRT1 and APP genes in human neuroblastoma SK-N-SH cells treated with two epigenetic agents. Neurosci Bull 2016; 32(5): 455-62.
[http://dx.doi.org/10.1007/s12264-016-0052-7] [PMID: 27522594]
[42]
Wang HY, Trocmé-Thibierge C, Stucky A, et al. Increased Aβ42-α7-like nicotinic acetylcholine receptor complex level in lymphocytes is associated with apolipoprotein E4-driven Alzheimer’s disease pathogenesis. Alzheimers Res Ther 2017; 9(1): 54.
[http://dx.doi.org/10.1186/s13195-017-0280-8] [PMID: 28750690]
[43]
Bussière T, Bard F, Barbour R, et al. mice carrying both mutant amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on their clearance. Am J Pathol 2004; 165(3): 987-95.
[http://dx.doi.org/10.1016/S0002-9440(10)63360-3] [PMID: 15331422]
[44]
Bilia AR, Nardiello P, Piazzini V, et al. Successful brain delivery of andrographolide loaded in human albumin nanoparticles to TgCRND8 mice, an Alzheimer’s disease mouse model. Front Pharmacol 2019; 10: 910.
[http://dx.doi.org/10.3389/fphar.2019.00910] [PMID: 31507412]
[45]
Kim TK, Lee JE, Park SK, et al. Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease. Exp Mol Med 2012; 44(8): 492-502.
[http://dx.doi.org/10.3858/emm.2012.44.8.056] [PMID: 22644036]
[46]
Sturchler-Pierrat C, Staufenbiel M. Pathogenic mechanisms of Alzheimer’s disease analyzed in the APP23 transgenic mouse model. Ann N Y Acad Sci 2000; 920(1): 134-9.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06915.x] [PMID: 11193142]
[47]
Kitazawa M, Medeiros R, Laferla FM. Transgenic mouse models of Alzheimer disease: Developing a better model as a tool for therapeutic interventions. Curr Pharm Des 2012; 18(8): 1131-47.
[http://dx.doi.org/10.2174/138161212799315786] [PMID: 22288400]
[48]
Piguet P, Poindron P. Genetically modified organisms and genetic engineering in research and therapy. BioValley Monographs. Basel, Switzerland: Karger 2012; p. 6.
[49]
Holcomb L, Gordon MN, McGowan E, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 1998; 4(1): 97-100.
[http://dx.doi.org/10.1038/nm0198-097] [PMID: 9427614]
[50]
Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease. Mol Neurobiol 2017; 54(8): 6490-506.
[http://dx.doi.org/10.1007/s12035-016-0136-4] [PMID: 27730512]
[51]
Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NFKB/JNK/GSK3β signaling pathway. Nanomedicine 2017; 13(8): 2533-44.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[52]
Ruff J, Hassan N, Morales-Zavala F, et al. CLPFFD-PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. J Mater Chem B Mater Biol Med 2018; 6(16): 2432-43.
[http://dx.doi.org/10.1039/C8TB00655E] [PMID: 32254460]
[53]
Muller AP, Ferreira GK, Pires AJ, et al. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C 2017; 77: 476-83.
[http://dx.doi.org/10.1016/j.msec.2017.03.283] [PMID: 28532055]
[54]
Dos Santos Tramontin N, da Silva S, Arruda R, et al. Gold nanoparticles treatment reverses brain damage in Alzheimer’s disease model. Mol Neurobiol 2020; 57(2): 926-36.
[http://dx.doi.org/10.1007/s12035-019-01780-w] [PMID: 31612296]
[55]
Sanati M, Khodagholi F, Aminyavari S, et al. Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: Involvement of stim proteins. ACS Chem Neurosci 2019; 10(5): 2299-309.
[http://dx.doi.org/10.1021/acschemneuro.8b00622] [PMID: 30933476]
[56]
Kaushik AC, Kumar A, Peng Z, et al. Evaluation and validation of synergistic effects of amyloid-beta inhibitor-gold nanoparticles com-plex on Alzheimer’s disease using deep neural network approach. J Mater Res 2019; 34(11): 1845-53.
[http://dx.doi.org/10.1557/jmr.2018.452]
[57]
Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 2016; 46: 177-90.
[http://dx.doi.org/10.1016/j.actbio.2016.09.010] [PMID: 27619837]
[58]
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 2015; 21(2): 829-35.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[59]
AlBab ND, Hameed MK, Maresova A, et al. Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at car-boxyl tailored gold-aryl nanoparticles surface. Colloids Surf A Physicochem Eng Asp 2020; 586: 124279.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124279]
[60]
Morales-Zavala F, Arriagada H, Hassan N, et al. Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer’s disease. Nanomedicine 2017; 13(7): 2341-50.
[http://dx.doi.org/10.1016/j.nano.2017.06.013] [PMID: 28673851]
[61]
Liu Y, Zhou H, Yin T, et al. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci 2019; 552: 388-400.
[http://dx.doi.org/10.1016/j.jcis.2019.05.066] [PMID: 31151017]
[62]
Anand BG, Shekhawat DS, Dubey K, Kar K. Uniform, polycrystalline, and thermostable piperine-coated gold nanoparticles to target insulin fibril assembly. ACS Biomater Sci Eng 2017; 3(6): 1136-45.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00030] [PMID: 33429588]
[63]
Javed I, Peng G, Xing Y, et al. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 2019; 10(1): 3780.
[http://dx.doi.org/10.1038/s41467-019-11762-0] [PMID: 31439844]
[64]
Suganthy N, Sri Ramkumar V, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: Assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res Int 2018; 25(11): 10418-33.
[http://dx.doi.org/10.1007/s11356-017-9789-4] [PMID: 28762049]
[65]
Wang G, Dai J, Lu XJ. Scutellaria barbata leaf extract mediated gold nanoparticles for Alzheimer’s disease treatment by metal-induced amyloid β aggregation inhibition. Clust. Sci 2019; 31(6): 1-5.
[66]
Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol 2019; 130: 515-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.156] [PMID: 30826404]
[67]
Yang L, Wang W, Chen J, Wang N, Zheng G. A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: Inhibiting amyloid β aggregation and reactive oxygen species formation properties. J Biomed Mater Res A 2018; 106(12): 3034-41.
[http://dx.doi.org/10.1002/jbm.a.36493] [PMID: 30295993]
[68]
Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[69]
Yang L, Sun J, Xie W, Liu Y, Liu J. Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer’s disease. J Mater Chem B Mater Biol Med 2017; 5(30): 5954-67.
[http://dx.doi.org/10.1039/C6TB02952C] [PMID: 32264352]
[70]
Sun D, Zhang W, Yu Q, et al. Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer’s disease. J Colloid Interface Sci 2017; 505: 1001-10.
[http://dx.doi.org/10.1016/j.jcis.2017.06.083] [PMID: 28693096]
[71]
Zhou X, Sun J, Yin T, et al. Enantiomers of cysteine-modified SeNPs (d/lSeNPs) as inhibitors of metal-induced Aβ aggregation in Alzheimer’s disease. J Mater Chem B Mater Biol Med 2015; 3(39): 7764-74.
[http://dx.doi.org/10.1039/C5TB00731C] [PMID: 32264585]
[72]
Yang L, Wang N, Zheng G. Enhanced effect of combining chlorogenic acid on selenium nanoparticles in inhibiting amyloid β aggregation and reactive oxygen species formation in vitro. Nanoscale Res Lett 2018; 13(1): 303.
[http://dx.doi.org/10.1186/s11671-018-2720-1] [PMID: 30269259]
[73]
Zhang J, Zhou X, Yu Q, et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces 2014; 6(11): 8475-87.
[http://dx.doi.org/10.1021/am501341u] [PMID: 24758520]
[74]
Gao F, Zhao J, Liu P, et al. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in pro-tecting against the Alzheimer’s disease. Int J Biol Macromol 2020; 142: 265-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.098] [PMID: 31593732]
[75]
Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J. Sialic Acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. J Acta Biomater 2015; 25: 172-83.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[76]
Xu C, Qu X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 2014; 6(3): e90.
[http://dx.doi.org/10.1038/am.2013.88]
[77]
Dowding JM, Song W, Bossy K, et al. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 2014; 21(10): 1622-32.
[http://dx.doi.org/10.1038/cdd.2014.72] [PMID: 24902900]
[78]
D’Angelo B, Santucci S, Benedetti E, et al. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci 2009; 5(2): 167-76.
[http://dx.doi.org/10.2174/157341309788185523]
[79]
Cimini A, D’Angelo B, Das S, et al. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater 2012; 8(6): 2056-67.
[http://dx.doi.org/10.1016/j.actbio.2012.01.035] [PMID: 22343002]
[80]
Li M, Shi P, Xu C, Ren J, Qu X. Cerium oxide caged metal chelator: Anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer’s disease treatment. Chem Sci (Camb) 2013; 4(6): 2536-42.
[http://dx.doi.org/10.1039/c3sc50697e]
[81]
Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 2016; 10(2): 2860-70.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[82]
Guan Y, Gao N, Ren J, Qu X. Rationally designed CeNP@MnMoS4 core-shell nanoparticles for modulating multiple facets of Alzheimer’s disease. Chemistry 2016; 22(41): 14523-6.
[http://dx.doi.org/10.1002/chem.201603233] [PMID: 27490019]
[83]
Kim D, Kwon HJ, Hyeon T. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-β in Alzheimer’s disease. Adv Mater 2019; 31(19): e1807965.
[http://dx.doi.org/10.1002/adma.201807965] [PMID: 30920695]
[84]
Youssif KA, Haggag EG, Elshamy AM, et al. Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS One 2019; 14(11): e0223781.
[http://dx.doi.org/10.1371/journal.pone.0223781] [PMID: 31693694]
[85]
Popli D, Anil V, Subramanyam A B, et al. Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 2018; 46 (Supp. 1): 676-83.
[86]
Ramshini H, Moghaddasi AS, Mollania N, Khodarahmi R. Diverse antithetical effects of the bio-compatible Ag-NPs on the hen egg lysozyme amyloid aggregation: From an efficient inhibitor to obscure inducer. J Iran Chem Soc 2019; 16(1): 33-44.
[http://dx.doi.org/10.1007/s13738-018-1478-9]
[87]
Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res 2015; 136: 253-63.
[http://dx.doi.org/10.1016/j.envres.2014.11.006] [PMID: 25460644]
[88]
Glat M, Skaat H, Menkes-Caspi N, Margel S, Stern EA. Age-dependent effects of microglial inhibition in vivo on Alzheimer’s disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J Nanobiotechnology 2013; 11(1): 32.
[http://dx.doi.org/10.1186/1477-3155-11-32] [PMID: 24059692]
[89]
Skaat H, Sorci M, Belfort G, Margel S. Effect of maghemite nanoparticles on insulin amyloid fibril formation: Selective labeling, kinetics, and fibril removal by a magnetic field. J Biomed Mater Res A 2009; 91(2): 342-51.
[http://dx.doi.org/10.1002/jbm.a.32232] [PMID: 18980178]
[90]
Skaat H, Belfort G, Margel S. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology 2009; 20(22): 225106.
[http://dx.doi.org/10.1088/0957-4484/20/22/225106] [PMID: 19433878]
[91]
Skaat H, Margel S. Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils detection and removal by a magnetic field. Biochem Biophys Res Commun 2009; 386(4): 645-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.110] [PMID: 19559008]
[92]
De Astis S, Corradini I, Morini R, et al. Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. Nanoscale 2013; 5(22): 10963-74.
[http://dx.doi.org/10.1039/c3nr03534d] [PMID: 24065287]
[93]
Wu W, hui , Sun X, et al. TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys 2008; 373(2): 315-8.
[94]
Clark A, Zhu A, Petty HR. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis. J Nanopart Res 2013; 15(12): 2126.
[http://dx.doi.org/10.1007/s11051-013-2126-z] [PMID: 24791147]
[95]
Simon DF, Domingos RF, Hauser C, Hutchins CM, Zerges W, Wilkinson KJ. Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 2013; 79(16): 4774-85.
[http://dx.doi.org/10.1128/AEM.00998-13] [PMID: 23728819]
[96]
Krawczyńska A, Dziendzikowska K, Gromadzka-Ostrowska J, et al. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin-angiotensin system in brain. Food Chem Toxicol 2015; 85: 96-105.
[http://dx.doi.org/10.1016/j.fct.2015.08.005] [PMID: 26277626]
[97]
Vilella A, Belletti D, Sauer AK, et al. Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol 2018; 49: 210-21.
[http://dx.doi.org/10.1016/j.jtemb.2017.12.006] [PMID: 29325805]
[98]
Ashraf JM, Ansari MA, Fatma S, et al. Inhibiting effect of zinc oxide nanoparticles on advanced glycation products and oxidative modifications: A potential tool to counteract oxidative stress in neurodegenerative diseases. Mol Neurobiol 2018; 55(9): 7438-52.
[http://dx.doi.org/10.1007/s12035-018-0935-x] [PMID: 29423819]
[99]
Zheng X, Shao X, Zhang C, et al. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 2015; 32(12): 3837-49.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[100]
Kuo YC, Chen CL, Rajesh R. Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater 2019; 87: 207-22.
[http://dx.doi.org/10.1016/j.actbio.2019.01.065] [PMID: 30716553]
[101]
Hashioka S, Han YH, Fujii S, et al. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid β and interferon-γ-induced microglial activation. Free Radic Biol Med 2007; 42(7): 945-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.003] [PMID: 17349923]
[102]
Rotman M, Welling MM, Bunschoten A, et al. Enhanced glutathione PEGylated liposomal brain delivery of mice carrying both mutant amyloid a mouse model for Alzheimer’s disease. J Control Release 2015; 203: 40-50.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.012] [PMID: 25668771]
[103]
Ordóñez-Gutiérrez L, Re F, Bereczki E, et al. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine 2015; 11(2): 421-30.
[http://dx.doi.org/10.1016/j.nano.2014.09.015] [PMID: 25461285]
[104]
Mufamadi MS, Choonara YE, Kumar P, et al. Surface-engineered nanoliposomes by chelating ligands for modulating the neurotoxicity associated with β-amyloid aggregates of Alzheimer’s disease. Pharm Res 2012; 29(11): 3075-89.
[http://dx.doi.org/10.1007/s11095-012-0770-0] [PMID: 22584945]
[105]
Bana L, Minniti S, Salvati E, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine 2014; 10(7): 1583-90.
[http://dx.doi.org/10.1016/j.nano.2013.12.001] [PMID: 24333591]
[106]
Nageeb El-Helaly S, Abd Elbary A, Kassem MA, El-Nabarawi MA. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv 2017; 24(1): 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[107]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15.
[PMID: 26834457]
[108]
Kuo YC, Lin CY. Targeting delivery of liposomes with conjugated p-aminophenyl-α-d-manno-pyranoside and apolipoprotein E for inhibiting neuronal degeneration insulted with β-amyloid peptide. J Drug Target 2015; 23(2): 147-58.
[http://dx.doi.org/10.3109/1061186X.2014.965716] [PMID: 25268274]
[109]
Loureiro JA, Gomes B, Fricker G, et al. Dual ligand immunoliposomes for drug delivery to the brain. Colloids Surf B Biointerfaces 2015; 134: 213-9.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.067] [PMID: 26204501]
[110]
Tanifum EA, Dasgupta I, Srivastava M, et al. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice. PLoS One 2012; 7(10): e48515.
[http://dx.doi.org/10.1371/journal.pone.0048515] [PMID: 23119043]
[111]
Salvati E, Re F, Sesana S, et al. Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-β peptide: The chemical design affects the permeability across an in vitro model. Int J Nanomedicine 2013; 8: 1749-58.
[PMID: 23674890]
[112]
Chen ZL, Huang M, Wang XR, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine 2016; 12(2): 421-30.
[http://dx.doi.org/10.1016/j.nano.2015.10.021] [PMID: 26711963]
[113]
Binda A, Panariti A, Barbuti A, et al. Modulation of the intrinsic neuronal excitability by multifunctional liposomes tailored for the treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 4059-71.
[http://dx.doi.org/10.2147/IJN.S161563] [PMID: 30034232]
[114]
Mancini S, Balducci C, Micotti E, et al. Multifunctional liposomes delay phenotype progression and prevent memory impairment in a presymptomatic stage mouse model of Alzheimer disease. J Control Release 2017; 258: 121-9.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.013] [PMID: 28501671]
[115]
Balducci C, Mancini S, Minniti S, et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci 2014; 34(42): 14022-31.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-14.2014] [PMID: 25319699]
[116]
Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 2014; 80: 175-83.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.050] [PMID: 24780594]
[117]
Conti E, Gregori M, Radice I, et al. Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer’s disease. Neurochem Int 2017; 108: 60-5.
[http://dx.doi.org/10.1016/j.neuint.2017.02.012] [PMID: 28238790]
[118]
Bondi M, Montana G, Craparo E, et al. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: Preparation, characterization and cytotoxicity studies. Curr Nanosci 2009; 5(1): 26-32.
[http://dx.doi.org/10.2174/157341309787314656]
[119]
Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011; 63(3): 342-51.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01225.x] [PMID: 21749381]
[120]
Sharma N, Bhandari S, Deshmukh R, Yadav AK, Mishra N. Development and characterization of embelin-loaded nanolipid carriers for brain targeting. Artif Cells Nanomed Biotechnol 2017; 45(3): 409-13.
[http://dx.doi.org/10.3109/21691401.2016.1160407] [PMID: 27012597]
[121]
Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 2016; 23(4): 1434-43.
[http://dx.doi.org/10.3109/10717544.2015.1089956] [PMID: 26405825]
[122]
Vedagiri A, Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides 2016; 58: 111-25.
[http://dx.doi.org/10.1016/j.npep.2016.03.002] [PMID: 27021394]
[123]
Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 2017; 152: 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[124]
Yusuf M, Khan M, Khan RA, Ahmed B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 2013; 21(3): 300-11.
[http://dx.doi.org/10.3109/1061186X.2012.747529] [PMID: 23231324]
[125]
Loureiro JA, Andrade S, Duarte A, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 2017; 22(2): 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[126]
Rishitha N, Muthuraman A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 2018; 199: 80-7.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[127]
Sathya S, Shanmuganathan B, Manirathinam G, Ruckmani K, Devi KP. α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects neuro-2a cells from Aβ induced neurotoxicity. J Mol Liq 2018; 264: 431-41.
[http://dx.doi.org/10.1016/j.molliq.2018.05.075]
[128]
Yang R, Zheng Y, Wang Q, Zhao L. Curcumin-loaded chitosanbovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res Lett 2018; 13(1): 330.
[http://dx.doi.org/10.1186/s11671-018-2759-z] [PMID: 30350003]
[129]
Raval N, Barai P, Acharya N, Acharya S. Fabrication of peptide-linked albumin nanoconstructs for receptor-mediated delivery of Asiatic acid to the brain as a preventive measure in cognitive impairment: Optimization, in vitro and in vivo evaluation. Nanomed Biotechnol 2018; 46 (Suppl_3): S832-46.
[http://dx.doi.org/10.1080/21691401.2018.1513942]
[130]
Nasr SH, Kouyoumdjian H, Mallett C, et al. Detection of β-Amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small 2018; 14(3): 1701828.
[http://dx.doi.org/10.1002/smll.201701828] [PMID: 29134771]
[131]
Luppi B, Bigucci F, Corace G, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 2011; 44(4): 559-65.
[http://dx.doi.org/10.1016/j.ejps.2011.10.002] [PMID: 22009109]
[132]
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10(2): 321-32.
[http://dx.doi.org/10.4161/hv.26796] [PMID: 24128651]
[133]
Amin FU, Shah SA, Badshah H, Khan M, Kim MO. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress. J Nanobiotechnology 2017; 15(1): 12.
[http://dx.doi.org/10.1186/s12951-016-0227-4] [PMID: 28173812]
[134]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[135]
Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 2018; 25(1): 1091-102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[136]
Mittal G, Carswell H, Brett R, Currie S, Kumar MR. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release 2011; 150(2): 220-8.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.013] [PMID: 21111014]
[137]
Cano A, Ettcheto M, Chang JH, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 2019; 301: 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.010] [PMID: 30876953]
[138]
Sathya S, Shanmuganathan B, Balasubramaniam B, Balamurugan K, Devi KP. Phytol loaded PLGA nanoparticles regulate the expression of Alzheimer’s related genes and neuronal apoptosis against amyloid-β induced toxicity in neuro-2a cells and transgenic Caenorhabditis elegans. Food Chem Toxicol 2020; 136: 110962.
[http://dx.doi.org/10.1016/j.fct.2019.110962] [PMID: 31734340]
[139]
Sánchez-López E, Ettcheto M, Egea MA, et al. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. J Nanobiotechnology 2018; 16(1): 32.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[140]
Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Pandima Devi K. Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer’s toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif Cells Nanomed Biotechnol 2018; 46(8): 1719-30.
[PMID: 29069924]
[141]
Jeon SG, Cha MY, Kim JI, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine 2019; 17: 297-307.
[http://dx.doi.org/10.1016/j.nano.2019.02.004] [PMID: 30794963]
[142]
Krishna KV, Wadhwa G, Alexander A, et al. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci 2019; 10(9): 4124-35.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[143]
Xin H, Sha X, Jiang X, et al. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles. Biomaterials 2012; 33(5): 1673-81.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.018] [PMID: 22133551]
[144]
Aso E, Martinsson I, Appelhans D, et al. Poly (propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine 2019; 17: 198-209.
[http://dx.doi.org/10.1016/j.nano.2019.01.010] [PMID: 30708052]
[145]
Wasiak T, Ionov M, Nieznanski K, et al. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol Pharm 2012; 9(3): 458-69.
[http://dx.doi.org/10.1021/mp2005627] [PMID: 22206488]
[146]
Wasiak T, Marcinkowska M, Pieszynski I, et al. Cationic phosphorus dendrimers and therapy for Alzheimer’s disease. New J Chem 2015; 39(6): 4852-9.
[http://dx.doi.org/10.1039/C5NJ00309A]
[147]
Klementieva O, Aso E, Filippini D, et al. Effect of poly (propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer’s disease. Biomacromolecules 2013; 14(10): 3570-80.
[http://dx.doi.org/10.1021/bm400948z] [PMID: 24004423]
[148]
Klajnert B, Wasiak T, Ionov M, et al. Dendrimers reduce toxicity of Aβ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine 2012; 8(8): 1372-8.
[http://dx.doi.org/10.1016/j.nano.2012.03.005] [PMID: 22465497]
[149]
Wang Z, Dong X, Sun Y. Hydrophobic modification of carboxyl-terminated polyamidoamine dendrimer surface creates a potent inhibitor of amyloid-β fibrillation. Langmuir 2018; 34(47): 14419-27.
[http://dx.doi.org/10.1021/acs.langmuir.8b02890] [PMID: 30388015]
[150]
Wang Z, Dong X, Sun Y. Mixed carboxyl and hydrophobic dendrimer surface inhibits amyloid-β fibrillation: New insight from the generation number effect. Langmuir 2019; 35(45): 14681-7.
[http://dx.doi.org/10.1021/acs.langmuir.9b02527] [PMID: 31635460]
[151]
Patel DA, Henry JE, Good TA. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: Role of sialic acid attachment. Brain Res 2007; 1161: 95-105.
[http://dx.doi.org/10.1016/j.brainres.2007.05.055] [PMID: 17604005]
[152]
Gothwal A, Kumar H, Nakhate KT, et al. Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer’s disease in mice. Bioconjug Chem 2019; 30(10): 2573-83.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00505] [PMID: 31553175]
[153]
Gothwal A, Singh H, Jain SK, Dutta A, Borah A, Gupta U. Behavioral and biochemical implications of Dendrimeric rivastigmine in memory-deficit and Alzheimer’s induced rodents. ACS Chem Neurosci 2019; 10(8): 3789-95.
[http://dx.doi.org/10.1021/acschemneuro.9b00286] [PMID: 31257860]
[154]
Gothwal A, Nakhate KT, Alexander A, Ajazuddin Gupta U. Boosted memory and improved brain bioavailability of rivastigmine: Targeting effort to the brain using covalently tethered lower generation PAMAM dendrimers with Lactoferrin. Mol Pharm 2018; 15(10): 4538-49.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00537] [PMID: 30156844]
[155]
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: Potentials for the detection and treatment of Alzheimer’s disease? Pharmacol Res 2019; 143: 186-203.
[http://dx.doi.org/10.1016/j.phrs.2019.03.023] [PMID: 30943430]
[156]
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018; 234(1): 298-319.
[http://dx.doi.org/10.1002/jcp.26899] [PMID: 30078182]
[157]
Rezaee M, Behnam B, Banach M, Sahebkar A. The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol Adv 2018; 36(8): 2232-47.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.010] [PMID: 30342084]
[158]
Krueger A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chemistry 2008; 14(5): 1382-90.
[http://dx.doi.org/10.1002/chem.200700987] [PMID: 18033700]
[159]
Nayak TR, Zhang Y, Cai W. Cancer theranostics with carbon-based nanoplatforms. Cancer Theranostics 2014; 2014: 347-61.
[160]
Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of c60. Science 1991; 254(5035): 1183-5.
[http://dx.doi.org/10.1126/science.254.5035.1183] [PMID: 17776407]
[161]
Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci 1997; 94(17): 9434-9.
[http://dx.doi.org/10.1073/pnas.94.17.9434] [PMID: 9256500]
[162]
Kim JE, Lee M. Fullerene inhibits beta-amyloid peptide aggregation. Biochem Biophys Res Commun 2003; 303(2): 576-9.
[http://dx.doi.org/10.1016/S0006-291X(03)00393-0] [PMID: 12659858]
[163]
Xiao S, Zhou D, Luan P, et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016; 106: 98-110.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.021] [PMID: 27552320]
[164]
Mahmoudi M, Akhavan O, Ghavami M, Rezaee F, Ghiasi SM. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012; 4(23): 7322-5.
[http://dx.doi.org/10.1039/c2nr31657a] [PMID: 23079862]
[165]
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56-8.
[http://dx.doi.org/10.1038/354056a0]
[166]
Ghule AV, Kathir KM, Ling YC. Carbon nanotubes prevent 2, 2, 2 trifluoroethanol induced aggregation of protein. Carbon 2007; 45(7): 1586-9.
[http://dx.doi.org/10.1016/j.carbon.2007.03.043]
[167]
Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA. neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: A Pivotal Role for modulating NF-κB and STAT3 signaling. Mol Neurobiol 2017; 54(3): 1906-18.
[http://dx.doi.org/10.1007/s12035-016-9762-0] [PMID: 26897372]
[168]
Kuo YC, Chou PR. Neuroprotection against degeneration of sk-N-mc cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci 2014; 103(8): 2484-97.
[http://dx.doi.org/10.1002/jps.24081] [PMID: 25041794]
[169]
Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 2017; 12: 2857-69.
[http://dx.doi.org/10.2147/IJN.S132472] [PMID: 28435263]
[170]
Kuo YC, Wang CT. Protection of SK-N-MC cells against β-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials 2014; 35(22): 5954-64.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.082] [PMID: 24746790]
[171]
Kuo YC, Lee YJ. Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator- and apolipoprotein E-conjugated liposomes to the hippocampus. Int J Nanomedicine 2016; 11: 6809-24.
[http://dx.doi.org/10.2147/IJN.S123442] [PMID: 28008255]
[172]
Kuo YC, Liu YC. Cardiolipin-incorporated liposomes with surface CRM197 for enhancing neuronal survival against neurotoxicity. Int J Pharm 2014; 473(1-2): 334-44.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.003] [PMID: 24999054]
[173]
Kuo YC, Lin CC. Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomedicine 2015; 10: 2653-72.
[http://dx.doi.org/10.2147/IJN.S79528] [PMID: 25878499]
[174]
Kuo YC, Lin CY, Li JS, Lou YI. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment. Int J Nanomedicine 2017; 12: 1757-74.
[http://dx.doi.org/10.2147/IJN.S128396] [PMID: 28280340]
[175]
Kuo YC, Chen IY, Rajesh RJ. Use of functionalized liposomes loaded with antioxidants to permeate the blood-brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J Taiwan Inst Chem Eng 2018; 87: 1-14.
[http://dx.doi.org/10.1016/j.jtice.2018.03.001]
[176]
Senut MC, Zhang Y, Liu F, Sen A, Ruden DM, Mao G. Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives. Small 2016; 12(5): 631-46.
[http://dx.doi.org/10.1002/smll.201502346] [PMID: 26676601]
[177]
Gao G, Zhang M, Gong D, Chen R, Hu X, Sun T. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale 2017; 9(12): 4107-13.
[http://dx.doi.org/10.1039/C7NR00699C] [PMID: 28276561]
[178]
Tomašovičová N, Hu PS, Zeng CL, Majorošová J, Zakutanská K, Kopčanský P. Dual size-dependent effect of Fe3O4 magnetic nanoparticles upon interaction with lysozyme amyloid fibrils: Disintegration and adsorption. Nanomaterials (Basel) 2018; 9(1): 37.
[http://dx.doi.org/10.3390/nano9010037] [PMID: 30597897]
[179]
Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 2012; 8(23): 3631-9.
[http://dx.doi.org/10.1002/smll.201201068] [PMID: 22915547]
[180]
Ruff J, Hüwel S, Kogan MJ, Simon U, Galla HJ. The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier. Nanomedicine 2017; 13(5): 1645-52.
[http://dx.doi.org/10.1016/j.nano.2017.02.013] [PMID: 28285163]
[181]
Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012; 33(29): 7194-205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[182]
Sivaji K, Kannan RR. Polysorbate 80 coated gold nanoparticle as a drug carrier for brain targeting in zebrafish model. J Cluster Sci 2019; 30(15): 897-906.
[http://dx.doi.org/10.1007/s10876-019-01548-1]
[183]
Stojiljković A, Kuehni-Boghenbor K, Gaschen V, et al. High-content analysis of factors affecting gold nanoparticle uptake by neuronal and microglial cells in culture. Nanoscale 2016; 8(37): 16650-61.
[http://dx.doi.org/10.1039/C6NR05723C] [PMID: 27722378]
[184]
Del Pino P, Yang F, Pelaz B, et al. Basic physicochemical properties of polyethylene glycol coated gold nanoparticles that determine their interaction with cells. Angew Chem Int Ed Engl 2016; 55(18): 5483-7.
[http://dx.doi.org/10.1002/anie.201511733] [PMID: 27028669]
[185]
Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 705-18.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[186]
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 2016; 145: 8-13.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.041] [PMID: 27131092]
[187]
Bhatt PC, Verma A, Al-Abbasi FA, Anwar F, Kumar V, Panda BP. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int J Nanomedicine 2017; 12: 8749-68.
[http://dx.doi.org/10.2147/IJN.S144545] [PMID: 29263666]
[188]
Yu Y, Zhang L, Li C, Sun X, Tang D, Shi G. A method for evaluating the level of soluble β-amyloid (1-40/1-42) in Alzheimer’s disease based on the binding of gelsolin to β-amyloid peptides. Angew Chem Int Ed Engl 2014; 53(47): 12832-5.
[http://dx.doi.org/10.1002/anie.201405001] [PMID: 25244702]
[189]
Zhu X, Zhang N, Zhang Y, et al. A sensitive gold nanoparticle-based aptasensor for colorimetric detection of Aβ1-40 oligomers. Anal Methods 2018; 10(6): 641-5.
[http://dx.doi.org/10.1039/C7AY02918G]
[190]
Sakono M, Zako T, Maeda M. Naked-eye detection of amyloid aggregates using gold nanoparticles modified with amyloid beta antibody. Anal Sci 2012; 28(1): 73-6.
[http://dx.doi.org/10.2116/analsci.28.73] [PMID: 22232229]
[191]
Hu T, Lu S, Chen C, Sun J, Yang X. Colorimetric sandwich immunosensor for Aβ (1-42) based on dual antibody-modified gold nanoparticles. Sens Actuators B Chem 2017; 243: 792-9.
[http://dx.doi.org/10.1016/j.snb.2016.12.052]
[192]
Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M. Label-free detection of β-amyloid peptides (Aβ40 and Aβ42): A colorimetric sensor array for plasma monitoring of Alzheimer’s disease. Nanoscale 2018; 10(14): 6361-8.
[http://dx.doi.org/10.1039/C8NR00195B] [PMID: 29561053]
[193]
Wang C, Liu D, Wang Z. Gold nanoparticle based dot-blot immunoassay for sensitively detecting Alzheimer’s disease related β-amyloid peptide. Chem Commun (Camb) 2012; 48(67): 8392-4.
[http://dx.doi.org/10.1039/c2cc33568a] [PMID: 22796866]
[194]
Devi R, Gogoi S, Dutta HS, Bordoloi M, Sanghi SK, Khan R. Au/NiFe2O4 nanoparticle-decorated graphene oxide nanosheets for electro-chemical immunosensing of amyloid beta peptide. Nanoscale Adv 2020; 2(1): 239-48.
[http://dx.doi.org/10.1039/C9NA00578A]
[195]
El-Said WA, Kim TH, Yea CH, Kim H, Choi JW. Fabrication of gold nanoparticle modified ITO substrate to detect β-amyloid using surface-enhanced Raman scattering. J Nanosci Nanotechnol 2011; 11(1): 768-72.
[http://dx.doi.org/10.1166/jnn.2011.3268] [PMID: 21446542]
[196]
Xia Y, Padmanabhan P, Sarangapani S, Gulyás B, Vadakke Matham M. Bifunctional fluorescent/raman nanoprobe for the early detection of amyloid. Sci Rep 2019; 9(1): 8497.
[http://dx.doi.org/10.1038/s41598-019-43288-2] [PMID: 31186449]
[197]
Kang MK, Lee J, Nguyen AH, Sim SJ. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer’s disease. J Biosens Bioelectron 2015; 72: 197-204.
[http://dx.doi.org/10.1016/j.bios.2015.05.017] [PMID: 25982728]
[198]
Liu L, Zhao F, Ma F, Zhang L, Yang S, Xia N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles. Biosens Bioelectron 2013; 49: 231-5.
[http://dx.doi.org/10.1016/j.bios.2013.05.028] [PMID: 23770394]
[199]
Xia N, Wang X, Zhou B, Wu Y, Mao W, Liu L. Electrochemical detection of amyloid-β oligomers based on the signal amplification of a network of silver nanoparticles. ACS Appl Mater Interfaces 2016; 8(30): 19303-11.
[http://dx.doi.org/10.1021/acsami.6b05423] [PMID: 27414520]
[200]
Hu T, Chen C, Huang G, Yang X. Antibody modified-silver nanoparticles for colorimetric immuno sensing of Aβ(1-40/1-42) based on the interaction between β-amyloid and Cu2+. Sens Actuators B Chem 2016; 234: 63-9.
[http://dx.doi.org/10.1016/j.snb.2016.04.159]
[201]
Murakami Y, Zhang Z, Taniguchi T, Sohgawa M, Yamashita K, Noda M. A high-sensitive detection of several tens of nM of amyloid-beta by cantilever-type biosensor immobilized DPPC liposome incorporated with cholesterol. Procedia Eng 2016; 168: 565-8.
[http://dx.doi.org/10.1016/j.proeng.2016.11.526]
[202]
Imamura R, Shimanouchi T, Murata N, Yamashita K, Fukuzawa M, Noda M. Etection of fibrillization process of amyloid beta protein using arrayed biosensor with liposome encapsulating fluorescent molecules. Procedia Eng 2016; 168: 1414-7.
[http://dx.doi.org/10.1016/j.proeng.2016.11.400]
[203]
Noda M, Asai T, Shimanouchi T, et al. Bio-thermochemical sensor of microbolometer immobilized liposome for detection of causative protein of Alzheimer’s disease, amyloid beta. IEEE Sens J 2009; 2009: 836-9.
[204]
Zhang Z, Sohgawa M, Yamashita K, Noda M. Real-time characterization of fibrillization process of amyloid-beta on phospholipid membrane using a new label-free detection technique based on a cantilever-based liposome biosensor. Sens Actuators B Chem 2016; 236: 893-9.
[http://dx.doi.org/10.1016/j.snb.2016.03.025]
[205]
Carlred L, Gunnarsson A, Solé-Domènech S, et al. Simultaneous imaging of amyloid-β and lipids in brain tissue using antibody-coupled liposomes and time-of-flight secondary ion mass spectrometry. J Am Chem Soc 2014; 136(28): 9973-81.
[http://dx.doi.org/10.1021/ja5019145] [PMID: 24941267]
[206]
Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 1999; 96(24): 14079-84.
[http://dx.doi.org/10.1073/pnas.96.24.14079] [PMID: 10570201]
[207]
Wadghiri YZ, Sigurdsson EM, Sadowski M, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003; 50(2): 293-302.
[http://dx.doi.org/10.1002/mrm.10529] [PMID: 12876705]
[208]
Chen Y, Fan H, Xu C, Hu W, Yu B. Efficient cholera toxin B subunit-based nanoparticles with MRI capability for drug delivery to the brain following intranasal administration. Macromol Biosci 2019; 19(2): e1800340.
[http://dx.doi.org/10.1002/mabi.201800340] [PMID: 30536989]
[209]
Li J, Yao S, Song S, et al. Designed synthesis of multi-functional PEGylated Yb2O3:Gd@SiO2@CeO2 islands core@shell nanostructure. Dalton Trans 2016; 45(28): 11522-7.
[http://dx.doi.org/10.1039/C6DT02044E] [PMID: 27351951]
[210]
Pansieri J, Plissonneau M, Stransky-Heilkron N, et al. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond) 2017; 12(14): 1675-87.
[http://dx.doi.org/10.2217/nnm-2017-0079] [PMID: 28635419]
[211]
Plissonneau M, Pansieri J, Heinrich-Balard L, et al. Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. J Nanobiotechnology 2016; 14(1): 60.
[http://dx.doi.org/10.1186/s12951-016-0212-y] [PMID: 27455834]
[212]
Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 2010; 151(2): 458-65.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[213]
Martín-Rapun R, De Matteis L, Ambrosone A, Garcia-Embid S, Gutierrez L, de la Fuente JM. Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr Pharm Des 2017; 23(13): 1927-52.
[http://dx.doi.org/10.2174/1381612822666161226151011] [PMID: 28025949]
[214]
Kononenko V, Narat M, Drobne D. Nanoparticle interaction with the immune system. Arh Hig Rada Toksikol 2015; 66(2): 97-108.
[http://dx.doi.org/10.1515/aiht-2015-66-2582] [PMID: 26110471]
[215]
Amor S, Peferoen LA, Vogel DY, et al. Inflammation in neurodegenerative diseases--an update. Immunology 2014; 142(2): 151-66.
[http://dx.doi.org/10.1111/imm.12233] [PMID: 24329535]
[216]
Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Semin Immunol 2017; 34: 25-32.
[http://dx.doi.org/10.1016/j.smim.2017.09.011] [PMID: 28985993]
[217]
Carro CE, Pilozzi AR, Huang X. Nanoneurotoxicity and potential nanotheranostics for Alzheimer’s disease. Pharmacol Toxicol 2019; 7(12): 1-7.
[PMID: 31828253]
[218]
Yang X, He C, Li J, et al. Uptake of silica nanoparticles: Neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett 2014; 229(1): 240-9.
[http://dx.doi.org/10.1016/j.toxlet.2014.05.009] [PMID: 24831964]
[219]
Perreault F, Melegari SP, da Costa CH, Rossetto AL, Popovic R, Matias WG. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ 2012; 441: 117-24.
[http://dx.doi.org/10.1016/j.scitotenv.2012.09.065] [PMID: 23137976]
[220]
Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 2004; 1012(1012): 153-63.
[http://dx.doi.org/10.1196/annals.1306.012] [PMID: 15105262]
[221]
Makarucha AJ, Todorova N, Yarovsky I. Effects of graphitic nanomaterials on the dissociation pathway of amyloidogenic peptide dimer. IEEE International Conference on Nanoscience and Nanotechnology. 2014 Feb 2-6; Adelaide, SA, Australia. 31-4.
[http://dx.doi.org/10.1109/ICONN.2014.6965254]
[222]
Simkó M, Mattsson MO. Interactions between nanosized materials and the brain. Curr Med Chem 2014; 21(37): 4200-14.
[http://dx.doi.org/10.2174/0929867321666140716100449] [PMID: 25039776]
[223]
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: An up to date overview. J Clin Med 2018; 7(12): 490.
[http://dx.doi.org/10.3390/jcm7120490] [PMID: 30486404]
[224]
Samanta S, Agarwal S, Nair KK, Harris RA, Swart H. Biomolecular assisted synthesis and mechanism of silver and gold nanoparticles. Mater Res Express 2019; 6(8): 082009.
[http://dx.doi.org/10.1088/2053-1591/ab296b]
[225]
Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H. Synthesis and thermoelectric characterization of Bi2Te 3 nanoparticles. Adv Funct Mater 2009; 19(21): 3476-83.
[http://dx.doi.org/10.1002/adfm.200901261]
[226]
Panáček A, Kvítek L, Prucek R, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006; 110(33): 16248-53.
[http://dx.doi.org/10.1021/jp063826h] [PMID: 16913750]
[227]
Bonsak J, Mayandi J, Thøgersen A, Stensrud Marstein E, Mahalingam U. Chemical synthesis of silver nanoparticles for solar cell applications. Phys Status Solidi, C Curr Top Solid State Phys 2011; 8(3): 924-7.
[http://dx.doi.org/10.1002/pssc.201000275]
[228]
Ayhan H, Tabrizi A, Ayhan F. Gold nanoparticle synthesis and characterisation. Hacettepe J Biol Chem 2009; 37(3): 217-26.
[229]
Iravani S. Bacteria in nanoparticle synthesis: Current status and future prospects. Int Sch Res Notices 2014; 2014: 359316.
[http://dx.doi.org/10.1155/2014/359316] [PMID: 27355054]
[230]
Thirumurugan A, Ramachandran S, Tomy NA, Jiflin GJ, Rajagomathi G. Biological synthesis of gold nanoparticles by Bacillus subtilis and evaluation of increased antimicrobial activity against clinical isolates. Korean J Chem Eng 2012; 29(12): 1761-5.
[http://dx.doi.org/10.1007/s11814-012-0055-7]
[231]
Konishi Y, Ohno K, Saitoh N, et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 2007; 128(3): 648-53.
[http://dx.doi.org/10.1016/j.jbiotec.2006.11.014] [PMID: 17182148]
[232]
Baesman SM, Bullen TD, Dewald J, et al. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 2007; 73(7): 2135-43.
[http://dx.doi.org/10.1128/AEM.02558-06] [PMID: 17277198]
[233]
Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 1999; 96(24): 13611-4.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[234]
Prasad R. Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/963961]
[235]
Lee XK, Shameli K, Miyake M, et al. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 2016; 2016(2): 1-17.
[236]
Zielonka A, Klimek-Ochab M. Fungal synthesis of size-defined nanoparticles. Adv Nat Sci Nanosci Nanotechnol 2017; 8(4): 043001.
[http://dx.doi.org/10.1088/2043-6254/aa84d4]
[237]
Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond) 2010; 5(1): 33-40.
[http://dx.doi.org/10.2217/nnm.09.77] [PMID: 20025462]
[238]
Santhoshkumar J, Rajeshkumar S, Kumar SV. Phyto-assisted synthesis, characterization and applications of gold nanoparticles - A review. Biochem Biophys Rep 2017; 11: 46-57.
[http://dx.doi.org/10.1016/j.bbrep.2017.06.004] [PMID: 28955767]
[239]
Kachhwaha S. Green synthesis of silver nanoparticles using callus extract of Capsicum annuum L. and their activity against microorganisms. Int J Nanotechnol Appl 2014; 4: 1-8.
[240]
Nadeem M, Tungmunnithum D, Hano C, et al. The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett Rev 2018; 11(8): 492-502.
[http://dx.doi.org/10.1080/17518253.2018.1538430]
[241]
Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009; 11(1): 77-89.
[http://dx.doi.org/10.1007/s11051-008-9446-4]
[242]
King ME, Personick ML. Synthesis of nanoparticles with extended twin defects and corrugated surfaces. Nanoscale 2017; 9(45): 17914-21.
[http://dx.doi.org/10.1039/C7NR06969C] [PMID: 29124271]
[243]
Zhao Y, Wang Y, Ran F, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep 2017; 7(1): 4131.
[http://dx.doi.org/10.1038/s41598-017-03834-2] [PMID: 28646143]
[244]
Lo Giudice MC, Herda LM, Polo E, Dawson KA. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat Commun 2016; 7(1): 13475.
[http://dx.doi.org/10.1038/ncomms13475] [PMID: 27845346]
[245]
Medintz IL, Konnert JH, Clapp AR, et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc Natl Acad Sci 2004; 101(26): 9612-7.
[http://dx.doi.org/10.1073/pnas.0403343101] [PMID: 15210939]
[246]
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018; 10(27): 12871-934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[247]
Sun W, Wang G, Fang N, Yeung ES. Wavelength-dependent differential interference contrast microscopy: Selectively imaging nanoparticle probes in live cells. Anal Chem 2009; 81(22): 9203-8.
[http://dx.doi.org/10.1021/ac901623b] [PMID: 19788254]
[248]
D’Acunto M. Detection of intracellular gold nanoparticles: An overview. Materials (Basel) 2018; 11(6): 882.
[http://dx.doi.org/10.3390/ma11060882] [PMID: 29795017]
[249]
Liu M, Li Q, Liang L, et al. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat Commun 2017; 8(1): 15646.
[http://dx.doi.org/10.1038/ncomms15646] [PMID: 28561031]
[250]
Lee MC, Wu KS, Nguyen TN, Sun B. Sodium dodecyl sulfate polyacrylamide gel electrophoresis for direct quantitation of protein adsorption. Anal Biochem 2014; 465: 102-4.
[http://dx.doi.org/10.1016/j.ab.2014.07.031] [PMID: 25127867]
[251]
Mahmoudi M, Serpooshan V. Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 2011; 115(37): 18275-83.
[http://dx.doi.org/10.1021/jp2056255]
[252]
Fornaguera C, Solans C. Methods for the in vitro characterization of nanomedicines-biological component interaction. J Pers Med 2017; 7(1): 2.
[http://dx.doi.org/10.3390/jpm7010002] [PMID: 28134833]
[253]
Coty JB, Eleamen Oliveira E, Vauthier C. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona. Int J Pharm 2017; 532(2): 769-78.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.048] [PMID: 28450168]
[254]
Fornaguera C, Calderó G, Solans C, Vauthier C. Protein-nanoparticle interactions evaluation by immunomethods: Surfactants can disturb quantitative determinations. Eur J Pharm Biopharm 2015; 94: 284-90.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.025] [PMID: 26070388]

© 2024 Bentham Science Publishers | Privacy Policy