Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Evaluation of the in vivo Antioxidant and Antihemolytic Potential of Peganum harmala Methanolic Seed Extract

Author(s): Meriem Djarmouni*, Moufida Adjadj and Abderrahmane Baghiani

Volume 18, Issue 10, 2022

Published on: 13 July, 2022

Article ID: e190422203782 Pages: 6

DOI: 10.2174/1573407218666220419115940

Price: $65

conference banner
Abstract

Background: Peganum harmala L. is a medicinal herbal plant widely used in traditional medicine in various countries, especially in Algeria. This study aimed to carry out the extraction of P. harmala seeds and to evaluate the antioxidant and antihemolytic potentials of 100 mg/kg methanol extract in plasma, blood, and liver of Swiss albino mice.

Methods: The antioxidant capacity of the plasma samples was performed using free radical scavenging (DPPH assay) and reducing power activities. However, the antihemolytic effect of methanol extract was measured in the blood induced by tBH. The biomarkers of oxidative stress were evaluated in liver tissues by measuring the activity of catalase enzyme (CAT), and the level of GSH and MDA products.

Results: The results showed that 100 mg/kg of MOHE did not show any significant changes in plasma antioxidant capacity by DPPH assay when we compared with a control group (32.70 ± 4,45 %), however, the reducing power capacity of plasma is remarkable in methanolic extract and VitC groups.

Fifty percent of red blood cell lysis was calculated (HT50) for measuring the antihemolytic effect, the results showed that MOHEhad a protective effect against RBC hemolysis with HT50 = 78,51 ± 11,32 min. In addition, MOHE increases the activity of CAT, GSH levels whereas it decreases the MDA levels in the homogenate liver, which demonstrates that MOHE inhibits the lipid peroxidation in the liver.

Conclusion: This plant has a strong pharmacological power due to its secondary metabolite. However, its uses for therapeutic purposes is not without danger and exposes the risk of intoxication.

Keywords: Peganum harmala, in vivo hemolysis, plasma antioxidant, red blood cells, in vivo antioxidant, antihemolytic.

Graphical Abstract

[1]
Engwa, G.A. EnNwekegwa, F.N.; Nkeh-Chungag, B.N. Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern. Ther. Health Med., 2022, 28(1), 114-128.
[2]
Chandrasekara, A.; Shahidi, F. Herbal beverages: Bioactive compounds and their role in disease risk reduction - A review. J. Tradit. Complement. Med., 2018, 8(4), 451-458.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.006] [PMID: 30302325]
[3]
Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm. J., 2018, 26(2), 177-190.
[http://dx.doi.org/10.1016/j.jsps.2017.12.013] [PMID: 30166914]
[4]
Jin, T-Y.; Saravanakumar, K.; Wang, M-H. In vitro and in vivo antioxidant properties of water and methanol extracts of linden bee pollen. Biocatal. Agric. Biotechnol., 2018, 13, 186-189.
[http://dx.doi.org/10.1016/j.bcab.2017.12.010]
[5]
Madah, M.; Haddad, S.; Khazem, M. Evaluation of the effect of Peganum harmala extracts on the in vitro viability of Leishmania tropica promastigotes in comparison to Glucantime. J. Parasit. Dis., 2020, 44(4), 858-863.
[http://dx.doi.org/10.1007/s12639-020-01232-6] [PMID: 33184551]
[6]
Iranshahy, M.; Bazzaz, S.F.; Haririzadeh, G.; Abootorabi, B.Z.; Mohamadi, A.M.; Khashyarmanesh, Z. Chemical composition and antibacterial properties of Peganum harmala L. A.J.P. 2019, 9, 6.
[7]
Baghiani, A.; Boussoualim, N.; Trabsa, H.; Aouachria, S.; Arrar, L. In Vivo free radical scavenging, antihemolytic activity and antibacterial effects of Anchusa azurea extracts. Int. J. Med. Med. Sci., 2016, 46, 1114-1118.
[8]
Hassani, P.; Yasa, N.; Vosough-Ghanbari, S.; Mohammadirad, A.; Dehghan, G.; Abdollahi, M. In vivo antioxidant potential of Teucrium polium, compared to α-tocopherol. Acta. Pharmceutica., 2007, 57, 123-127.
[9]
Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts against peroxidation models in vitro. Food Chem., 2001, 73(3), 285-290.
[http://dx.doi.org/10.1016/S0308-8146(00)00298-3]
[10]
Claiborne, A. Catalase activity.CRC handbook of Methods for Oxygen Radical Research; Greenwald, R.A., Ed.; CRC Press: Boca Raton, FL, 1986, pp. 283-284.
[11]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[12]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[13]
Kairupan, C.F.; Mantiri, F.R.; Rumende, R.R.H. Phytochemical screening and antioxidant activity of ethanol extract of leilem (Clerodendrum minahassae Teijsm. & Binn) as an antihyperlipidemic and antiatherosclerotic agent. IOP Conf. Ser. Earth Environ. Sci., 2019, 217.
[14]
Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Lysiuk, R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem. Toxicol., 2017, 110, 240-250.
[http://dx.doi.org/10.1016/j.fct.2017.10.039] [PMID: 29079495]
[15]
Kim, H-S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[16]
Oyenihi, A.B.; Smith, C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? J. Ethnopharmacol., 2019, 229, 54-72.
[http://dx.doi.org/10.1016/j.jep.2018.09.037] [PMID: 30287197]
[17]
Boumerfeg, S.; Baghiani, A.; Djarmouni, M.; Ameni, D.; Adjadj, M.; Belkhiri, F.; Charef, N.; Khennouf, S.; Arrar, L. Inhibitory activity on xanthine oxidase and antioxidant properties of Teucrium polium L. extract. Chin. Med. (Irvine Calif.), 2012, 3(1), 30-41.
[http://dx.doi.org/10.4236/cm.2012.31006]
[18]
Vicente, S.J.; Ishimoto, E.Y.; Torres, E.A.F.S. Coffee modulates transcription factor Nrf2 and highly increases the activity of antioxidant enzymes in rats. J. Agric. Food Chem., 2014, 62(1), 116-122.
[http://dx.doi.org/10.1021/jf401777m] [PMID: 24328189]
[19]
Veskoukis, A.S.; Kyparos, A.; Nikolaidis, M.G.; Stagos, D.; Aligiannis, N.; Halabalaki, M.; Chronis, K.; Goutzourelas, N.; Skaltsounis, L.; Kouretas, D. The antioxidant effects of a polyphenol-rich grape pomace extract in vitro do not correspond in vivo using exercise as an oxidant stimulus. Oxid. Med. Cell. Longev., 2012, 2012, 185867.
[http://dx.doi.org/10.1155/2012/185867] [PMID: 22693650]
[20]
Sardar, M.M.R.; Ali, M.O.I.; Pervin, F.; Yeasmin, F.; Ahmed, N.; Latif, S.A. A study on gender-related differences in oxidative stress status MMR. Mediscope (Manchester), 2019, 6(1), 13-18.
[http://dx.doi.org/10.3329/mediscope.v6i1.38938]
[21]
Kaushik, P.; Kaushik, D.; Khokra, S.L. In vivo antioxidant activity of plant Abutilon indicum. J. Pharm. Educ. Res., 2011, 2(1), 50-53.
[22]
Onoja, S.O.; Omeh, Y.N.; Ezeja, M.I.; Chukwu, M.N. Evaluation of the in vitro and in vivo antioxidant potentials of aframomum melegueta methanolic seed extract. J. Trop. Med., 2014, 2014, 159343.
[http://dx.doi.org/10.1155/2014/159343] [PMID: 24955096]
[23]
Djarmouni, M.; Boumerfeg, S.; Baghiani, A.; Boussoualim, N.; Zerargui, F.; Trabsa, H.; Belkhiri, F.; Khennouf, S.; Arrar, L. Evaluation of antioxidant and antibacterial properties of Peaganum harmala seed extracts. Res. J. Pharm. Biol. Chem. Sci., 2012, 3(4), 1109.
[24]
Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Al-Mana, F.A.; El-Shafei, A.A. Polyphenols of Frangula alnus and Peganum harmala. leaves and associated biological activities. Plants, 2020, 9(9), 1086.
[http://dx.doi.org/10.3390/plants9091086] [PMID: 32847047]
[25]
Abderrahim, L.A.; Taïbi, K.; Abderrahim, C.A. Assessment of the antimicrobial and antioxidant activities of Ziziphus lotus and Peganum harmala. Iran. J. Sci. Technol. A Sci., 2019, 43, 409-414.
[26]
Lukitaningsih, E. In vivo antioxidant activities of Curcuma longa and Curcuma xanthorrhiza. Food Res., 2020, 4, 13-19.
[http://dx.doi.org/10.26656/fr.2017.4(1).172]
[27]
Taher, A.T.; Viprakasit, V.; Musallam, K.M.; Cappellini, M.D. Treating iron overload in patients with non-transfusion-dependent thalassemia. Am. J. Hematol., 2013, 88(5), 409-415.
[http://dx.doi.org/10.1002/ajh.23405] [PMID: 23475638]
[28]
Rocha, S.; Gomes, D.; Lima, M.; Bronze-da-Rocha, E.; Santos-Silva, A. Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radic. Res., 2015, 49(8), 990-1003.
[http://dx.doi.org/10.3109/10715762.2015.1028402] [PMID: 25786472]
[29]
Ajay Krishna, P.G.; Sivakumar, T.R.; Jin, C.; Li, S-H.; Weng, Y-J.; Yin, J.; Jia, J-Q.; Wang, C-Y.; Gui, Z-Z. Antioxidant and hemolysis protective effects of polyphenol-rich extract from mulberry fruits. Pharmacogn. Mag., 2018, 14(53), 103-109.
[http://dx.doi.org/10.4103/pm.pm_491_16] [PMID: 29576709]
[30]
Kleszczyńska, H.; Bonarska, D.; Luczyński, J.; Witek, S.; Sarapuk, J. Hemolysis of erythrocytes and erythrocyte membrane fluidity changes by new lysosomotropic compounds. J. Fluoresc., 2005, 15(2), 137-141.
[http://dx.doi.org/10.1007/s10895-005-2521-7] [PMID: 15883768]
[31]
Zhu, S.Y.; Dong, Y.; Tu, J.; Zhou, Y.; Zhou, X.H.; Xu, B. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacogn. Mag., 2014, 10(1), 92-99.
[32]
Yang, J.X.; Yang, C.; Qiu, J.; Huang, C. In vitro Antioxidant properties of Forsythia suspense leaf flavonoids. Nat. Prod. Res., 2007, 19, 97-100.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy