Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Liposomal Drug Delivery and Its Potential Impact on Cancer Research

Author(s): Sankha Bhattacharya*, Dnyanesh Saindane and Bhupendra G. Prajapati

Volume 22, Issue 15, 2022

Published on: 25 May, 2022

Page: [2671 - 2683] Pages: 13

DOI: 10.2174/1871520622666220418141640

Price: $65

Abstract

Liposomes are one of the most versatile drug carriers due to their functional properties, such as higher biocompatibility, the ability to encapsulate hydrophilic and hydrophobic products, and higher biodegradability. Liposomes are a better and more significant nanocarrier for cancer therapy. The key to developing a better cancer-targeted nanocarrier is the development of targeted liposomes using various approaches. Several traditional and novel liposome preparation methods are briefly discussed in this mini-review. The current state of liposome targeting, active and passive liposome targeting in cancer therapy, ligand directed targeting (antibody, aptamer, and protein/peptide-mediated targeting), and other miscellaneous approaches such as stimuli-responsive liposome-based targeting, autophagy inhibition mediated targeting, and curcumin loaded liposomal targeting are all discussed within. All of this gathered and compiled information will shed new light on liposome targeting strategies in cancer treatment and will pique the interest of aspiring researchers and academicians.

Keywords: Liposomes, lipoplexes, aptamer drug delivery, marketed liposomal formulations, ligand-based targeting, cancer therapy.

Graphical Abstract

[1]
Arundhasree, R.R.; Kumar, A.R.; Kumar, S.S.; Nair, S.C. Arundhasree. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Int. J. Appl. Pharmaceuti., 2021, 13(2), 76-83.
[http://dx.doi.org/10.22159/ijap.2021v13i2.39526]
[2]
Shah, B. Microemulsion as a promising carrier for nose to brain delivery: Journey since last decade. J. Pharm. Investig., 2021, 51(6), 611-634.
[http://dx.doi.org/10.1007/s40005-021-00528-w]
[3]
Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev., 2021, 174, 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[4]
Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci., 2020, 278, 102125.
[http://dx.doi.org/10.1016/j.cis.2020.102125] [PMID: 32109595]
[5]
Kumeria, T.; Wang, J.; Kim, B.; Park, J-H.; Zuidema, J.M.; Klempner, M.; Cavacini, L.; Wang, Y.; Sailor, M.J.J.A.B.S. Enteric polymer-coated porous silicon nanoparticles for site-specific oral delivery of IgA antibody. Engineering, 2020.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01313]
[6]
George, S.M.; Tandon, S.; Kandasubramanian, B. Advancements in hydrogel-functionalized immunosensing platforms. ACS Omega, 2020, 5(5), 2060-2068.
[http://dx.doi.org/10.1021/acsomega.9b03816] [PMID: 32064366]
[7]
Ferretti, AM; Usseglio, S; Mondini, S; Drago, C; La Mattina, R; Chini, B; Verderio, C; Leonzino, M; Cagnoli, C; Joshi, P; Boraschi, D; Italiani, P; Li, Y; Swartzwelter, BJ; Sironi, L; Gelosa, P; Castiglioni, L; Guerrini, U; Ponti, A Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J. Colloid. Interface Sci., 2021, 582(Pt B), 678-700.
[http://dx.doi.org/10.1016/j.jcis.2020.08.026]
[8]
Bhattacharya, S. Cationic lipoplexes and its bourgeoning mechanisms; an expert opinion. Acta Sci. Pharmaceuti. Sci., 2020, 4(3), 13-14.
[http://dx.doi.org/10.31080/ASPS.2020.04.0495]
[9]
Das, S.S.; Hussain, A.; Verma, P.R.P.; Imam, S.S.; Altamimi, M.A.; Alshehri, S.; Singh, S.K. Recent advances in liposomal drug delivery system of quercetin for cancer targeting: A mechanistic approach. Curr. Drug Deliv., 2020, 17(10), 845-860.
[http://dx.doi.org/10.2174/1567201817666200415112657] [PMID: 32294036]
[10]
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 2020, 12(3), 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[11]
Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine, 2014, 9, 2241-2257.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[12]
Hoang Thi, T.T.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The importance of poly(ethylene glycol) alternatives for overcoming peg immunogenicity in drug delivery and bioconjugation. Polymers (Basel), 2020, 12(2), 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[13]
Kashapov, R.; Gaynanova, G.; Gabdrakhmanov, D.; Kuznetsov, D.; Pavlov, R.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers. Int. J. Mol. Sci., 2020, 21(18), 6961.
[http://dx.doi.org/10.3390/ijms21186961] [PMID: 32971917]
[14]
Ponzoni, M.; Pastorino, F.; Di Paolo, D.; Perri, P.; Brignole, C. Targeting macrophages as a potential therapeutic intervention: Impact on inflammatory diseases and cancer. Int. J. Mol. Sci., 2018, 19(7), 1953.
[http://dx.doi.org/10.3390/ijms19071953] [PMID: 29973487]
[15]
Liu, Q.; Guan, J.; Qin, L.; Zhang, X.; Mao, S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today, 2020, 25(1), 150-159.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[16]
Mehanny, M.; Hathout, R.M.; Geneidi, A.S.; Mansour, S. Studying the effect of physically-adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded-PLGA nanoparticles. J. Biomed. Mater. Res. A, 2017, 105(5), 1433-1445.
[http://dx.doi.org/10.1002/jbm.a.36028] [PMID: 28177570]
[17]
Fang, Y; Xue, J; Gao, S; Lu, A; Yang, D; Jiang, H; He, Y; Shi, K. Cleavable PEGylation: A strategy for overcoming the "PEG dilemma" in efficient drug delivery. Drug Deliv, 2017, 24(sup1), 22- 32.
[http://dx.doi.org/10.1080/10717544.2017.1388451]
[18]
Liu, Y.; Castro Bravo, K.M.; Liu, J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz., 2021, 6(2), 78-94.
[http://dx.doi.org/10.1039/D0NH00605J] [PMID: 33400747]
[19]
Alavi, M.; Varma, R.S. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int. J. Biol. Macromol., 2020, 164, 2197-2203.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.274] [PMID: 32763404]
[20]
Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[21]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[22]
Mulder, W.J.; Strijkers, G.J.; van Tilborg, G.A.; Griffioen, A.W.; Nicolay, K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed., 2006, 19(1), 142-164.
[http://dx.doi.org/10.1002/nbm.1011] [PMID: 16450332]
[23]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[24]
Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Almatroudi, A.; Rahmani, A.H. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech, 2020, 10(4), 163.
[http://dx.doi.org/10.1007/s13205-020-2144-3]
[25]
Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomedicine, 2018, 13, 3921-3935.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[26]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[27]
Shew, R.L.; Deamer, D.W. A novel method for encapsulation of macromolecules in liposomes. Biochim. Biophys. Acta, 1985, 816(1), 1-8.
[http://dx.doi.org/10.1016/0005-2736(85)90386-4] [PMID: 3890944]
[28]
Ravalika, Veldurthi; Sailaja, Abbaraju krishna formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano Biomedicine and Engineering 9, 2017.
[http://dx.doi.org/10.5101/nbe.v9i3.p242-248]
[29]
Skorobogatova, A.I.; Terent’eva, O.A.; Vainshtein, V.A.; Okovityi, S.V.; Flisyuk, E.V.; Narkevich, I.A. Targeted transport as a promising method of drug delivery to the central nervous system. Pharm. Chem. J., 2019, 53(9), 845-851.
[http://dx.doi.org/10.1007/s11094-019-02088-8]
[30]
Brandelli, A.; Pinilla, C.M.B.; Lopes, N.A. Nanoliposomes as a platform for delivery of antimicrobials. Nanotech. Appli. Pharma. Tech.; Rai, M.; Alves dos Santos, C., Eds.; Springer: Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-70299-5_3]
[31]
Tsai, W.-C.; Rizvi, S.S.J.T.i.F.S. Technology, liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. 2016, 55, 61-71.
[http://dx.doi.org/10.1016/j.tifs.2016.06.012]
[32]
Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids, 2014, 177, 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011] [PMID: 24220497]
[33]
Ishida, T.; Ichihara, M.; Wang, X.; Yamamoto, K.; Kimura, J.; Majima, E.; Kiwada, H. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control. Release, 2006, 112(1), 15-25.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.005] [PMID: 16515818]
[34]
Xiong, S.; Yu, B.; Wu, J.; Li, H.; Lee, R.J. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin lipo-somes conjugating folate-PEG-CHEMS. Biomed. Pharmacother., 2011, 65(1), 2-8.
[http://dx.doi.org/10.1016/j.biopha.2010.10.003] [PMID: 21177069]
[35]
Storm, G.; Crommelin, D.J.A. Liposomes: Quo vadis? Pharm. Sci. Technol. Today, 1998, 1(1), 19-31.
[http://dx.doi.org/10.1016/S1461-5347(98)00007-8]
[36]
Tashima, T. Effective cancer therapy based on selective drug delivery into cells across their membrane using receptor-mediated endocyto-sis. Bioorg. Med. Chem. Lett., 2018, 28(18), 3015-3024.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.012] [PMID: 30031619]
[37]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[38]
Nagai, K.; Fukuno, S.; Shiota, M.; Tamura, M.; Yabumoto, S.; Konishi, H. Differences in transport characteristics and cytotoxicity of epi-rubicin and doxorubicin in HepG2 and A549 cells. Anticancer Res., 2021, 41(12), 6105-6112.
[http://dx.doi.org/10.21873/anticanres.15430] [PMID: 34848465]
[39]
Itzhaki, E.; Hadad, E.; Moskovits, N.; Stemmer, S.M.; Margel, S. Tumor-targeted fluorescent proteinoid nanocapsules encapsulating syn-ergistic drugs for personalized cancer therapy. Pharmaceuticals (Basel), 2021, 14(7), 648.
[http://dx.doi.org/10.3390/ph14070648] [PMID: 34358074]
[40]
Ghosh, S.; Javia, A.; Shetty, S.; Bardoliwala, D.; Maiti, K.; Banerjee, S.; Khopade, A.; Misra, A.; Sawant, K.; Bhowmick, S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J. Control. Release, 2021, 337, 27-58.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.014] [PMID: 34273417]
[41]
Malliappan, S.P.; Kandasamy, P.; Chidambaram, S.; Venkatasubbu, D.; Perumal, S.K.; Sugumaran, A. Breast cancer targeted treatment strategies: Promising nanocarrier approaches. Anticancer. Agents Med. Chem., 2020, 20(11), 1300-1310.
[http://dx.doi.org/10.2174/1871520619666191022175003] [PMID: 31642415]
[42]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[43]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[http://dx.doi.org/10.2147/IJN.S56932] [PMID: 25678788]
[44]
Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers (Basel), 2011, 3(2), 1513-1526.
[http://dx.doi.org/10.3390/cancers3021513] [PMID: 24212772]
[45]
Laouini, A.; Jaafar-Maalej, C.; Sfar, S.; Charcosset, C.; Fessi, H. Liposome preparation using a hollow fiber membrane contactor--application to spironolactone encapsulation. Int. J. Pharm., 2011, 415(1-2), 53-61.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.034] [PMID: 21641982]
[46]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[47]
Ran, R.; Liu, Y.; Gao, H.; Kuang, Q.; Zhang, Q.; Tang, J.; Huang, K.; Chen, X.; Zhang, Z.; He, Q. Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: A potential candidate for overcoming multi-drug resistance. Int. J. Pharm., 2014, 477(1-2), 590-600.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.012] [PMID: 25448564]
[48]
Zucker, D.; Marcus, D.; Barenholz, Y.; Goldblum, A. Liposome drugs’ loading efficiency: A working model based on loading conditions and drug’s physicochemical properties. J. Control. Release, 2009, 139(1), 73-80.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.036] [PMID: 19508880]
[49]
Kataria, M.; Sethi, M.; Kaur, J.; Punia, S.; Kumar, K. Formulation of nanoparticles against TB-A review. Recent Pat. Inflamm. Allergy Drug Discov., 2015, 9(2), 120-127.
[http://dx.doi.org/10.2174/1872213X09666150929105501] [PMID: 26416563]
[50]
Markowska, A.; Kaysiewicz, J.; Markowska, J. Huczyński, A. Doxycycline, salinomycin, monensin and ivermectin repositioned as can-cer drugs. Bioorg. Med. Chem. Lett., 2019, 29(13), 1549-1554.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.045] [PMID: 31054863]
[51]
Wang, Z.; Sun, M.; Li, W.; Fan, L.; Zhou, Y.; Hu, Z. A novel CD133- and EpCAM-targeted liposome with redox-responsive properties capable of synergistically eliminating liver cancer stem cells. Front Chem., 2020, 8, 649.
[http://dx.doi.org/10.3389/fchem.2020.00649] [PMID: 32850663]
[52]
Ruttala, H.B.; Ko, Y.T. Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor effica-cy. Colloids Surf. B Biointerfaces, 2015, 128, 419-426.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.040] [PMID: 25797481]
[53]
Sun, L.; Zhou, D.S.; Zhang, P.; Li, Q.H.; Liu, P. Gemcitabine and γ-cyclodextrin/docetaxel inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma. Int. J. Pharm., 2015, 478(1), 308-317.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.052] [PMID: 25433201]
[54]
Bhattacharya, S. Design and development of docetaxel solid Self-Microemulsifying drug delivery system using principal component anal-ysis and D-Optimal design. Asian J. Pharm., 2018, 12(01)
[http://dx.doi.org/10.22377/ajp.v12i01.2051]
[55]
Fanciullino, R.; Mollard, S.; Giacometti, S.; Berda-Haddad, Y.; Chefrour, M.; Aubert, C.; Iliadis, A.; Ciccolini, J. In vitro and in vivo evalu-ation of lipofufol, a new triple stealth liposomal formulation of modulated 5-fu: Impact on efficacy and toxicity. Pharm. Res., 2013, 30(5), 1281-1290.
[http://dx.doi.org/10.1007/s11095-012-0967-2] [PMID: 23386105]
[56]
Bhattacharya, S. Fabrication of poly (sarcosine), poly (ethylene glycol), and poly (lactic-co-glycolic acid) polymeric nanoparticles for cancer drug delivery. J. Drug Deliv. Sci. Technol., 2021, 61, 102194.
[http://dx.doi.org/10.1016/j.jddst.2020.102194]
[57]
Dolatabadi, J.E.; Omidi, Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. Trends Analyt. Chem., 2016, 77, 100-108.
[http://dx.doi.org/10.1016/j.trac.2015.12.016]
[58]
Mahmoodi Chalbatani, G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rad, M.R.; Marmari, V. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. Int. J. Nanomedicine, 2019, 14, 3111-3128.
[http://dx.doi.org/10.2147/IJN.S200253] [PMID: 31118626]
[59]
Cao, L.; Zeng, Q.; Xu, C.; Shi, S.; Zhang, Z.; Sun, X. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenovi-ral vector expressing IL-12. Mol. Pharm., 2013, 10(5), 1804-1814.
[http://dx.doi.org/10.1021/mp300602j] [PMID: 23534449]
[60]
Lu, G.; Cao, L.; Zhu, C.; Xie, H.; Hao, K.; Xia, N.; Wang, B.; Zhang, Y.; Liu, F. Improving lung cancer treatment: Hyaluronic ac-id modified and glutathione responsive amphiphilic TPGS doxorubicin prodrug entrapped nanoparticles. Oncol. Rep., 2019, 42(1), 361-369.
[http://dx.doi.org/10.3892/or.2019.7139] [PMID: 31059082]
[61]
Feng, Q.; Yu, M.Z.; Wang, J.C.; Hou, W.J.; Gao, L.Y.; Ma, X.F.; Pei, X.W.; Niu, Y.J.; Liu, X.Y.; Qiu, C.; Pang, W.H.; Du, L.L.; Zhang, Q. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials, 2014, 35(18), 5028-5038.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.012] [PMID: 24680191]
[62]
Lei, M.; Ma, M.; Pang, X.; Tan, F.; Li, N. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a cop-per-doxorubicin complex and gold nanorods. Nanoscale, 2015, 7(38), 15999-16011.
[http://dx.doi.org/10.1039/C5NR04353K] [PMID: 26370706]
[63]
Madni, A.; Sarfraz, M.; Rehman, M.; Ahmad, M.; Akhtar, N.; Ahmad, S.; Tahir, N.; Ijaz, S.; Al-Kassas, R.; Löbenberg, R. Liposomal drug delivery: A versatile platform for challenging clinical applications. J. Pharm. Pharm. Sci., 2014, 17(3), 401-426.
[http://dx.doi.org/10.18433/J3CP55] [PMID: 25224351]
[64]
Gref, R.; Domb, A.; Quellec, P.; Blunk, T.; Müller, R.H.; Verbavatz, J.M.; Langer, R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev., 1995, 16(2-3), 215-233.
[http://dx.doi.org/10.1016/0169-409X(95)00026-4] [PMID: 25170183]
[65]
Jin, H.; Zhao, G.; Hu, J.; Ren, Q.; Yang, K.; Wan, C.; Huang, A.; Li, P.; Feng, J.P.; Chen, J.; Zou, Z. Melittin-containing hybrid peptide hydrogels for enhanced photothermal therapy of glioblastoma. ACS Appl. Mater. Interfaces, 2017, 9(31), 25755-25766.
[http://dx.doi.org/10.1021/acsami.7b06431] [PMID: 28714303]
[66]
Dogra, P.; Adolphi, N.L.; Wang, Z.; Lin, Y.S.; Butler, K.S.; Durfee, P.N.; Croissant, J.G.; Noureddine, A.; Coker, E.N.; Bearer, E.L.; Cristi-ni, V.; Brinker, C.J. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat. Commun., 2018, 9(1), 4551.
[http://dx.doi.org/10.1038/s41467-018-06730-z] [PMID: 30382084]
[67]
Alibakhshi, A.; Abarghooi Kahaki, F.; Ahangarzadeh, S.; Yaghoobi, H.; Yarian, F.; Arezumand, R.; Ranjbari, J.; Mokhtarzadeh, A.; de la Guardia, M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J. Control. Release, 2017, 268, 323-334.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.036] [PMID: 29107128]
[68]
Wang, K.; Huang, W.; Chen, R.; Lin, P.; Zhang, T.; Ni, Y.F.; Li, H.; Wu, J.; Sun, X.X.; Geng, J.J.; Zhu, Y.M.; Nan, G.; Zhang, W.; Chen, X.; Zhu, P.; Bian, H.; Chen, Z.N. Di-methylation of CD147-K234 promotes the progression of NSCLC by enhancing lactate export. Cell Metab., 2021, 33(1), 160-173.e6.
[http://dx.doi.org/10.1016/j.cmet.2020.12.010] [PMID: 33406400]
[69]
Sapra, P.; Allen, T.M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res., 2002, 62(24), 7190-7194.
[PMID: 12499256]
[70]
Laginha, K.; Mumbengegwi, D.; Allen, T. Liposomes targeted via two different antibodies: Assay, B-cell binding and cytotoxicity. Biochim. Biophys. Acta, 2005, 1711(1), 25-32.
[http://dx.doi.org/10.1016/j.bbamem.2005.02.007] [PMID: 15904660]
[71]
Kato, Y.; Okollie, B.; Raman, V.; Vesuna, F.; Zhao, M.; Baker, S.D.; Bhujwalla, Z.M.; Artemov, D. Contributing factors of temozolomide resistance in MCF-7 tumor xenograft models. Cancer Biol. Ther., 2007, 6(6), 891-897.
[http://dx.doi.org/10.4161/cbt.6.6.4096] [PMID: 17582214]
[72]
Wang, H.; Zhao, P.; Liang, X.; Gong, X.; Song, T.; Niu, R.; Chang, J. Folate-PEG coated cationic modified chitosan-cholesterol liposomes for tumor-targeted drug delivery. Biomaterials, 2010, 31(14), 4129-4138.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.089] [PMID: 20163853]
[73]
Sofou, S.; Sgouros, G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin. Drug Deliv., 2008, 5(2), 189-204.
[http://dx.doi.org/10.1517/17425247.5.2.189] [PMID: 18248318]
[74]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[75]
Xu, X.; Huang, W.; Heczey, A.; Liu, D.; Guo, L.; Wood, M.; Jin, J.; Courtney, A.N.; Liu, B.; Di Pierro, E.J.; Hicks, J.; Barragan, G.A.; Ngai, H.; Chen, Y.; Savoldo, B.; Dotti, G.; Metelitsa, L.S. NKT cells coexpressing a GD2-specific chimeric antigen receptor and IL15 show en-hanced in Vivo persistence and antitumor activity against neuroblastoma. Clin. Cancer Res., 2019, 25(23), 7126-7138.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0421] [PMID: 31484667]
[76]
Ni, H.; Zhang, S.; Ding, X.; Mi, T.; Wang, Z.; Liu, M. Determination of enrofloxacin in bovine milk by a novel single-stranded DNA Ap-tamer chemiluminescent enzyme immunoassay. Anal. Lett., 2014, 47(17), 2844-2856.
[http://dx.doi.org/10.1080/00032719.2014.924009]
[77]
Moosavian, S.A.; Abnous, K.; Badiee, A.; Jaafari, M.R. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids Surf. B Biointerfaces, 2016, 139, 228-236.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.009] [PMID: 26722819]
[78]
Thomas, I.B.K.; Gaminda, K.A.P.; Jayasinghe, C.D.; Abeysinghe, D.T.; Senthilnithy, R. DNAzymes, novel therapeutic agents in cancer therapy: A review of concepts to applications. J. Nucleic Acids, 2021, 2021, 9365081.
[http://dx.doi.org/10.1155/2021/9365081] [PMID: 34760318]
[79]
Shiu, L.Y.; Huang, H.H.; Chen, C.Y.; Cheng, H.Y.; Chen, C.I.; Kuo, S.M. Reparative and toxicity-reducing effects of liposome-encapsulated saikosaponin in mice with liver fibrosis. Biosci. Rep., 2020, 40(8), BSR20201219.
[http://dx.doi.org/10.1042/BSR20201219] [PMID: 32756863]
[80]
Yang, L.; Zhang, X.; Ye, M.; Jiang, J.; Yang, R.; Fu, T.; Chen, Y.; Wang, K.; Liu, C.; Tan, W. Aptamer-conjugated nanomaterials and their applications. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1361-1370.
[http://dx.doi.org/10.1016/j.addr.2011.10.002] [PMID: 22016112]
[81]
Kumar, T.R.; Soppimath, K.; Nachaegari, S.K. Novel delivery technologies for protein and peptide therapeutics. Curr. Pharm. Biotechnol., 2006, 7(4), 261-276.
[http://dx.doi.org/10.2174/138920106777950852] [PMID: 16918403]
[82]
Gabay, M.; Weizman, A.; Zeineh, N.; Kahana, M.; Obeid, F.; Allon, N.; Gavish, M. Liposomal carrier conjugated to APP-derived peptide for brain cancer treatment. Cell. Mol. Neurobiol., 2021, 41(5), 1019-1029.
[http://dx.doi.org/10.1007/s10571-020-00969-1] [PMID: 33025416]
[83]
Hayashi, T.; Shinagawa, M.; Kawano, T.; Iwasaki, T. Drug delivery using polyhistidine peptide-modified liposomes that target endogenous lysosome. Biochem. Biophys. Res. Commun., 2018, 501(3), 648-653.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.037] [PMID: 29746864]
[84]
Ediriwickrema, A.; Saltzman, W.M. Nanotherapy for cancer: Targeting and multifunctionality in the future of cancer therapies. ACS Biomater. Sci. Eng., 2015, 1(2), 64-78.
[http://dx.doi.org/10.1021/ab500084g] [PMID: 25984571]
[85]
Kanamala, M.; Wilson, W.R.; Yang, M.; Palmer, B.D.; Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug deliv-ery: A review. Biomaterials, 2016, 85, 152-167.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.061] [PMID: 26871891]
[86]
Mohapatra, A.; Sahadat, N.; Morshed, B.I.; McGraw, G.; Hoban, A.P.; Jenning, J.A.; Haggard, W.O.; Bumgardner, J.D.; Mishra, S.R. Stimu-li-controlled drug delivery system development with implantable biocompatible chitosan microbeads IAJC-ISAM International Conference, 2014.
[87]
Yan, W.; Leung, S.S.; To, K.K. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond.), 2020, 15(3), 303-318.
[http://dx.doi.org/10.2217/nnm-2019-0308] [PMID: 31802702]
[88]
Ghanbarzadeh, S.; Arami, S.; Pourmoazzen, Z.; Khorrami, A. Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes. Colloids Surf. B Biointerfaces, 2014, 115, 323-330.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.024] [PMID: 24394948]
[89]
Zarrabi, A.; Zarepour, A.; Khosravi, A.; Alimohammadi, Z.; Thakur, V.K. Synthesis of curcumin loaded smart pH-responsive stealth liposome as a novel nanocarrier for cancer treatment. Fibers (Basel), 2021, 9(3), 19.
[http://dx.doi.org/10.3390/fib9030019]
[90]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[91]
Kaur, J.; Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol., 2015, 16(8), 461-472.
[http://dx.doi.org/10.1038/nrm4024] [PMID: 26177004]
[92]
Shi, T.T.; Yu, X.X.; Yan, L.J.; Xiao, H.T. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol., 2017, 79(2), 287-294.
[http://dx.doi.org/10.1007/s00280-016-3197-1] [PMID: 27889812]
[93]
Lim, H.J.; Masin, D.; McIntosh, N.L.; Madden, T.D.; Bally, M.B. Role of drug release and liposome-mediated drug delivery in governing the therapeutic activity of liposomal mitoxantrone used to treat human A431 and LS180 solid tumors. J. Pharmacol. Exp. Ther., 2000, 292(1), 337-345.
[PMID: 10604968]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy