Abstract
Protein kinases are amongst the most focused enzymes in the current century to design, synthesize and formulate drugs that ought to be effective in the treatment of various disordered and diseased states involving either overexpression or deficiency situations. The ATP pocket on the kinases is the active binding site for most of the kinase inhibitors. However, the kinase mutations prevent the binding of kinase inhibitors to the ATP pocket. The enzyme becomes inactive even in the mutated state when the switch pocket site on the enzyme is occupied by switch pocket inhibitors. This review comprises detailed information regarding various classical protein kinases and switch pocket kinase inhibitors with their mechanism of action so that new molecules can be designed to encounter mutations in the kinase enzyme.
Keywords: Kinase, switch pocket, ATP pocket, kinase inhibitor, mutations, protein kinases.
[http://dx.doi.org/10.1016/j.jfma.2019.08.023] [PMID: 31522970]
[http://dx.doi.org/10.1146/annurev.bi.54.070185.004341] [PMID: 2992362]
(b) Liu, J-W.; Chen, C.; Loh, E-W.; Chu, C-C.; Wang, M-Y.; Ouyang, H-J.; Chang, Y-T.; Zhuang, W-Z.; Chou, C-W.; Huang, D-J.; Lee, C.H.; Yen, Y.; Tam, K.W. Tyrosine kinase inhibitors for advanced or metastatic thyroid cancer: A meta-analysis of randomized controlled trials. Curr. Med. Res. Opin., 2018, 34(5), 795-803.
[http://dx.doi.org/10.1080/03007995.2017.1368466] [PMID: 28812918]
(c) Lin, T.E.; HuangFu, W.C.; Chao, M.W.; Sung, T.Y.; Chang, C.D.; Chen, Y.Y.; Hsieh, J.H.; Tu, H.J.; Huang, H.L.; Pan, S.L.; Hsu, K.C. A novel selective JAK2 inhibitor identified using pharmacological interactions. Front. Pharmacol., 2018, 9, 1379.
[http://dx.doi.org/10.3389/fphar.2018.01379] [PMID: 30564118]
(d) Chao, T-K.; Huang, T-S.; Liao, Y-P.; Huang, R-L.; Su, P-H.; Shen, H-Y.; Lai, H-C.; Wang, Y-C. Pyruvate kinase M2 is a poor prognostic marker of and a therapeutic target in ovarian cancer. PLoS One, 2017, 12(7), e0182166.
[http://dx.doi.org/10.1371/journal.pone.0182166] [PMID: 28753677]
(e) Zucha, M.A.; Wu, A.T.; Lee, W-H.; Wang, L-S.; Lin, W-W.; Yuan, C-C.; Yeh, C-T. Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget, 2015, 6(15), 13255-13268.
[http://dx.doi.org/10.18632/oncotarget.3658] [PMID: 26036311]
(f) Chen, L.Y.; Huang, R.L.; Chan, M.W.; Yan, P.S.; Huang, T.S.; Wu, R.C.; Suryo Rahmanto, Y.; Su, P.H.; Weng, Y.C.; Chou, J.L.; Chao, T.K.; Wang, Y.C.; Shih, I.M.; Lai, H.C. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J. Pathol., 2019, 248(3), 363-376.
[http://dx.doi.org/10.1002/path.5266] [PMID: 30883733]
(g) Pan, Y.; Chiu, Y-H.; Chiu, S-C.; Cho, D-Y.; Lee, L-M.; Wen, Y-C.; Whang-Peng, J.; Hsiao, C-H.; Shih, P-H. Inhibition of bruton’s tyrosine kinase suppresses cancer stemness and promotes carboplatin- induced cytotoxicity against bladder cancer cells. Anticancer Res., 2020, 40(11), 6093-6099.
[http://dx.doi.org/10.21873/anticanres.14630] [PMID: 33109547]
(h) Anuraga, G.; Wang, W-J.; Phan, N.N.; An Ton, N.T.; Ta, H.D.K.; Berenice Prayugo, F.; Minh Xuan, D.T.; Ku, S-C.; Wu, Y-F.; Andriani, V.; Athoillah, M.; Lee, K.H.; Wang, C.Y. Potential prognostic biomarkers of nima (Never in mitosis, gene a)-related kinase (nek) family members in breast cancer. J. Pers. Med., 2021, 11(11), 1089.
[http://dx.doi.org/10.3390/jpm11111089] [PMID: 34834441]
(i) Liu, S-C.; Wu, Y-C.; Huang, C-M.; Hsieh, M-S.; Huang, T-Y.; Huang, C-S.; Hsu, T-N.; Huang, M-S.; Lee, W-H.; Yeh, C-T.; Lin, C.S. Inhibition of Bruton’s tyrosine kinase as a therapeutic strategy for chemoresistant oral squamous cell carcinoma and potential suppression of cancer stemness. Oncogenesis, 2021, 10(2), 20.
[http://dx.doi.org/10.1038/s41389-021-00308-z] [PMID: 33640903]
(j) Yen, S-C.; Chen, L-C.; Huang, H-L.; Ngo, S-T.; Wu, Y-W.; Lin, T.E.; Sung, T-Y.; Lien, S-T.; Tseng, H-J.; Pan, S-L.; Huang, W.J.; Hsu, K.C. Investigation of selected flavonoid derivatives as potent FLT3 inhibitors for the potential treatment of acute myeloid leukemia. J. Nat. Prod., 2021, 84(1), 1-10.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00589] [PMID: 33393294]
(k) Huang, D-Y.; Chen, W-Y.; Chen, C-L.; Wu, N-L.; Lin, W-W. Synergistic anti-tumour effect of syk inhibitor and olaparib in squamous cell carcinoma: Roles of syk in EGFR signalling and PARP1 activation. Cancers (Basel), 2020, 12(2), 489.
[http://dx.doi.org/10.3390/cancers12020489] [PMID: 32093123]
(l) Satriyo, P.B.; Su, C.M.; Ong, J.R.; Huang, W-C.; Fong, I-H.; Lin, C-C.; Aryandono, T.; Haryana, S.M.; Deng, L.; Huang, C-C.; Tzeng, Y.M.; Chao, T.Y.; Liu, H.W.; Yeh, C.T. 4-Acetylantroquinonol B induced DNA damage response signaling and apoptosis via suppressing CDK2/CDK4 expression in triple negative breast cancer cells. Toxicol. Appl. Pharmacol., 2021, 422, 115493.
[http://dx.doi.org/10.1016/j.taap.2021.115493] [PMID: 33727089]
(m) Chu, Y.C.; Tsai, T-Y.; Yadav, V.K.; Deng, L.; Huang, C-C.; Tzeng, Y-M.; Yeh, C-T.; Chen, M-Y. 4-acetyl-antroquinonol b improves the sensitization of cetuximab on both kras mutant and wild type colorectal cancer by modulating the expression of Ras/Raf/miR-193a-3p signaling axis. Int. J. Mol. Sci., 2021, 22(14), 7508.
[http://dx.doi.org/10.3390/ijms22147508] [PMID: 34299137]
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
(b) Pikatan, N.W.; Liu, Y-L.; Bamodu, O.A.; Hsiao, M.; Hsu, W-M.; Haryana, S.M.; Sutaryo, ; Chao, T.Y.; Yeh, C.T. Aberrantly expressed Bruton’s tyrosine kinase preferentially drives metastatic and stem cell-like phenotypes in neuroblastoma cells. Cell Oncol. (Dordr.), 2020, 43(6), 1067-1084.
[http://dx.doi.org/10.1007/s13402-020-00541-5] [PMID: 32705581]
(c) Wei, Y-F.; Huang, W-T.; Liu, T-C.; Shieh, J-M.; Chian, C-F.; Wu, M-F.; Chang, C-C.; Lin, C-H.; Ko, J-C.; Lin, C-M.; Hsia, T.C. Factors associated with improvement in symptoms and quality of life for first-line EGFR-tyrosine kinase inhibitor treatment in patients with EGFR-mutated non-small-cell lung cancer - A multicenter prospective SMILE study. J. Cancer, 2019, 10(17), 4151-4158.
[http://dx.doi.org/10.7150/jca.30507] [PMID: 31417660]
(d) Chuang, C-H.; Cheng, T-C.; Leu, Y-L.; Chuang, K-H.; Tzou, S-C.; Chen, C-S. Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int. J. Mol. Sci., 2015, 16(2), 3202-3212.
[http://dx.doi.org/10.3390/ijms16023202] [PMID: 25648320]
(e) Chao, S-W.; Su, M-Y.; Chiou, L-C.; Chen, L-C.; Chang, C-I.; Huang, W-J. Total synthesis of hispidulin and the structural basis for its inhibition of proto-oncogene kinase Pim-1. J. Nat. Prod., 2015, 78(8), 1969-1976.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00324] [PMID: 26275107]
(f) Yeh, C-T.; Chen, T-T.; Satriyo, P.B.; Wang, C-H.; Wu, A.T.H.; Chao, T-Y.; Lee, K-Y.; Hsiao, M.; Wang, L-S.; Kuo, K-T. Bruton’s tyrosine kinase (BTK) mediates resistance to EGFR inhibition in non-small-cell lung carcinoma. Oncogenesis, 2021, 10(7), 56.
[http://dx.doi.org/10.1038/s41389-021-00345-8] [PMID: 34315851]
(g) Fu, Y-H.; Ou, D-L.; Yang, Y-R.; Su, K-W.; Chen, C-Y.; Tien, H-F.; Lai, Z-S.; Shen, C.J.; Chien, H-F.; Lin, L-I. Cabozantinib promotes erythroid differentiation in K562 erythroleukemia cells through global changes in gene expression and JNK activation. Cancer Gene Ther., 2021, 1-9.
[http://dx.doi.org/10.1038/s41417-021-00358-w] [PMID: 34117374]
(h) Su, Y-K.; Bamodu, O.A.; Su, I.C.; Pikatan, N.W.; Fong, I-H.; Lee, W-H.; Yeh, C-T.; Chiu, H-Y.; Lin, C-M. Combined treatment with acalabrutinib and rapamycin inhibits glioma stem cells and promotes vascular normalization by downregulating btk/mtor/vegf signaling. Pharmaceuticals (Basel), 2021, 14(9), 876.
[http://dx.doi.org/10.3390/ph14090876] [PMID: 34577576]
(i) Lee, S-B.; Chang, T-Y.; Lee, N-Z.; Yu, Z-Y.; Liu, C-Y.; Lee, H-Y. Design, synthesis and biological evaluation of bisindole derivatives as anticancer agents against Tousled-like kinases. Eur. J. Med. Chem., 2022, 227, 113904.
[http://dx.doi.org/10.1016/j.ejmech.2021.113904] [PMID: 34662748]
(j) Fan, Y-C.; Hsu, K-C.; Lin, T-E.; Zechner, D.; Hsu, S-P.; Tsai, Y-C. Investigation of anti-tumor effects of an MLK1 inhibitor in prostate and pancreatic cancers. Biology (Basel), 2021, 10(8), 742.
[http://dx.doi.org/10.3390/biology10080742] [PMID: 34439974]
(k) Lee, S.; Wang, S-W.; Yu, C-L.; Tai, H-C.; Yen, J-Y.; Tuan, Y-L.; Wang, H-H.; Liu, Y-T.; Chen, S-S.; Lee, H-Y. Effect of phenylurea hydroxamic acids on histone deacetylase and VEGFR-2. Bioorg. Med. Chem., 2021, 50, 116454.
[http://dx.doi.org/10.1016/j.bmc.2021.116454] [PMID: 34634618]
(l) Lawal, B.; Lee, C-Y.; Mokgautsi, N.; Sumitra, M.R.; Khedkar, H.; Wu, A.T.H.; Huang, H-S. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 are druggable candidates for N-(2, 4-difluorophenyl)-2′, 4′-difluoro-4-hydroxybiphenyl-3-carboxamide (NSC765598), with consequent anticancer implications. Front. Oncol., 2021, 11, 656738.
[http://dx.doi.org/10.3389/fonc.2021.656738] [PMID: 33842373]
(m) Chao, M-W.; Lin, T.E.; HuangFu, W-C.; Chang, C-D.; Tu, H-J.; Chen, L-C.; Yen, S-C.; Sung, T-Y.; Huang, W-J.; Yang, C-R.; Pan, S-L.; Hsu, K-C. Identification of a dual TAOK1 and MAP4K5 inhibitor using a structure-based virtual screening approach. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 98-108.
[http://dx.doi.org/10.1080/14756366.2020.1843452]
(n) Lawal, B.; Liu, Y-L.; Mokgautsi, N.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H-S. Pharmacoinformatics and preclinical studies of nsc765690 and nsc765599, potential stat3/cdk2/4/6 inhibitors with antitumor activities against nci60 human tumor cell lines. Biomedicines, 2021, 9(1), 92.
[http://dx.doi.org/10.3390/biomedicines9010092] [PMID: 33477856]
[http://dx.doi.org/10.1016/j.tibs.2010.09.006] [PMID: 20971646]
[http://dx.doi.org/10.1038/s41598-019-56499-4] [PMID: 31875044]
[http://dx.doi.org/10.1016/j.bbapap.2015.03.009] [PMID: 25839999]
(b) Tsai, Y-T.; Su, Y-H.; Fang, S-S.; Huang, T-N.; Qiu, Y.; Jou, Y-S.; Shih, H.M.; Kung, H-J.; Chen, R-H. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell. Biol., 2000, 20(6), 2043-2054.
[http://dx.doi.org/10.1128/MCB.20.6.2043-2054.2000] [PMID: 10688651]
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
(b) Wang, C-Y.; Lee, M-H.; Kao, Y-R.; Hsiao, S-H.; Hong, S-Y.; Wu, C-W. Alisertib inhibits migration and invasion of EGFR-TKI resistant cells by partially reversing the epithelial-mesenchymal transition. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(6), 119016.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119016] [PMID: 33744274]
(c) Wu, A.T.H.; Huang, H-S.; Wen, Y-T.; Lawal, B.; Mokgautsi, N.; Huynh, T-T.; Hsiao, M.; Wei, L. A preclinical investigation of gbm-n019 as a potential inhibitor of glioblastoma via exosomal mtor/cdk6/stat3 signaling. Cells, 2021, 10(9), 2391.
[http://dx.doi.org/10.3390/cells10092391] [PMID: 34572040]
(d) Lawal, B.; Lo, W-C.; Mokgautsi, N.; Sumitra, M.R.; Khedkar, H.; Wu, A.T.; Huang, H-S. A preclinical report of a cobimetinib-inspired novel anticancer small-molecule scaffold of isoflavones, NSC777213, for targeting PI3K/AKT/mTOR/MEK in multiple cancers. Am. J. Cancer Res., 2021, 11(6), 2590-2617.
[PMID: 34249417]
[http://dx.doi.org/10.1093/ndt/gfr432] [PMID: 21804086]
[PMID: 19037840]
[http://dx.doi.org/10.1016/j.mri.2006.09.041] [PMID: 17371720]
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2378] [PMID: 22179664]
[http://dx.doi.org/10.1124/dmd.115.066282] [PMID: 26451002]
[PMID: 23671386]
[http://dx.doi.org/10.1007/s40265-018-1028-x] [PMID: 30506139]
[http://dx.doi.org/10.1007/s40265-016-0677-x] [PMID: 28032244]
[http://dx.doi.org/10.1038/nrc3612] [PMID: 24132104]
[http://dx.doi.org/10.1634/theoncologist.10-7-461] [PMID: 16079312]
[http://dx.doi.org/10.1358/dof.2011.036.04.1588554] [PMID: 23284223]
[http://dx.doi.org/10.1073/pnas.0405220101] [PMID: 15329413]
[http://dx.doi.org/10.1007/s00277-017-2973-2] [PMID: 28342031]
[http://dx.doi.org/10.1080/10428190801896103] [PMID: 18398720]
[http://dx.doi.org/10.1586/14737140.7.9.1183] [PMID: 17892419]
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5270] [PMID: 18765537]
[http://dx.doi.org/10.3109/10428194.2014.887714] [PMID: 24467220]
[http://dx.doi.org/10.1517/14740338.2012.712108] [PMID: 22861374]
[PMID: 17717967]
[http://dx.doi.org/10.1038/nrd3652] [PMID: 22293561]
[http://dx.doi.org/10.1001/archderm.144.11.1525] [PMID: 19015436]
[http://dx.doi.org/10.1128/MCB.20.23.9018-9027.2000] [PMID: 11074000]
[http://dx.doi.org/10.1530/ERC-15-0555] [PMID: 27207700]
[http://dx.doi.org/10.1038/nature09454] [PMID: 20823850]
[http://dx.doi.org/10.3109/10428199809057558] [PMID: 9711908]
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[PMID: 17116285]
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140341] [PMID: 23043437]
[http://dx.doi.org/10.1126/science.279.5350.577] [PMID: 9438854]
[http://dx.doi.org/10.1038/leu.2012.218] [PMID: 22907049]
[http://dx.doi.org/10.1016/j.bmcl.2010.07.134] [PMID: 20800479]
[http://dx.doi.org/10.1182/blood.V112.11.576.576]
[http://dx.doi.org/10.1093/annonc/mdy309] [PMID: 30101284]
[http://dx.doi.org/10.1038/s41416-019-0389-6] [PMID: 30792533]
[http://dx.doi.org/10.1126/science.1079666] [PMID: 12522257]
[http://dx.doi.org/10.1021/acs.jmedchem.8b01845] [PMID: 30968693]
[http://dx.doi.org/10.1016/j.ccell.2019.04.006] [PMID: 31085175]
[http://dx.doi.org/10.3390/molecules26030651] [PMID: 33513739]