Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Evaluation of the Mitigation Effect of Spirulina Against Lung Injury Induced by Radiation in Rats

Author(s): Mohammad H. Ahmadvand, Safoora Nikzad*, Vahid Changizi, Abdolazim S. Pashaki, Masoud Najafi and Fatemeh Mirzaei

Volume 16, Issue 1, 2023

Published on: 21 June, 2022

Page: [71 - 77] Pages: 7

DOI: 10.2174/1874471015666220418133919

Price: $65

Abstract

Background: Some compounds have been investigated to mitigate the effect of radiation on the lung, such as pneumonitis and fibrosis.

Objective: This study aimed to examine the mitigation efficiency of Spirulina compared to the effect of Metformin.

Methods: 25 male Wistar rats were allotted in five groups: control, Spirulina, Radiation, Radiation plus Spirulina, and Radiation plus Metformin. Rat chest regions were irradiated by 15 Gray (Gy) xradiation using aLINAC. Forty-eight hours after irradiation, treatment with Spirulina and Metformin began. Eighty days after irradiation, all rats were sacrificed, and their lung tissues were removed for histopathological, and biochemical assays.

Results: The results demonstrated that irradiation increased MDA (Malondialdehyde) levels while suppressing the SOD (superoxide dismutase) and GPx(glutathione peroxidase) activity in the irradiated group. MDA levels in lung tissues were reduced with Metformin but not with Spirulina. Both Metformin and Spirulina increased the SOD and GPx activity in lung tissue. Moreover, histopathological evaluations showed extensive changes in the lung tissue including infiltration of lymph cells around the bronchioles and blood vessels, thickening of the alveolar wall, and the disruption of the alveolar structure, as well as accumulation of collagen fibers. Administration of Spirulina and Metformin significantly reduced pathological changes in lung tissue, although the effect of Metformin was greater than that of Spirulina.

Conclusion: Spirulina could mitigate radiation-induced lung injury moderately, although Metformin is more effective than Spirulina as a mitigator agent.

Keywords: Spirulina, mitigation, radiation, oxidative stress, lung injury, radiation pneumonitis, fibrosis.

[1]
Jin, H.; Yoo, Y.; Kim, Y.; Kim, Y.; Cho, J.; Lee, Y.S. Radiation-induced lung fibrosis: Preclinical animal models and therapeutic strategies. Cancers (Basel), 2020, 12(6), 1-24.
[http://dx.doi.org/10.3390/cancers12061561] [PMID: 32545674]
[2]
Graves, P.R.; Siddiqui, F.; Anscher, M.S.; Movsas, B. Radiation pulmonary toxicity: From mechanisms to management. Semin. Radiat. Oncol., 2010, 20(3), 201-207.
[http://dx.doi.org/10.1016/j.semradonc.2010.01.010] [PMID: 20685583]
[3]
Azmoonfar, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Khodamoradi, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Celecoxib A selective COX-2 inhibitor mitigates fibrosis but not pneumonitis following lung irradiation: A histopathological study. Curr. Drug Ther., 2019, 15(4), 351-357.
[http://dx.doi.org/10.2174/1574885514666191119124739]
[4]
Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.001] [PMID: 27692296]
[5]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2017, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[6]
Kong, F.M.; Wang, S. Nondosimetric risk factors for radiation-induced lung toxicity. Semin. Radiat. Oncol., 2015, 25(2), 100-109.
[http://dx.doi.org/10.1016/j.semradonc.2014.12.003] [PMID: 25771414]
[7]
Jiang, X.; Jiang, X.; Qu, C.; Chang, P.; Zhang, C.; Qu, Y.; Liu, Y. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats. Cytotherapy, 2015, 17(5), 560-570.
[http://dx.doi.org/10.1016/j.jcyt.2015.02.011] [PMID: 25791071]
[8]
Kim, J.H.; Jenrow, K.A.; Brown, S.L. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J., 2014, 32(3), 103-115.
[http://dx.doi.org/10.3857/roj.2014.32.3.103] [PMID: 25324981]
[9]
Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol., 2016, 90(8), 1817-1840.
[http://dx.doi.org/10.1007/s00204-016-1744-5] [PMID: 27259333]
[10]
Ismail, M.; Hossain, M.F.; Tanu, A.R.; Shekhar, H.U. Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients. BioMed Res. Int., 2015, 2015, 486120.
[http://dx.doi.org/10.1155/2015/486120] [PMID: 25685791]
[11]
Verma, S.; Samarth, R.; Panwar, M. Evaluation of radioprotective effects of spirulina in swiss albino mice. Asian J. Exp. Sci., 2006, 20(1), 121-126.
[12]
Guoshun, HW Xu Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Physiol. Behav., 2016, 176(1), 139-148.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.045]
[13]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina (Kaunas), 2019, 55(8), 1-10.
[http://dx.doi.org/10.3390/medicina55080417] [PMID: 31366142]
[14]
Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; Farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[15]
Rehab. Evaluation of the effect of Spirulina against Gamma irradiation induced oxidative stress and tissue injury in rats. Int J Appl Sci Eng Res, 2012, 1(1), 152-164.
[16]
Rezaeyan, A.; Fardid, R.; Haddadi, G.H.; Takhshid, M.A.; Hosseinzadeh, M.; Najafi, M.; Salajegheh, A. Evaluating radioprotective effect of hesperidin on acute radiation damage in the lung tissue of rats. J. Biomed. Phys. Eng., 2016, 6(3), 165-174.
[PMID: 27853724]
[17]
Zhao, D.Y.; Qu, H.J.; Guo, J.M.; Zhao, H.N.; Yang, Y.Y.; Zhang, P.; Cao, K.; Lei, X.; Cui, J.G.; Liu, C.; Cai, J.M.; Gao, F.; Li, B.L. Protective effects of myrtol standardized against radiation-induced lung injury. Cell. Physiol. Biochem., 2016, 38(2), 619-634.
[http://dx.doi.org/10.1159/000438655] [PMID: 26849230]
[18]
Yu, J.; Che, J.; Liu, L.; Yang, F.; Zhu, X.; Cao, B. Tetrahydropalmatine attenuates irradiation induced lung injuries in rats. Life Sci., 2016, 153, 74-81.
[http://dx.doi.org/10.1016/j.lfs.2016.03.056] [PMID: 27060221]
[19]
Aldina, R.; Haryati, S.W. Effect of spirulina platensis extract on vascular endothelial growth factor (VEGF) expression in corneal inflammation in rat (rattus novergicus) strain wistar. EurAsian J Biosci, 2019, 13(2), 823-829.
[20]
Bermejo-Bescós, P.; Piñero-Estrada, E.; Villar del Fresno, Á.M. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol. In Vitro, 2008, 22(6), 1496-1502.
[http://dx.doi.org/10.1016/j.tiv.2008.05.004] [PMID: 18572379]
[21]
Hirahashi, T.; Matsumoto, M.; Hazeki, K.; Saeki, Y.; Ui, M.; Seya, T. Activation of the human innate immune system by Spirulina: Augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol., 2002, 2(4), 423-434.
[http://dx.doi.org/10.1016/S1567-5769(01)00166-7] [PMID: 11962722]
[22]
Al-Batshan, H.A.; Al-Mufarrej, S.I.; Al-Homaidan, A.A.; Qureshi, M.A. Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensis. Immunopharmacol. Immunotoxicol., 2001, 23(2), 281-289.
[http://dx.doi.org/10.1081/IPH-100103866] [PMID: 11417854]
[23]
Giuranno, L.; Ient, J.; De Ruysscher, D.; Vooijs, M.A. Radiation-Induced Lung Injury (RILI). Front. Oncol., 2019, 9, 877.
[http://dx.doi.org/10.3389/fonc.2019.00877] [PMID: 31555602]
[24]
Huang, Y.; Liu, W.; Liu, H.; Yang, Y.; Cui, J.; Zhang, P.; Zhao, H.; He, F.; Cheng, Y.; Ni, J.; Cai, J.; Li, B.; Gao, F. Grape seed pro-anthocyanidins ameliorates radiation-induced lung injury. J. Cell. Mol. Med., 2014, 18(7), 1267-1277.
[http://dx.doi.org/10.1111/jcmm.12276] [PMID: 24758615]
[25]
Chen, B.; Na, F.; Yang, H.; Li, R.; Li, M.; Sun, X.; Hu, B.; Huang, G.; Lan, J.; Xu, H.; Tong, R.; Mo, X.; Xue, J.; Lu, Y. Ethyl pyruvate alleviates radiation-induced lung injury in mice. Biomed. Pharmacother., 2017, 92, 468-478.
[http://dx.doi.org/10.1016/j.biopha.2017.05.111] [PMID: 28570981]
[26]
Dai, J.; Liu, M.; Ai, Q.; Lin, L.; Wu, K.; Deng, X.; Jing, Y.; Jia, M.; Wan, J.; Zhang, L. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury. Chem. Biol. Interact., 2014, 216(1), 34-42.
[http://dx.doi.org/10.1016/j.cbi.2014.03.013] [PMID: 24717679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy