Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Therapeutic Effects of Thymoquinone on Alzheimer’s Disease through Modulating Amyloid-beta Neurotoxicity and Neuro-inflammatory Cytokine Levels

Author(s): Fawaz Alasmari*, Farraj M. Alotaibi, Wedad Saeed Al-Qahtani, Abdullah F. AlAsmari and Faleh Alqahtani

Volume 22, Issue 5, 2023

Published on: 05 July, 2022

Page: [736 - 744] Pages: 9

DOI: 10.2174/1871527321666220418125057

open access plus

conference banner
Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease that involves several impaired neuronal pathways. Modulating the amyloid-beta (β-amyloid) system is being tested to treat AD. Amyloid-beta neurotoxicity is associated with neuroinflammation and plaque formation, further progressing to AD. Protecting neurons from β-amyloid neurotoxicity could be an efficient strategy for the treatment of AD. Thymoquinone (TQ) is an active ingredient in Nigella sativa (NS) and has shown effective therapeutic properties in AD models. TQ was able to attenuate the behavioral dysfunctions in AD models. Moreover, TQ could attenuate the neuroinflammation properties in animals with AD. In addition, studies have shown that TQ could modulate β -amyloid neurotoxicity, an effect associated with improved AD behavioral symptoms. In this review, we highlighted the therapeutic effects of TQ on the progression of AD through modulating β-amyloid neurotoxicity and neuro-inflammatory cytokine levels. Other phenolic compounds also present in NS improved behavioral and neuronal impairments in AD models, supporting TQ’s anti-Alzhiemer’s efficacy.

Keywords: Alzheimer’s disease, neuroinflammation, amyloid-beta neurotoxicity, thymoquinone therapy, Nigella sativa, glutamate, acetylcholinesterase.

[1]
Tejada-Vera B. Mortality from Alzheimer’s disease in the United States: Data for 2000 and 2010. NCHS Data Brief 2013; (116): 1-8.
[PMID: 23742787]
[2]
Moschetti K, Cummings PL, Sorvillo F, Kuo T. Burden of Alzheimer’s disease-related mortality in the United States, 1999-2008. J Am Geriatr Soc 2012; 60(8): 1509-14.
[http://dx.doi.org/10.1111/j.1532-5415.2012.04056.x] [PMID: 22860569]
[3]
Agbayewa MO. Earlier psychiatric morbidity in patients with Alzheimer’s disease. J Am Geriatr Soc 1986; 34(8): 561-4.
[http://dx.doi.org/10.1111/j.1532-5415.1986.tb05759.x] [PMID: 3722676]
[4]
Wilson RS, Krueger KR, Kamenetsky JM, et al. Hallucinations and mortality in Alzheimer disease. Am J Geriatr Psychiatry 2005; 13(11): 984-90.
[5]
Ganguli M, Dodge HH, Shen C, Pandav RS, DeKosky ST. Alzheimer disease and mortality: A 15-year epidemiological study. Arch Neurol 2005; 62(5): 779-84.
[http://dx.doi.org/10.1001/archneur.62.5.779] [PMID: 15883266]
[6]
Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2012; 167(2): 324-52.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[7]
Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 2004; 45(5): 583-95.
[http://dx.doi.org/10.1016/j.neuint.2004.03.007] [PMID: 15234100]
[8]
Molinuevo JL, Lladó A, Rami L. Memantine: Targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen 2005; 20(2): 77-85.
[http://dx.doi.org/10.1177/153331750502000206] [PMID: 15844753]
[9]
Tabet N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing 2006; 35(4): 336-8.
[http://dx.doi.org/10.1093/ageing/afl027] [PMID: 16788077]
[10]
Kirby J, Green C, Loveman E, et al. A systematic review of the clinical and cost-effectiveness of memantine in patients with moderately severe to severe Alzheimer’s disease. Drugs Aging 2006; 23(3): 227-40.
[http://dx.doi.org/10.2165/00002512-200623030-00005] [PMID: 16608378]
[11]
Robinson DM, Keating GM. Memantine: A review of its use in Alzheimer’s disease. Drugs 2006; 66(11): 1515-34.
[http://dx.doi.org/10.2165/00003495-200666110-00015] [PMID: 16906789]
[12]
McGleenon BM, Dynan KB, Passmore AP. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol 1999; 48(4): 471-80.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00026.x] [PMID: 10583015]
[13]
Onor ML, Trevisiol M, Aguglia E. Rivastigmine in the treatment of Alzheimer’s disease: An update. Clin Interv Aging 2007; 2(1): 17-32.
[http://dx.doi.org/10.2147/ciia.2007.2.1.17] [PMID: 18044073]
[14]
Sisodia SS, Price DL. Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J 1995; 9(5): 366-70.
[http://dx.doi.org/10.1096/fasebj.9.5.7896005] [PMID: 7896005]
[15]
Nalbantoglu J. Beta-amyloid protein in Alzheimer's disease. CJNS 1991; 18 (3 Suppl): 424-7.
[16]
Haas C, Hung AY, Citron M, Teplow DB, Selkoe DJ. Beta-Amyloid, protein processing and Alzheimer’s disease. Arzneimittelforschung 1995; 45(3A): 398-402.
[PMID: 7763333]
[17]
Bao X. Beta-amyloid protein and Alzheimer’s disease. Chin Med J (Engl) 1996; 109(1): 41-3.
[PMID: 8758362]
[18]
Song JX, Malampati S, Zeng Y, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 2020; 19(2): e13069.
[http://dx.doi.org/10.1111/acel.13069] [PMID: 31858697]
[19]
Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory cytokines induce amyloid beta neurotoxicity through modulating amyloid precursor protein levels/metabolism. Biomed Res Int 2018; 2018: 3087475.
[20]
Hayden EY, Teplow DB. Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 2013; 5(6): 60.
[http://dx.doi.org/10.1186/alzrt226] [PMID: 24289820]
[21]
Mori T, Koyama N, Yokoo T, et al. Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J Biol Chem 2020; 295(48): 16251-66.
[http://dx.doi.org/10.1074/jbc.RA119.012330] [PMID: 32913125]
[22]
Liu X, Liu Y, Ji S. Secretases related to amyloid precursor protein processing. Membranes (Basel) 2021; 11(12): 983.
[http://dx.doi.org/10.3390/membranes11120983] [PMID: 34940484]
[23]
Cirrito JR, Wallace CE, Yan P, et al. Effect of escitalopram on Aβ levels and plaque load in an Alzheimer mouse model. Neurology 2020; 95(19): e2666-74.
[http://dx.doi.org/10.1212/WNL.0000000000010733] [PMID: 32913022]
[24]
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol 2020; 98(1): 28-41.
[http://dx.doi.org/10.1111/imcb.12301] [PMID: 31654430]
[25]
He XF, Xu JH, Li G, et al. NLRP3-dependent microglial training impaired the clearance of amyloid-beta and aggravated the cognitive decline in Alzheimer’s disease. Cell Death Dis 2020; 11(10): 849.
[http://dx.doi.org/10.1038/s41419-020-03072-x] [PMID: 33051464]
[26]
Hook G, Hook V, Kindy M. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer’s disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. J Alzheimers Dis 2011; 26(2): 387-408.
[http://dx.doi.org/10.3233/JAD-2011-110101] [PMID: 21613740]
[27]
Alhebshi AH, Gotoh M, Suzuki I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun 2013; 433(4): 362-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.139] [PMID: 23537659]
[28]
Goldgaber D, Harris HW, Hla T, et al. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 1989; 86(19): 7606-10.
[http://dx.doi.org/10.1073/pnas.86.19.7606] [PMID: 2508093]
[29]
Ismail N, Ismail M, Latiff LA, Mazlan M, Mariod AA. Black cumin seed (Nigella sativa Linn.) oil and its fractions protect against beta amyloid peptide‐induced toxicity in primary cerebellar granule neurons. J Food Lipids 2008; 15(4): 519-33.
[http://dx.doi.org/10.1111/j.1745-4522.2008.00137.x]
[30]
Velagapudi R, Kumar A, Bhatia HS, et al. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int Immunopharmacol 2017; 48: 17-29.
[http://dx.doi.org/10.1016/j.intimp.2017.04.018] [PMID: 28458100]
[31]
Taka E, Mazzio EA, Goodman CB, et al. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol 2015; 286: 5-12.
[http://dx.doi.org/10.1016/j.jneuroim.2015.06.011] [PMID: 26298318]
[32]
Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017; 96: 173-84.
[http://dx.doi.org/10.1016/j.cyto.2017.04.015] [PMID: 28432986]
[33]
Umar S, Hedaya O, Singh AK, Ahmed S. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation. Toxicol Appl Pharmacol 2015; 287(3): 299-305.
[http://dx.doi.org/10.1016/j.taap.2015.06.017] [PMID: 26134265]
[34]
Cascella M, Bimonte S, Barbieri A, et al. Dissecting the potential roles of Nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer’s Disease. Front Aging Neurosci 2018; 10: 16.
[http://dx.doi.org/10.3389/fnagi.2018.00016] [PMID: 29479315]
[35]
Kalamegam G, Alfakeeh SM, Bahmaid AO, et al. In vitro evaluation of the anti-inflammatory effects of thymoquinone in osteoarthritis and in silico analysis of inter-related pathways in age-related degenerative diseases. Front Cell Dev Biol 2020; 8: 646.
[http://dx.doi.org/10.3389/fcell.2020.00646] [PMID: 32793594]
[36]
Elibol B, Beker M, Terzioglu-Usak S, Dalli T, Kilic U. Thymoquinone administration ameliorates Alzheimer’s disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1-42 infused rat model. Phytomedicine 2020; 79: 153324.
[http://dx.doi.org/10.1016/j.phymed.2020.153324] [PMID: 32920292]
[37]
Sahak MKA, Kabir N, Abbas G, et al. The role of Nigella sativa and its active constituents in learning and memory. Evid Based Complement Alternat Med 2016; 2016: 6075679.
[38]
Mohamed AB, Mohamed AZ, Aly S. Effect of thymoquinone against aluminum chloride-induced alzheimer-like model in rats: A neurophysiological and behavioral study. Med J Cairo Univ 2020; 88: 355-65.
[39]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[40]
Jukic M, Politeo O, Maksimovic M, Milos M, Milos M. in vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res 2007; 21(3): 259-61.
[http://dx.doi.org/10.1002/ptr.2063] [PMID: 17186491]
[41]
Alhibshi AH, Odawara A, Suzuki I. Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. Biochem Biophys Rep 2019; 17: 122-6.
[http://dx.doi.org/10.1016/j.bbrep.2018.12.005] [PMID: 30623116]
[42]
Zaher MF, Bendary MA, Abd El-Aziz GS, Ali AS. Potential protective role of thymoquinone on experimentally-induced Alzheimer rats. J Pharm Res Int 2019; 1-18.
[http://dx.doi.org/10.9734/jpri/2019/v31i630358]
[43]
Khan A, Vaibhav K, Javed H, et al. Attenuation of Aβ-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 2012; 369(1-2): 55-65.
[http://dx.doi.org/10.1007/s11010-012-1368-x] [PMID: 22752387]
[44]
Ismail N, Ismail M, Azmi NH, et al. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats. Chem Biol Interact 2017; 275: 61-73.
[http://dx.doi.org/10.1016/j.cbi.2017.07.014] [PMID: 28734741]
[45]
Fouad IA, Sharaf NM, Abdelghany RM, El Sayed NSED. Neuromodulatory effect of Thymoquinone in attenuating glutamate-mediated neurotoxicity targeting the amyloidogenic and apoptotic pathways. Front Neurol 2018; 9: 236.
[http://dx.doi.org/10.3389/fneur.2018.00236] [PMID: 29706929]
[46]
Poorgholam P, Yaghmaei P, Hajebrahimi Z. Thymoquinone recovers learning function in a rat model of Alzheimer’s disease. Avicenna J Phytomed 2018; 8(3): 188-97.
[PMID: 29881705]
[47]
Landucci E, Mazzantini C, Buonvicino D, Pellegrini-Giampietro DE, Bergonzi MC. Neuroprotective effects of thymoquinone by the modulation of ER stress and apoptotic pathway in in vitro model of excitotoxicity. Molecules 2021; 26(6): 1592.
[http://dx.doi.org/10.3390/molecules26061592] [PMID: 33805696]
[48]
Tian F, Liu R, Fan C, et al. Effects of thymoquinone on small-molecule metabolites in a rat model of cerebral ischemia reperfusion injury assessed using MALDI-MSI. Metabolites 2020; 10(1): 27.
[http://dx.doi.org/10.3390/metabo10010027] [PMID: 31936061]
[49]
Al Mamun A, Hashimoto M, Katakura M, Hossain S, Shido O. Neuroprotective effect of thymoquinone against glutamate-induced toxicity in sh-sy5y cells. Curr Top Nutraceutical Res 2015; 13(3): 143-51.
[50]
Elibol B, Terzioglu-Usak S, Beker M, Sahbaz C. Thymoquinone (TQ) demonstrates its neuroprotective effect via an anti-inflammatory action on the A β (1–42)-infused rat model of Alzheimer’s disease. Psychiatry Clin Psychopharmacol 2019; 29(4): 379-86.
[http://dx.doi.org/10.1080/24750573.2019.1673945]
[51]
Azzubaidi MS, Saxena AKA, Talib NA, Ahmed QU, Dogarai BBS. Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion. Acta Neurobiol Exp (Warsz) 2012; 72(2): 154-65.
[PMID: 22810217]
[52]
El-Marasy SA, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA. Effect of Nigella sativa and wheat germ oils on scopolamine-induced memory impairment in rats. Bull Fac Pharm Cairo Univ 2012; 50(2): 81-8.
[http://dx.doi.org/10.1016/j.bfopcu.2012.05.001]
[53]
Bin Sayeed MS, Asaduzzaman M, Morshed H, Hossain MM, Kadir MF, Rahman MR. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. J Ethnopharmacol 2013; 148(3): 780-6.
[http://dx.doi.org/10.1016/j.jep.2013.05.004] [PMID: 23707331]
[54]
Beheshti F, Hosseini M, Vafaee F, Shafei MN, Soukhtanloo M. Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats. J Tradit Complement Med 2015; 6(2): 146-52.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.039] [PMID: 27114937]
[55]
Majdalawieh AF, Fayyad MW. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int Immunopharmacol 2015; 28(1): 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[56]
El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. Pharmacotherapy with thymoquinone improved pancreatic β-cell integrity and functional activity, enhanced islets revascularization, and alleviated metabolic and hepato-renal disturbances in streptozotocin-induced diabetes in rats. Pharmacology 2018; 101(1-2): 9-21.
[http://dx.doi.org/10.1159/000480018] [PMID: 28926842]
[57]
Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol 2004; 139(3): 237-45.
[http://dx.doi.org/10.1016/j.resp.2003.10.006] [PMID: 15122990]
[58]
Smith KE, Gibson ES, Dell’Acqua ML. cAMP-dependent protein kinase postsynaptic localization regulated by NMDA receptor activation through translocation of an A-kinase anchoring protein scaffold protein. J Neurosci 2006; 26(9): 2391-402.
[http://dx.doi.org/10.1523/JNEUROSCI.3092-05.2006] [PMID: 16510716]
[59]
Abe M, Fukaya M, Yagi T, Mishina M, Watanabe M, Sakimura K. NMDA receptor GluRepsilon/NR2 subunits are essential for postsynaptic localization and protein stability of GluRzeta1/NR1 subunit. J Neurosci 2004; 24(33): 7292-304.
[http://dx.doi.org/10.1523/JNEUROSCI.1261-04.2004] [PMID: 15317856]
[60]
Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA. Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 2009; 39(3): 343-9.
[http://dx.doi.org/10.1002/mus.21099] [PMID: 19208409]
[61]
Berg LK, Larsson M, Morland C, Gundersen V. Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses. Neuroscience 2013; 230: 139-50.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.061] [PMID: 23159309]
[62]
Bergersen LH, Magistretti PJ, Pellerin L. Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 2005; 15(4): 361-70.
[http://dx.doi.org/10.1093/cercor/bhh138] [PMID: 15749979]
[63]
McShane RH. Memantine plus donepezil improves physical and mental health in people with Alzheimer’s disease. Evid Based Ment Health 2004; 7(3): 76.
[http://dx.doi.org/10.1136/ebmh.7.3.76] [PMID: 15273220]
[64]
Olivares D, Deshpande VK, Shi Y, et al. N-Methyl D-Aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res 2012; 9(6): 746-58.
[http://dx.doi.org/10.2174/156720512801322564] [PMID: 21875407]
[65]
Goussakov I, Miller MB, Stutzmann GE. NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 2010; 30(36): 12128-37.
[http://dx.doi.org/10.1523/JNEUROSCI.2474-10.2010] [PMID: 20826675]
[66]
Bordji K, Becerril-Ortega J, Buisson A. Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev Neurosci 2011; 22(3): 285-94.
[http://dx.doi.org/10.1515/rns.2011.029] [PMID: 21568789]
[67]
Loopuijt LD, Schmidt WJ. The role of NMDA receptors in the slow neuronal degeneration of Parkinson’s disease. Amino Acids 1998; 14(1-3): 17-23.
[http://dx.doi.org/10.1007/BF01345237] [PMID: 9871436]
[68]
Cosman KM, Boyle LL, Porsteinsson AP. Memantine in the treatment of mild-to-moderate Alzheimer’s disease. Expert Opin Pharmacother 2007; 8(2): 203-14.
[http://dx.doi.org/10.1517/14656566.8.2.203] [PMID: 17257090]
[69]
van Dyck CH, Tariot PN, Meyers B, Malca Resnick E. Memantine MEM-MD-01 Study Group. A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease. Alzheimer Dis Assoc Disord 2007; 21(2): 136-43.
[http://dx.doi.org/10.1097/WAD.0b013e318065c495] [PMID: 17545739]
[70]
Rogers SL, Friedhoff LT. The Donepezil Study Group. The efficacy and safety of donepezil in patients with Alzheimer’s disease: Results of a US multicentre, randomized, double-blind, placebo-controlled trial. Dementia 1996; 7(6): 293-303.
[PMID: 8915035]
[71]
Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer’s disease - results from a multinational trial. Dement Geriatr Cogn Disord 1999; 10(3): 237-44.
[http://dx.doi.org/10.1159/000017126] [PMID: 10325453]
[72]
Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: Multicentre randomised controlled trial. Galantamine International-1 Study Group. BMJ 2000; 321(7274): 1445-9.
[http://dx.doi.org/10.1136/bmj.321.7274.1445] [PMID: 11110737]
[73]
Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76(1): 116-29.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[74]
Polinsky RJ. Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther 1998; 20(4): 634-47.
[http://dx.doi.org/10.1016/S0149-2918(98)80127-6] [PMID: 9737824]
[75]
Farlow M, Gracon SI, Hershey LA, et al. The Tacrine Study Group. A controlled trial of tacrine in Alzheimer’s disease. JAMA 1992; 268(18): 2523-9.
[http://dx.doi.org/10.1001/jama.1992.03490180055026] [PMID: 1404819]
[76]
Jones RW. Have cholinergic therapies reached their clinical boundary in Alzheimer’s disease? Int J Geriatr Psychiatry 2003; 18 (Suppl. 1): S7-S13.
[http://dx.doi.org/10.1002/gps.936] [PMID: 12973745]
[77]
Prasher VP. Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: Implications for the intellectual disability population. Int J Geriatr Psychiatry 2004; 19(6): 509-15.
[http://dx.doi.org/10.1002/gps.1077] [PMID: 15211527]
[78]
Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994; 271(13): 992-8.
[http://dx.doi.org/10.1001/jama.1994.03510370044030] [PMID: 8139084]
[79]
Crismon ML. Tacrine: First drug approved for Alzheimer’s disease. Ann Pharmacother 1994; 28(6): 744-51.
[http://dx.doi.org/10.1177/106002809402800612] [PMID: 7919566]
[80]
Rishitha N, Muthuraman A, Saravanababu C. Therapeutic evaluation of thymoquinone in the intracerebroventricular injection of l-cysteine induced vascular dementia in rats. Int J Nutr Pharmacol Neurol Dis 2020; 10(3): 120.
[81]
Campbell NL, Perkins AJ, Gao S, et al. Adherence and tolerability of Alzheimer’s disease medications: A pragmatic randomized trial. J Am Geriatr Soc 2017; 65(7): 1497-504.
[http://dx.doi.org/10.1111/jgs.14827] [PMID: 28295141]
[82]
Courtney C, Farrell D, Gray R, et al. AD2000 Collaborative Group. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): Randomised double-blind trial. Lancet 2004; 363(9427): 2105-15.
[http://dx.doi.org/10.1016/S0140-6736(04)16499-4] [PMID: 15220031]
[83]
Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res 1996; 706(2): 181-93.
[http://dx.doi.org/10.1016/0006-8993(95)01032-7] [PMID: 8822355]
[84]
Giovannini MG, Scali C, Prosperi C, et al. β-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: Involvement of the p38MAPK pathway. Neurobiol Dis 2002; 11(2): 257-74.
[http://dx.doi.org/10.1006/nbdi.2002.0538] [PMID: 12505419]
[85]
Hock C, Konietzko U, Streffer JR, et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4): 547-54.
[http://dx.doi.org/10.1016/S0896-6273(03)00294-0] [PMID: 12765607]
[86]
Frenkel D, Katz O, Solomon B. Immunization against Alzheimer’s β-amyloid plaques via EFRH phage administration. Proc Natl Acad Sci USA 2000; 97(21): 11455-9.
[http://dx.doi.org/10.1073/pnas.97.21.11455] [PMID: 11027345]
[87]
Vassar R, Bennett BD, Babu-Khan S, et al. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286(5440): 735-41.
[88]
Wilcock GK, Black SE, Hendrix SB, et al. Tarenflurbil Phase II Study investigators. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomised phase II trial. Lancet Neurol 2008; 7(6): 483-93.
[http://dx.doi.org/10.1016/S1474-4422(08)70090-5] [PMID: 18450517]
[89]
Alasmari F, Ashby CR Jr, Hall FS, Sari Y, Tiwari AK. Modulation of the ATP-binding cassette B1 transporter by neuro-inflammatory cytokines: Role in the pathogenesis of Alzheimer’s disease. Front Pharmacol 2018; 9: 658.
[http://dx.doi.org/10.3389/fphar.2018.00658] [PMID: 29973883]
[90]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[91]
Asadbegi M, Yaghmaei P, Salehi I, Komaki A, Ebrahim-Habibi A. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet-fed rats. Metab Brain Dis 2017; 32(3): 827-39.
[http://dx.doi.org/10.1007/s11011-017-9960-0] [PMID: 28255862]
[92]
Asadbegi M, Komaki A, Salehi I, et al. Effects of thymol on amyloid-β-induced impairments in hippocampal synaptic plasticity in rats fed a high-fat diet. Brain Res Bull 2018; 137: 338-50.
[http://dx.doi.org/10.1016/j.brainresbull.2018.01.008] [PMID: 29339105]
[93]
Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. Int J Mol Sci 2019; 20(7): 1538.
[http://dx.doi.org/10.3390/ijms20071538] [PMID: 30934738]
[94]
Azizi Z, Salimi M, Amanzadeh A, Majelssi N, Naghdi N. Carvacrol and thymol attenuate cytotoxicity induced by amyloid β25-35 via activating protein kinase C and inhibiting oxidative stress in PC12 cells. Iran Biomed J 2020; 24(4): 243-50.
[http://dx.doi.org/10.29252/ibj.24.4.243] [PMID: 32306722]
[95]
Seifi-Nahavandi B, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. Cymene consumption and physical activity effect in Alzheimer’s disease model: An in vivo and in vitro study. J Diabetes Metab Disord 2020; 19(2): 1381-9.
[http://dx.doi.org/10.1007/s40200-020-00658-2] [PMID: 33520841]
[96]
Medhat D, El-Mezayen HA, El-Naggar ME, et al. Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles. Mol Biol Rep 2019; 46(4): 4517-27.
[http://dx.doi.org/10.1007/s11033-019-04907-3] [PMID: 31209743]
[97]
Bonjardim LR, Cunha ES, Guimarães AG, et al. Evaluation of the anti-inflammatory and antinociceptive properties of p-cymene in mice. Z Naturforsch C J Biosci 2012; 67(1-2): 15-21.
[http://dx.doi.org/10.1515/znc-2012-1-203] [PMID: 22486037]
[98]
Öztürk M. Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chem 2012; 134(1): 48-54.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.054] [PMID: 23265454]
[99]
Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 2012; 23(3): 241-9.
[http://dx.doi.org/10.1097/FBP.0b013e3283534301] [PMID: 22470103]
[100]
Haddadi H, Rajaei Z, Alaei H, Shahidani S. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson’s disease. Arq Neuropsiquiatr 2018; 76(2): 71-7.
[http://dx.doi.org/10.1590/0004-282x20170193] [PMID: 29489959]
[101]
Bin Sayeed MS, Shams T, Fahim Hossain S, et al. Nigella sativa L. seeds modulate mood, anxiety and cognition in healthy adolescent males. J Ethnopharmacol 2014; 152(1): 156-62.
[http://dx.doi.org/10.1016/j.jep.2013.12.050] [PMID: 24412554]

© 2024 Bentham Science Publishers | Privacy Policy