Systematic Review Article

Current Drug Targets for Gut Microbiota Biocorrection during the SARS-CoV-2 Pandemic: A Systematic Review

Author(s): Maria V. Sankova, Vladimir N. Nikolenko, Marine V. Oganesyan, Anastasia A. Bakhmet, Lilia V. Gavryushova, Sergey V. Sankov and Mikhail Y. Sinelnikov*

Volume 23, Issue 11, 2022

Published on: 15 June, 2022

Page: [1099 - 1125] Pages: 27

DOI: 10.2174/1389450123666220418094853

Price: $65

Abstract

The gut microbiota are known to play an important role in maintaining the body’s homeostasis and increasing its immunoresistance. Their role has not been well defined in the course of SARS-CoV-2 infection.

Aim: The aim of this study was to evaluate the pathogenetic relationship between gut microbiota, immunological reactivity disruption and microbiota pathologies with the new coronavirus infection's course in order to substantiate the use of current drugs correcting gut microbiota during the SARS-CoV-2 pandemic.

Materials and Methods: Electronic databases of WHO Infection Control, Global Health, ScienceDirect, Elsevier, CDC infection diseases database, Google Academy, "Scientific electronic library eLIBRARY.RU", MEDLINE, CyberLeninka, Embase, PubMed-NCBI, RSCI, Scopus, and Cochrane Library were used for this analytical research.

Results: The research results showed normal gut microbiota as one of the important components of a multilevel immune defense system. The intestinal microbiota support the notion of initial activation and readiness in order to induce a quick response to the invasion of pathogens, including RNA viruses, such as SARS-CoV-2. Current research suggests that the intestinal microbiota play an important role in the pathogenesis and predetermination of disease severity in COVID-19. By producing essential metabolites and neutralizing toxic substrates, symbionts regulate the functioning of all organs and systems, maintaining the body’s homeostasis and immunological responses. Intestinal microbiota disorders determine the postvaccination anti-COVID immunity's efficacy, specifically the susceptibility to SARS-CoV-2 and the severity of this infection. This is done by stimulating a local intestinal immune response via secretory immunoglobulins and the acquired immunity of the microbiome. The high prevalence of dysbiosis within the populous indicates the necessity of regular gut microbiota biocorrection during the SARS-CoV-2 pandemic. Our systematic review of current biopreparations correcting gut microbiota provides a valuable reference to the practicing clinicians to quickly specify and develop a wide variety of medicines, assess their capabilities, and choose the optimal treatment for patients at risk of SARS-CoV-2 infection.

Conclusion: Current data support the notion that gut microflora biocorrection may help increase population immunity and preserve public health during the SARS-CoV-2 pandemic.

Keywords: SARS-CoV-2, dysbiosis, body homeostasis, immunoresistance, vaccination, gut microbiota biocorrection, public health preservation.

Graphical Abstract

[1]
Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res 2020; 285: 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[2]
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017; 5(4): e1373208.
[http://dx.doi.org/10.1080/21688370.2017.1373208] [PMID: 28956703]
[3]
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19(3): 141-54.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[4]
Mönkemüller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig 2020; 112(5): 383-8.
[http://dx.doi.org/10.17235/reed.2020.7137/2020] [PMID: 32343593]
[5]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620. [Erratum in: Nat Commun 2021 Apr 1;12]. [1]. [:2144. PMID: 32221306; PMCID: PMC7100515].
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[6]
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 2020; 41(12): 1100-15.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[7]
Naumenko NV, Potoroko IYu, Kalinina IV, Nenasheva AV, Botvinnikova VV. Possibilities of regulating stress-protective activity of food products to improve immunity under the conditions of the COVID-19 pandemic. Human Sport Medicine 2020; 20(S1): 116-27.
[http://dx.doi.org/10.14529/hsm20s115]
[8]
Scartoni FR, Sant’Ana LO, Murillo-Rodriguez E, et al. Physical exercise and immune system in the elderly: implications and importance in COVID-19 Pandemic Period. Front Psychol 2020; 11: 593903.
[http://dx.doi.org/10.3389/fpsyg.2020.593903] [PMID: 33329256]
[9]
Hemmer CJ, Geerdes-Fenge HF, Reisinger EC. [COVID-19: epidemiology and clinical facts]. Radiologe 2020; 60(10): 893-8.
[http://dx.doi.org/10.1007/s00117-020-00741-y] [PMID: 32865603]
[10]
Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 2014; 16(7): 1024-33.
[http://dx.doi.org/10.1111/cmi.12308] [PMID: 24798552]
[11]
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017; 17(4): 219-32.
[http://dx.doi.org/10.1038/nri.2017.7] [PMID: 28260787]
[12]
Shelly A, Gupta P, Ahuja R, Srichandan S, Meena J, Majumdar T. Impact of microbiota: A paradigm for evolving herd immunity against viral diseases. Viruses 2020; 12(10): 1150.
[http://dx.doi.org/10.3390/v12101150] [PMID: 33050511]
[13]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[14]
Al-Ansari MM, Sahlah SA, AlHumaid L, Ranjit Singh AJ. Probiotic lactobacilli: Can be a remediating supplement for pandemic COVID-19. A review. J King Saud Univ Sci 2021; 33(2): 101286.
[http://dx.doi.org/10.1016/j.jksus.2020.101286] [PMID: 33519144]
[15]
Kozlov IG. Microbiota, mucosal immunity and antibiotics: Interaction subtleties Russkij medicinskij zhurnal 2018; 8(1): 19-27.
[16]
Sánchez-Salguero ES, Santos-Argumedo L. Human microbiota association with immunoglobulin A and its participation in immune response. Alergia 2018; 65(3): 264-78.
[http://dx.doi.org/10.29262/ram.v65i3.519] [PMID: 30176205]
[17]
Ardatskaya MD, Bel’mer SV, Dobrica VP, et al. Intestinal dysbiosis: Current state of the problem, complex diagnostics and therapeutic correction. Exp Clin Gastroenterol 2015; 5(117): 13-50.
[PMID: 26387170]
[18]
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res 2017; 4: 14.
[http://dx.doi.org/10.1186/s40779-017-0122-9] [PMID: 28465831]
[19]
Oganezova IA. Intestinal microbiota and immunity: Immunomodulatory effects of Lactobacillus rhamnosus. Russ Open Med J 2018; 9: 39-44.
[20]
Chang CS, Kao CY. Current understanding of the gut microbiota shaping mechanisms. J Biomed Sci 2019; 26(1): 59.
[http://dx.doi.org/10.1186/s12929-019-0554-5] [PMID: 31434568]
[21]
Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019; 83(3): e00007-19.
[http://dx.doi.org/10.1128/MMBR.00007-19] [PMID: 31167904]
[22]
Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017; 279(1): 90-105.
[http://dx.doi.org/10.1111/imr.12563] [PMID: 28856737]
[23]
Leshem A, Liwinski T, Elinav E. Immune-microbiota interplay and colonization resistance in infection. Mol Cell 2020; 78(4): 597-613.
[http://dx.doi.org/10.1016/j.molcel.2020.03.001] [PMID: 32208169]
[24]
Nikolenko VN, Oganesyan MV, Sankova MV, et al. Paneth cells: Maintaining dynamic microbiome-host homeostasis, protecting against inflammation and cancer. BioEssays 2021; 43(3): e2000180.
[http://dx.doi.org/10.1002/bies.202000180] [PMID: 33244814]
[25]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[26]
Knoop KA, Newberry RD. Goblet cells: Multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 2018; 11(6): 1551-7.
[http://dx.doi.org/10.1038/s41385-018-0039-y] [PMID: 29867079]
[27]
Ohno H. Intestinal M cells. J Biochem 2016; 159(2): 151-60.
[http://dx.doi.org/10.1093/jb/mvv121] [PMID: 26634447]
[28]
Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016; 535(7610): 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[29]
Branzk N, Diefenbach A. Gut immunity: Passing on the baton from innate to adaptive immunity. Curr Biol 2018; 28(9): R562-5.
[http://dx.doi.org/10.1016/j.cub.2018.03.011] [PMID: 29738732]
[30]
Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol 2012; 33(6): 289-96.
[http://dx.doi.org/10.1016/j.it.2012.04.004] [PMID: 22578693]
[31]
Sumida H. Dynamics and clinical significance of intestinal intraepithelial lymphocytes. Immunol Med 2019; 42(3): 117-23.
[http://dx.doi.org/10.1080/25785826.2019.1658516] [PMID: 31453756]
[32]
Allie SR, Randall TD. Resident memory B cells. Viral Immunol 2020; 33(4): 282-93.
[http://dx.doi.org/10.1089/vim.2019.0141] [PMID: 32023188]
[33]
Kalyuzhin OV. Probiotics as modern means of strengthening anti-infectious immune defense: myth or reality? Russkij medicinskij zhurnal 2012; 20(28): 1395-401.
[34]
Burgueño JF, Abreu MT. Epithelial toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020; 17(5): 263-78.
[http://dx.doi.org/10.1038/s41575-019-0261-4] [PMID: 32103203]
[35]
Wang L, Zhu L, Qin S. Gut microbiota modulation on intestinal mucosal adaptive immunity. J Immunol Res 2019; 2019: 4735040.
[http://dx.doi.org/10.1155/2019/4735040] [PMID: 31687412]
[36]
McCoy KD, Ronchi F, Geuking MB. Host-microbiota interactions and adaptive immunity. Immunol Rev 2017; 279(1): 63-9.
[http://dx.doi.org/10.1111/imr.12575] [PMID: 28856735]
[37]
Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology 2018; 154(1): 28-37.
[http://dx.doi.org/10.1111/imm.12896] [PMID: 29338074]
[38]
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010; 107(27): 12204-9.
[http://dx.doi.org/10.1073/pnas.0909122107] [PMID: 20566854]
[39]
Yamashiro Y. Gut microbiota in health and disease. Ann Nutr Metab 2017; 71(3-4): 242-6.
[http://dx.doi.org/10.1159/000481627] [PMID: 29136611]
[40]
Jiang F, Meng D, Weng M, et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS One 2017; 12(3): e0172738.
[http://dx.doi.org/10.1371/journal.pone.0172738] [PMID: 28278201]
[41]
Wan Z, Zhou Z, Liu Y, et al. Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol 2020; 91(5): e12873.
[http://dx.doi.org/10.1111/sji.12873] [PMID: 32090360]
[42]
Franchi L, Kamada N, Nakamura Y, et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 2012; 13(5): 449-56.
[http://dx.doi.org/10.1038/ni.2263] [PMID: 22484733]
[43]
Yan J, Charles JF. Gut microbiota and IGF-1. Calcif Tissue Int 2018; 102(4): 406-14.
[http://dx.doi.org/10.1007/s00223-018-0395-3] [PMID: 29362822]
[44]
Maschirow L, Suttorp N, Opitz B. Microbiota-dependent regulation of antimicrobial immunity in the lung. Am J Respir Cell Mol Biol 2019; 61(3): 284-9.
[http://dx.doi.org/10.1165/rcmb.2019-0101TR] [PMID: 31059654]
[45]
Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev 2021; 66: 101235.
[http://dx.doi.org/10.1016/j.arr.2020.101235] [PMID: 33321253]
[46]
Długońska H, Grzybowski M. Personalized vaccination? II. The role of natural microbiota in a vaccine-induced immunity. Wiad Parazytol 2011; 57(2): 71-6.
[PMID: 21682089]
[47]
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci 2019; 76(3): 473-93.
[http://dx.doi.org/10.1007/s00018-018-2943-4] [PMID: 30317530]
[48]
Kramar’ LV, Kramar’ OG. Modern strategy for correction of intestinal microbiota disorders in intestinal dysbiosis. Medicinal Bulletin 2015; 9(3): 50-6.
[49]
Kostyukevich OI, Bylova NA, Simbirceva AS. The role of intestinal microbiota in the development of liver and biliary tract diseases. Russ Open Med J 2016; 24(11): 713-20.
[50]
Rao MC. Physiology of electrolyte transport in the gut: Implications for disease. Compr Physiol 2019; 9(3): 947-1023.
[http://dx.doi.org/10.1002/cphy.c180011] [PMID: 31187895]
[51]
Mohammad VZ, Matyushkov PI, Dvorkin MI, Hylkichieva CHS. To the question of the mechanisms of dysbiosis development. News of the universities of Kyrgyzstan 2010; 3: 38-42.
[52]
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr 2018; 57(1): 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[53]
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 2018; 1693(Pt B): 128-33.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015]
[54]
Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The role of the gut microbiota in bile acid metabolism. Ann Hepatol 2017; 16(Suppl. 1: s3-105.): s15-20.
[http://dx.doi.org/10.5604/01.3001.0010.5672] [PMID: 29080339]
[55]
Le Roy T, Lécuyer E, Chassaing B, et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 2019; 17(1): 94.
[http://dx.doi.org/10.1186/s12915-019-0715-8] [PMID: 31775890]
[56]
Lopes RCSO, Balbino KP, Jorge MP, Ribeiro AQ, Martino HSD, Alfenas RCG. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: A systematic review. Nutr Hosp 2018; 35(3): 722-30.
[http://dx.doi.org/10.20960/nh.1642] [PMID: 29974784]
[57]
Verzi MP, Shivdasani RA. Epigenetic regulation of intestinal stem cell differentiation. Am J Physiol Gastrointest Liver Physiol 2020; 319(2): G189-96.
[http://dx.doi.org/10.1152/ajpgi.00084.2020] [PMID: 32628072]
[58]
Wang J, Li F, Tian Z. Role of microbiota on lung homeostasis and diseases. Sci China Life Sci 2017; 60(12): 1407-15.
[http://dx.doi.org/10.1007/s11427-017-9151-1] [PMID: 29019144]
[59]
Capuco A, Urits I, Hasoon J, et al. Current perspectives on gut microbiome dysbiosis and depression. Adv Ther 2020; 37(4): 1328-46.
[http://dx.doi.org/10.1007/s12325-020-01272-7] [PMID: 32130662]
[60]
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 2017; 74(16): 2959-77.
[http://dx.doi.org/10.1007/s00018-017-2509-x] [PMID: 28352996]
[61]
Horoshilova IA, Granitov VM. Probiotics in the treatment of viral hepatitis. Bulletin of Medical Science 2016; 1(5): 16-9.
[62]
Grace E, Shaw C, Whelan K, Andreyev HJ. Review article: Small intestinal bacterial overgrowth--prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment Pharmacol Ther 2013; 38(7): 674-88.
[http://dx.doi.org/10.1111/apt.12456] [PMID: 23957651]
[63]
Gurova MM, Havkin AI. The metabiotic place in the correction of intestinal dysbiosis. Questions Prac Pediatr 2018; 13(2): 70-6.
[64]
Hill DA, Siracusa MC, Abt MC, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 2012; 18(4): 538-46.
[http://dx.doi.org/10.1038/nm.2657] [PMID: 22447074]
[65]
Macfarlane S. Antibiotic treatments and microbes in the gut. Environ Microbiol 2014; 16(4): 919-24.
[http://dx.doi.org/10.1111/1462-2920.12399] [PMID: 24471523]
[66]
Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4): 698-706.
[http://dx.doi.org/10.1136/gutjnl-2020-323020] [PMID: 33431578]
[67]
Gou W, Fu Y, Yue L, et al. Zheng, J.-S. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19 medRxiv 2020; 1-44.
[http://dx.doi.org/10.1101/2020.04.22.20076091]
[68]
Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol 2015; 159(2): 122-7.
[http://dx.doi.org/10.1016/j.clim.2015.05.014] [PMID: 26141651]
[69]
Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front Immunol 2020; 11: 611337.
[http://dx.doi.org/10.3389/fimmu.2020.611337] [PMID: 33329607]
[70]
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[71]
Ejaz H, Alsrhani A, Zafar A, et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health 2020; 13(12): 1833-9.
[http://dx.doi.org/10.1016/j.jiph.2020.07.014] [PMID: 32788073]
[72]
Komarova ON, Havkin AI. Relationship between stress, immunity and gut microbiota. Pediatr Pharmacol (New York) 2020; 17(1): 18-24.
[http://dx.doi.org/10.15690/pf.v17i1.2078]
[73]
Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-related changes in the composition of gut bifidobacterium species. Curr Microbiol 2017; 74(8): 987-95.
[http://dx.doi.org/10.1007/s00284-017-1272-4] [PMID: 28593350]
[74]
Maynard C, Weinkove D. The gut microbiota and ageing. Subcell Biochem 2018; 90: 351-71.
[http://dx.doi.org/10.1007/978-981-13-2835-0_12] [PMID: 30779015]
[75]
Kim S, Jazwinski SM. The gut microbiota and healthy aging: A mini-review. Gerontology 2018; 64(6): 513-20.
[http://dx.doi.org/10.1159/000490615] [PMID: 30025401]
[76]
Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect 2020; 80(6): e14-8.
[http://dx.doi.org/10.1016/j.jinf.2020.03.005] [PMID: 32171866]
[77]
Odamaki T, Bottacini F, Kato K, et al. Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci Rep 2018; 8(1): 85.
[http://dx.doi.org/10.1038/s41598-017-18391-x] [PMID: 29311585]
[78]
Chichlowski M, Shah N, Wampler JL, Wu SS, Vanderhoof JA. Bifidobacterium longum Subspecies infantis (B. infantis) in pediatric nutrition: Current state of knowledge. Nutrients 2020; 12(6): 1581.
[http://dx.doi.org/10.3390/nu12061581] [PMID: 32481558]
[79]
Turroni F, Serafini F, Foroni E, et al. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci USA 2013; 110(27): 11151-6.
[http://dx.doi.org/10.1073/pnas.1303897110] [PMID: 23776216]
[80]
González-Rodríguez I, Sánchez B, Ruiz L, et al. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 2012; 78(11): 3992-8.
[http://dx.doi.org/10.1128/AEM.08024-11] [PMID: 22447584]
[81]
Turroni F, Taverniti V, Ruas-Madiedo P, et al. Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol 2014; 80(2): 730-40.
[http://dx.doi.org/10.1128/AEM.03313-13] [PMID: 24242237]
[82]
Meskina ER, Celipanova EE, Hadisova MK, Galkina LA, Stashko TV. The effectiveness of the sorbed probiotic use in the complex therapy of pneumonia caused by SARS-COV-2. Part 1. The peak period of clinical manifestations. Terapevticheskij arhiv 2021; 93(4): 456-64.
[83]
Konieczna P, Groeger D, Ziegler M, et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 2012; 61(3): 354-66.
[http://dx.doi.org/10.1136/gutjnl-2011-300936] [PMID: 22052061]
[84]
Escribano J, Ferré N, Gispert-Llaurado M, et al. Bifidobacterium longum subsp infantis CECT7210-supplemented formula reduces diarrhea in healthy infants: a randomized controlled trial. Pediatr Res 2018; 83(6): 1120-8.
[http://dx.doi.org/10.1038/pr.2018.34] [PMID: 29538368]
[85]
D’Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L. Diarrhea during COVID-19 infection: Pathogenesis, epidemiology, prevention, and management. Clin Gastroenterol Hepatol 2020; 18(8): 1663-72.
[http://dx.doi.org/10.1016/j.cgh.2020.04.001] [PMID: 32278065]
[86]
Allen AP, Hutch W, Borre YE, et al. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 2016; 6(11): e939.
[http://dx.doi.org/10.1038/tp.2016.191] [PMID: 27801892]
[87]
Yablokova EA, Gorelov AV. Probiotics are a modern tool for a clinician. Pediatrics (Suppl Consilium Medicum) 2018; 4: 59-62.
[http://dx.doi.org/10.26442/24138460.2018.4.180078]
[88]
Kabeerdoss J, Devi RS, Mary RR, et al. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutr J 2011; 10: 138.
[http://dx.doi.org/10.1186/1475-2891-10-138] [PMID: 22196482]
[89]
Meng H, Lee Y, Ba Z, et al. Consumption of Bifidobacterium animalis subsp. lactis BB-12 impacts upper respiratory tract infection and the function of NK and T cells in healthy adults. Mol Nutr Food Res 2016; 60(5): 1161-71.
[http://dx.doi.org/10.1002/mnfr.201500665] [PMID: 26821116]
[90]
Uspenskij YUP, Fominyh YUA, Nadzhafova KN, Polyushkin SV. Probiotics and their place in the modern world. Rossijskij zhurnal gastroenterologii, gepatologii, koloproktologii 2020; 30(3): 24-35.
[91]
Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M. The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr 2010; 103(12): 1778-83.
[http://dx.doi.org/10.1017/S0007114509993801] [PMID: 20100374]
[92]
Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, et al. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 2011; 94(7): 3288-94.
[http://dx.doi.org/10.3168/jds.2010-4128] [PMID: 21700013]
[93]
Holscher HD, Czerkies LA, Cekola P, et al. Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula fed infants: a randomized, double-blind, controlled trial. J Parenter Enteral Nutr 2012; 36: 106-17.
[94]
Shoaib A, Xin L, Xin Y. Oral administration of Lactobacillus acidophilus alleviates exacerbations in Pseudomonas aeruginosa and Staphylococcus aureus pulmonary infections. Pak J Pharm Sci 2019; 32(4): 1621-30.
[PMID: 31608882]
[95]
Yan F, Li N, Shi J, et al. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food Funct 2019; 10(9): 5804-15.
[http://dx.doi.org/10.1039/C9FO01062A] [PMID: 31461095]
[96]
Capurso L. Thirty years of Lactobacillus rhamnosus GG: A review. J Clin Gastroenterol 2019; 53(Suppl. 1): S1-S41.
[http://dx.doi.org/10.1097/MCG.0000000000001170] [PMID: 30741841]
[97]
Gury-BenAri M, Thaiss CA, Serafini N, et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 2016; 166(5): 1231-1246.e13.
[http://dx.doi.org/10.1016/j.cell.2016.07.043] [PMID: 27545347]
[98]
Villena J, Chiba E, Tomosada Y, et al. Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol 2012; 13: 53.
[http://dx.doi.org/10.1186/1471-2172-13-53] [PMID: 22989047]
[99]
Villena J, Kitazawa H. The modulation of mucosal antiviral immunity by immunobiotics: Could they offer any benefit in the SARS-CoV-2 pandemic? Front Physiol 2020; 11: 699.
[http://dx.doi.org/10.3389/fphys.2020.00699] [PMID: 32670091]
[100]
Makarova SG, Namazova-Baranova LS. Intestinal microbiota and the use of probiotics in the pediatrician practice. What’s new? Pediatricheskaya Farmakologiya 2015; 12(1): 38-45.
[101]
Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 2017; 9(2): 111-22.
[http://dx.doi.org/10.1007/s12602-017-9264-z] [PMID: 28271469]
[102]
Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ Res 2018; 123(9): 1091-102.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313565] [PMID: 30355158]
[103]
Fuentes MC, Lajo T, Carrión JM, Cuñé J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr 2013; 109(10): 1866-72.
[http://dx.doi.org/10.1017/S000711451200373X] [PMID: 23017585]
[104]
Chong HX, Yusoff NAA, Hor YY, et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J Dairy Sci 2019; 102(6): 4783-97.
[http://dx.doi.org/10.3168/jds.2018-16103] [PMID: 30954261]
[105]
Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health 2020; 8: 186.
[http://dx.doi.org/10.3389/fpubh.2020.00186] [PMID: 32574290]
[106]
Paparo L, Aitoro R, Nocerino R, Fierro C, Bruno C, Canani RB. Direct effects of fermented cow’s milk product with Lactobacillus paracasei CBA L74 on human enterocytes. Benef Microbes 2018; 9(1): 165-72.
[http://dx.doi.org/10.3920/BM2017.0038] [PMID: 29065709]
[107]
Guo S, Chen S, Ma J, et al. Escherichia coli nissle 1917 protects intestinal barrier function by inhibiting NF-κB-mediated activation of the MLCK-P-MLC signaling pathway. Mediators Inflamm 2019; 2019: 5796491.
[http://dx.doi.org/10.1155/2019/5796491] [PMID: 31354386]
[108]
Zupancic K, Kriksic V, Kovacevic I, Kovacevic D. Influence of oral probiotic streptococcus salivarius K12 on ear and oral cavity health in humans: Systematic review. Probiotics Antimicrob Proteins 2017; 9(2): 102-10.
[http://dx.doi.org/10.1007/s12602-017-9261-2] [PMID: 28236205]
[109]
Kazyulin AN, Goncharenko AYU, Pavleeva EE, Kalyagin IE. Evolution of probiotic therapy in the internal medicine clinic. Russ Open Med J 2019; 27(12): 89-96.
[110]
Duranti S, Ruiz L, Lugli GA, et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci Rep 2020; 10(1): 14112.
[http://dx.doi.org/10.1038/s41598-020-70986-z] [PMID: 32839473]
[111]
Ricci L, Mackie J, Lenardon MD, et al. Bifidobacterium adolescentis shows potential to strengthen host defence against gastrointestinal infection via inhibition of the opportunistic pathogen Bifidobacterium adolescentis and stimulation of human-isolated macrophages killing capacity in vitro. Microbiology 2020; 2(7): 857.
[112]
Tian P, O’Riordan KJ, Lee Y, et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 2020; 12: 100216.
[http://dx.doi.org/10.1016/j.ynstr.2020.100216]
[113]
Bozzi Cionci N, Baffoni L, Gaggìa F, Di Gioia D. Therapeutic microbiology: The role of Bifidobacterium breve as food supplement for the prevention/treatment of paediatric diseases. Nutrients 2018; 10(11): 1723.
[http://dx.doi.org/10.3390/nu10111723] [PMID: 30423810]
[114]
Oleskin AV. Probiotics, psychobiotics and metabiotics: Problems and prospects. Physical Rehab Med Medical Rehab 2020; 2(3): 233-43.
[http://dx.doi.org/10.36425/rehab25811]
[115]
Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct 2017; 8(9): 3155-64. [Erratum in: Food Funct. 2017 Oct 18;8]. [10]. [:3814. PMID: 28782784].
[http://dx.doi.org/10.1039/C7FO00593H] [PMID: 28782784]
[116]
Shida K, Sato T, Iizuka R, et al. Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur J Nutr 2017; 56(1): 45-53.
[http://dx.doi.org/10.1007/s00394-015-1056-1] [PMID: 26419583]
[117]
Finamore A, Roselli M, Donini L, et al. Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice. Nutrition 2019; 63-64: 184-92.
[http://dx.doi.org/10.1016/j.nut.2019.02.005] [PMID: 31029046]
[118]
Michalickova DM, Kostic-Vucicevic MM, Vukasinovic-Vesic MD, et al. Lactobacillus helveticus Lafti L10 supplementation modulates mucosal and humoral immunity in elite athletes: A randomized, double-blind, placebo-controlled trial. J Strength Cond Res 2017; 31(1): 62-70.
[http://dx.doi.org/10.1519/JSC.0000000000001456] [PMID: 27100317]
[119]
Spinler JK, Auchtung J, Brown A, et al. Next-generation probiotics targeting clostridium difficile through precursor-directed antimicrobial biosynthesis. Infect Immun 2017; 85(10): e00303-17.
[http://dx.doi.org/10.1128/IAI.00303-17] [PMID: 28760934]
[120]
Garcia-Castillo V, Komatsu R, Clua P, et al. Evaluation of the Immunomodulatory Activities of the Probiotic Strain Lactobacillus helveticus UCO-979C. Front Immunol 2019; 10: 1376.
[http://dx.doi.org/10.3389/fimmu.2019.01376] [PMID: 31263467]
[121]
Pavlova AS, Ozhegov GD, Arapidi GP, et al. Identification of antimicrobial peptides from novel Lactobacillus helveticus strain. Protein J 2020; 39(1): 73-84.
[http://dx.doi.org/10.1007/s10930-019-09879-8] [PMID: 31933011]
[122]
Belkina TV, Averina OV, Savenkova EV, Danilenko VN. The human gut microbiome and the immune system: The probiotic role in the formation of immunobiological potential to prevent the development of COVID-19 infection. Adv Med Biol 2020; 140(6): 523-39.
[123]
Bagci U, Ozmen Togay S, Temiz A, Ay M. Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol (Praha) 2019; 64(6): 735-50.
[http://dx.doi.org/10.1007/s12223-019-00687-2] [PMID: 30739237]
[124]
Bednorz C, Guenther S, Oelgeschläger K, et al. Feeding the probiotic Enterococcus faecium strain NCIMB 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa. Appl Environ Microbiol 2013; 79(24): 7896-904.
[http://dx.doi.org/10.1128/AEM.03138-13] [PMID: 24123741]
[125]
Dargahi N, Johnson J, Apostolopoulos V. Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One 2020; 15(2): e0228531.
[http://dx.doi.org/10.1371/journal.pone.0228531] [PMID: 32045425]
[126]
Renye JA Jr, Somkuti GA, Steinberg DH. Thermophilin 109 is a naturally produced broad spectrum bacteriocin encoded within the blp gene cluster of Streptococcus thermophilus. Biotechnol Lett 2019; 41(2): 283-92.
[http://dx.doi.org/10.1007/s10529-018-02637-3] [PMID: 30564999]
[127]
Shihata A, Shah NP. Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp. bulgaricus to commercial ABT starter cultures on texture of yoghurt, exopolysaccharide production and survival of bacteria. Int Dairy J 2002; 12(9): 765-72.
[http://dx.doi.org/10.1016/S0958-6946(02)00071-7]
[128]
Yamamoto Y, Saruta J, Takahashi T, et al. Effect of ingesting yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 on influenza virus-bound salivary IgA in elderly residents of nursing homes: a randomized controlled trial. Acta Odontol Scand 2019; 77(7): 517-24.
[http://dx.doi.org/10.1080/00016357.2019.1609697] [PMID: 31094267]
[129]
Ahmadi S, Ghollasi M, Hosseini HM. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb Pathog 2017; 111: 193-7.
[http://dx.doi.org/10.1016/j.micpath.2017.08.037] [PMID: 28867631]
[130]
Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS One 2012; 7(4): e32588.
[http://dx.doi.org/10.1371/journal.pone.0032588] [PMID: 22505996]
[131]
Zárate G, Sáez GD, Pérez Chaia A. Dairy propionibacteria prevent the proliferative effect of plant lectins on SW480 cells and protect the metabolic activity of the intestinal microbiota in vitro. Anaerobe 2017; 44: 58-65.
[http://dx.doi.org/10.1016/j.anaerobe.2017.01.012] [PMID: 28161414]
[132]
Poonam, Pophaly SD, Tomar SK, De S, Singh R. Multifaceted attributes of dairy propionibacteria: A review. World J Microbiol Biotechnol 2012; 28(11): 3081-95.
[http://dx.doi.org/10.1007/s11274-012-1117-z] [PMID: 22806746]
[133]
Thierry A, Deutsch SM, Falentin H, Dalmasso M, Cousin FJ, Jan G. New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 2011; 149(1): 19-27.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.04.026] [PMID: 21620505]
[134]
Dong H, Rowland I, Yaqoob P. Comparative effects of six probiotic strains on immune function in vitro. Br J Nutr 2012; 108(3): 459-70.
[http://dx.doi.org/10.1017/S0007114511005824] [PMID: 22054064]
[135]
Ruszkowski J, Witkowski JM. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe 2019; 59: 100-6.
[http://dx.doi.org/10.1016/j.anaerobe.2019.06.002] [PMID: 31176002]
[136]
Dahl WJ, Stewart ML. Position of the academy of nutrition and dietetics: Health implications of dietary fiber. J Acad Nutr Diet 2015; 115(11): 1861-70.
[http://dx.doi.org/10.1016/j.jand.2015.09.003] [PMID: 26514720]
[137]
Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8(2): 172-84.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[138]
Korczak R, Slavin JL. Fructooligosaccharides and appetite. Curr Opin Clin Nutr Metab Care 2018; 21(5): 377-80.
[http://dx.doi.org/10.1097/MCO.0000000000000502] [PMID: 29939970]
[139]
Akram W, Garud N, Joshi R. Role of inulin as prebiotics on inflammatory bowel disease. Drug Discov Ther 2019; 13(1): 1-8.
[http://dx.doi.org/10.5582/ddt.2019.01000] [PMID: 30880316]
[140]
Fathullaev A, Iskandarov ZS, Abdumalikov IR, Gafurov ZHM. An innovative local Jerusalem artichoke plant for use in food Sciences of Europe 2021; 69(1): 58-61.
[141]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[142]
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9(9): 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[143]
San'kova MV, Kyt'ko OV, Dydykina IS. CHilikov VV, Laptina VI, Markina AD. Zinc status improving as a pathogenetically grounded platform for maintaining immunity during SARS-CoV-2 pandemic Voprosy pitaniya 2021; 90(2): 26-39.
[144]
Jeżewska-Frąckowiak J, Seroczyńska K, Banaszczyk J, Jedrzejczak G, Żylicz-Stachula A, Skowron PM. The promises and risks of probiotic Bacillus species. Acta Biochim Pol 2018; 65(4): 509-19.
[http://dx.doi.org/10.18388/abp.2018_2652] [PMID: 30521647]
[145]
Savust’yanenko AV. Mechanisms of action of probiotics based on Bacillus subtilis. Aktual’naya infektologiya 2016; 2(11): 35-44.
[146]
Kovács ÁT. Bacillus subtilis. Trends Microbiol 2019; 27(8): 724-5.
[http://dx.doi.org/10.1016/j.tim.2019.03.008] [PMID: 31000489]
[147]
Rhayat L, Maresca M, Nicoletti C, et al. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front Immunol 2019; 10: 564.
[http://dx.doi.org/10.3389/fimmu.2019.00564] [PMID: 30984172]
[148]
Shobharani P, Padmaja RJ, Halami PM. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512. Res Microbiol 2015; 166(6): 546-54.
[http://dx.doi.org/10.1016/j.resmic.2015.06.003] [PMID: 26100933]
[149]
Fedorova OV, Nazmieva AI, Nuretdinova EI, Valeeva RT. Probiotic preparations based on microorganisms of the genus Bacillus. Bulletin of the Kazan Technological University 2016; 19(15): 170-4.
[150]
Kadaikunnan S, Rejiniemon T, Khaled JM, Alharbi NS, Mothana R. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 2015; 14: 9.
[http://dx.doi.org/10.1186/s12941-015-0069-1] [PMID: 25858278]
[151]
WoldemariamYohannes K, Wan Z, Yu Q, et al. Prebiotic, probiotic, antimicrobial, and functional food applications of Bacillus amyloliquefaciens. J Agric Food Chem 2020; 68(50): 14709-27.
[http://dx.doi.org/10.1021/acs.jafc.0c06396] [PMID: 33280382]
[152]
Manna S, Chowdhury T, Chakraborty R, Mandal SM. Probiotics-derived peptides and their immunomodulatory molecules can play a preventive role against viral diseases including COVID-19. Probiotics Antimicrob Proteins 2021; 13(3): 611-23.
[http://dx.doi.org/10.1007/s12602-020-09727-7] [PMID: 33226581]
[153]
Sorokulova IB, Pinchuk IV, Denayrolles M, et al. The safety of two Bacillus probiotic strains for human use. Dig Dis Sci 2008; 53(4): 954-63.
[http://dx.doi.org/10.1007/s10620-007-9959-1] [PMID: 17934835]
[154]
Savust’yanenko AV. The use of the probiotic Lactobacillus sporogenes (Bacillus coagulans) in the clinical doctor practice. News Med Pharm 2011; 8: 6-7.
[155]
Jurenka JS. Bacillus coagulans: Monograph. Altern Med Rev 2012; 17(1): 76-81.
[PMID: 22502625]
[156]
Jäger R, Purpura M, Farmer S, Cash HA, Keller D. Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics Antimicrob Proteins 2018; 10(4): 611-5.
[http://dx.doi.org/10.1007/s12602-017-9354-y] [PMID: 29196920]
[157]
Mu Y, Cong Y. Bacillus coagulans and its applications in medicine. Benef Microbes 2019; 10(6): 679-88.
[http://dx.doi.org/10.3920/BM2019.0016] [PMID: 31203635]
[158]
Anaya-Loyola MA, Enciso-Moreno JA, López-Ramos JE, et al. Bacillus coagulans GBI-30, 6068 decreases upper respiratory and gastrointestinal tract symptoms in healthy Mexican scholar-aged children by modulating immune-related proteins. Food Res Int 2019; 125: 108567.
[http://dx.doi.org/10.1016/j.foodres.2019.108567] [PMID: 31554075]
[159]
Jayanthi N, Ratna Sudha M. Bacillus clausii - The probiotic of choice in the treatment of diarrhoea. J Yoga Phys Ther 2015; 5: 211.
[http://dx.doi.org/10.4172/2157-7595.1000211]
[160]
Alexopoulos C, Georgoulakis IE, Tzivara A, Kritas SK, Siochu A, Kyriakis SC. Field evaluation of the effica-cy of a probiotic containing Bacillus licheniformis and Bacillus subtilisspores, on the health status and performance of sows and their litters. J Anim Physiol Anim Nutr (Berl) 2004; 88(11‐12): 381-92.
[161]
Efficiency of probiotic bacteria Bacillus subtilis in the treatment of acute simple bronchitis in children. Modern Pediatr 2018; 6(94): 78-83.
[162]
Czerucka D, Rampal P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J Gastroenterol 2019; 25(18): 2188-203.
[http://dx.doi.org/10.3748/wjg.v25.i18.2188] [PMID: 31143070]
[163]
Moré MI. Saccharomyces boulardii CNCM I-745- die medizinische Hefe verbessert die Funktion intestinaler Enzyme. [Saccharomyces boulardii CNCM I-745 - the medicinal yeast improves intestinal enzyme function]. MMW Fortschr Med 2019; 161(Suppl. 4): 20-4.
[http://dx.doi.org/10.1007/s15006-019-0290-5] [PMID: 30895510]
[164]
Stier H, Bischoff SC. Saccharomyces boulardii CNCM I-745 beeinflusst das darmassoziierte Immunsystem. [Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system]. MMW Fortschr Med 2017; 159(Suppl. 5): 1-6.
[http://dx.doi.org/10.1007/s15006-017-9802-3] [PMID: 28643294]
[165]
Shenderov BA. Probiotic (symbiotic) bacterial languages. Anaerobe 2011; 17(6): 490-5.
[http://dx.doi.org/10.1016/j.anaerobe.2011.05.009] [PMID: 21624483]
[166]
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18(1): 2.
[http://dx.doi.org/10.1186/s12865-016-0187-3] [PMID: 28061847]
[167]
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 2019; 66(1): 1-12.
[http://dx.doi.org/10.18388/abp.2018_2648] [PMID: 30831575]
[168]
Oleskin AV, Shenderov BA. Probiotics and psychobiotics: the role of microbial neurochemicals. Probiotics Antimicrob Proteins 2019; 11(4): 1071-85.
[http://dx.doi.org/10.1007/s12602-019-09583-0] [PMID: 31493127]
[169]
YAkovenko EP, YAkovenko AV, Ivanov AN, et al. Use of probiotics in clinical practice. Lechashchij vrach 2011; 10: 6-22.
[170]
Yakovenko EP, Yakovenko AV, Ivanov AN, et al. The use of probiotics in clinical practice. Lechashchiy vrach 2011; 10(1): 16-22.
[171]
Starovoitova S. Cobiotics a new conception of probiotics / S. Starovoitova // Modern achievements of pharmaceutical technology and biotechnology: Collection of scientific works. Kharkiv: NUPh publishing house 2019; (6): 37-41.
[172]
Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 2017; 168(5): 928-943.e11.
[http://dx.doi.org/10.1016/j.cell.2017.01.022] [PMID: 28215708]
[173]
Zuo T, Liu Q, Zhang F, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021; 70(2): 276-84.
[http://dx.doi.org/10.1136/gutjnl-2020-322294] [PMID: 32690600]
[174]
Kaźmierczak-Siedlecka K, Vitale E, Makarewicz W. COVID-19 - gastrointestinal and gut microbiota-related aspects. Eur Rev Med Pharmacol Sci 2020; 24(20): 10853-9.
[http://dx.doi.org/10.26355/eurrev_202010_23448] [PMID: 33155247]
[175]
Trottein F, Sokol H. Potential causes and consequences of gastrointestinal disorders during a SARS-CoV-2 infection. Cell Rep 2020; 32(3): 107915.
[http://dx.doi.org/10.1016/j.celrep.2020.107915] [PMID: 32649864]
[176]
Fröberg J, Diavatopoulos DA. Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Infect Dis 2021; 34(3): 181-6.
[http://dx.doi.org/10.1097/QCO.0000000000000724] [PMID: 33899752]
[177]
Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020; 159(3): 944-955.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048] [PMID: 32442562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy