Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

Anti-diabetic Potential of some Spices Commonly used in Diet with other Pharmacological Activities: A Review

Author(s): Anita Rani Chowdhury* and Sukalyan Kumar Kundu

Volume 8, Issue 5, 2022

Published on: 05 August, 2022

Article ID: e170422203711 Pages: 9

DOI: 10.2174/2215083808666220417151852

Price: $65

conference banner
Abstract

Background: Diabetes mellitus is a chronic metabolic disorder, the prevalence of which is increasing alarmingly throughout the world and imposes a serious impact on the health of the population as well as national economies. Effective management and primary prevention are essential to decrease the burden of diabetes faced by all nations. Although different therapies are available for diabetes, no known therapy can completely cure the disease, and many of them have a number of side effects with other limitations like long-term treatment, expensiveness, and less availability. Hence, the present review has given an emphasis on common dietary materials to find out a readily available source of anti-diabetic agents.

Objective: The purpose of this work is to explore the anti-diabetic properties of certain spices which are most frequently used in Bangladesh and reported for their use in traditional treatment of diabetes and/or investigated scientifically for anti-diabetic activity.

Methods: Two electronic databases, namely Pub Med and Google Scholar, were used for conducting a comprehensive search to collect information and data.

Results: In this review, a total of 10 spices have been compiled with a brief description of their origin, part used, chemical constituents, mechanism of action, methods of experiment, model animals, and reported beneficial effects in diabetes with other pharmacological activities.

Conclusion: The observed results of this study indicate the possibility of developing a therapeutic strategy called alternative and complementary medicine for the management of diabetes. The results also provide a starting point for researchers working with bioactive dietary plants with anti-diabetic potential.

Keywords: Diabetes mellitus, anti-diabetic potentials, pharmacological activities, traditional medicine, spices, diet.

Graphical Abstract

[1]
American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37(Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
World Health Organization Global report on diabetes. 2016. Available from apps.who.int/iris/handle/10665/204871
[3]
Akter S, Rahman MM, Abe SK, Sultana P. Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: A na-tionwide survey. Bull World Health Organ 2014; 92(3): 204-213A.
[http://dx.doi.org/10.2471/BLT.13.128371]
[4]
Ota A, Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front Pharmacol 2017; 8: 436.
[http://dx.doi.org/10.3389/fphar.2017.00436] [PMID: 28729836]
[5]
Sheikh TJ, Joshi DV, Patel BJ, Ranjan R. Antioxidant potential of spices in experimentally induced type-II diabetes in rats. Int J Curr Microbiol Appl Sci 2019; 8(3): 1219-27.
[http://dx.doi.org/10.20546/ijcmas.2019.803.144]
[6]
Adeniyi PO, Sanusi RA. Antidiabetic herbs and spices. World J Nutri Health 2019; 7(1): 18-22.
[7]
Osadebe PO, Odoh EU, Uzor PF. Natural products as potential sources of antidiabetic drugs. Br J Pharm Res 2014; 4(17): 2075-95.
[http://dx.doi.org/10.9734/BJPR/2014/8382]
[8]
Rajput DS, Dash DK, Sahu AK, Mishra K, Kashyap P, Mishra SP. Brief update on Indian herbs and spices used for diabetes in rural area of Chhattisgarh. Int J Pharm Chem Anal 2017; 4(1): 1-4.
[9]
Campos KE, Diniz YS, Cataneo AC, Faine LA, Alves MJQF, Novelli ELB. Hypoglycaemic and antioxidant effects of onion, Allium cepa: Dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. Int J Food Sci Nutr 2003; 54(3): 241-6.
[http://dx.doi.org/10.1080/09637480120092062] [PMID: 12775373]
[10]
Ogunmodede OS, Saalu LC, Ogunlade B, Akunna GG, Oyewopo AO. An evaluation of the hypoglycemic, antioxidant and hepatoprotective potentials of onion (Allium cepa L.) on alloxan-induced diabetic Rabbits. Int J Pharmacol 2012; 8(1): 21-9.
[http://dx.doi.org/10.3923/ijp.2012.21.29]
[11]
Ozougwu JC. Anti-diabetic effects of Allium cepa (onions) aqueous extracts on alloxan-induced diabetic Rattus novergicus. J Med Plants Res 2011; 5(7): 1134-9.
[12]
Taj Eldin IM, Ahmed EM, Elwahab HMA. Preliminary study of the clinical hypoglycemic effects of Allium cepa (Red Onion) in Type 1 and Type 2 diabetic patients. Environ Health Insights 2010; 4: 71-7.
[http://dx.doi.org/10.4137/EHI.S5540] [PMID: 21079693]
[13]
Otunola GA, Afolayan AJ. Antidiabetic effect of combined spices of Allium sativum, Zingiber officinale and Capsicum frutescens in allox-an-induced diabetic rats. Front Life Sci 2015; 8(4): 314-23.
[14]
Thomson M, Al-Amin ZM, Al-Qattan KK, Shaban LH, Ali M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007; 15: 108-15.
[15]
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006; 13(9-10): 624-9.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010] [PMID: 17085291]
[16]
Daily JW, Yang M, Kim DS, Park S. Efficacy of ginger for treating Type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. J Ethnic Foods 2015; 2: 36-43.
[http://dx.doi.org/10.1016/j.jef.2015.02.007]
[17]
Singab AN, Youssef FS, Ashour ML. Medicinal plants with potential antidiabetic activity and their assessment. Med Aromat Plants 2014; 3(1): 151.
[http://dx.doi.org/10.4172/2167-0412.1000151]
[18]
Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr 2006; 96(4): 660-6.
[http://dx.doi.org/10.1079/BJN20061849] [PMID: 17010224]
[19]
Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 2004; 56(1): 101-5.
[http://dx.doi.org/10.1211/0022357022403] [PMID: 14980006]
[20]
Jafri SA, Abass S, Qasim M. Hypoglycemic effect of ginger (Zingiber officinale) in alloxan induced diabetic rats (Rattus norvagicus). Pak Vet J 2011; 31(2): 160-2.
[21]
Islam MS, Choi H. Dietary red chilli (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in type 2 diabetes model of rats. Phytother Res 2008; 22(8): 1025-9.
[http://dx.doi.org/10.1002/ptr.2417] [PMID: 18668490]
[22]
Dougnon TJ, Gbeassor M. Evaluation of the effects of the powder of Capsicum frutescens on glycemia in growing rabbits. Vet World 2016; 9(3): 281-6.
[http://dx.doi.org/10.14202/vetworld.2016.281-286] [PMID: 27057112]
[23]
Tolan I, Ragoobirsingh D, Morrison EYSA. The effect of capsaicin on blood glucose, plasma insulin levels and insulin binding in dog models. Phytother Res 2001; 15(5): 391-4.
[http://dx.doi.org/10.1002/ptr.750] [PMID: 11507729]
[24]
Zhang DW, Fu M, Gao SH, Liu JL. Curcumin and diabetes: A systematic review. Evid Based Complement Alternat Med 2013; 2013636053
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[25]
Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: A review. J Altern Complement Med 2004; 10(2): 369-78.
[http://dx.doi.org/10.1089/107555304323062365] [PMID: 15165418]
[26]
Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients 2019; 11(8): 1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[27]
Kuroda M, Mimaki Y, Nishiyama T, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 2005; 28(5): 937-9.
[http://dx.doi.org/10.1248/bpb.28.937] [PMID: 15863912]
[28]
Mohammed A, Wudil AM, Alhassan AJ, Imam AA, Muhammad IU, Idi A. Hypoglycemic activity of Curcuma longa Linn root extracts on alloxan induced diabetic rats. Haya: Saudi J Life Sci 2017; 2(2): 43-9.
[29]
Rai PK, Jaiswal D, Mehta S, Rai DK, Sharma B, Watal G. Effect of Curcuma longa freeze dried rhizome powder with milk in STZ induced diabetic rats. Indian J Clin Biochem 2010; 25(2): 175-81.
[http://dx.doi.org/10.1007/s12291-010-0032-z] [PMID: 23105906]
[30]
Ahmad A, Alghamdi SS, Mahmood K, Afzal M. Fenugreek a multipurpose crop: Potentialities and improvements. Saudi J Biol Sci 2016; 23(2): 300-10.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.015] [PMID: 27307778]
[31]
Aher RR, Belge SA, Kadam SR, Kharade SS, Misal AV, Yeole PT. Therapeutic importance of fenugreek (Trigonella foenum-graecum L.): A review. J Plant Sci Res 2016; 3(1): 152.
[32]
Srinivasan K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev Int 2006; 22(2): 203-24.
[http://dx.doi.org/10.1080/87559120600586315]
[33]
Zia T, Hasnain SN, Hasan SK. Evaluation of the oral hypoglycaemic effect of Trigonella foenum-graecum L. (methi) in normal mice. J Ethnopharmacol 2001; 75(2-3): 191-5.
[http://dx.doi.org/10.1016/S0378-8741(01)00186-6] [PMID: 11297850]
[34]
Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res 2017; 61(6)1600950
[http://dx.doi.org/10.1002/mnfr.201600950] [PMID: 28266134]
[35]
Yadav UCS, Baquer NZ. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm Biol 2014; 52(2): 243-54.
[http://dx.doi.org/10.3109/13880209.2013.826247] [PMID: 24102093]
[36]
Roberts KT. The potential of fenugreek (Trigonella foenum-graecum) as a functional food and nutraceutical and its effects on glycemia and lipidemia. J Med Food 2011; 14(12): 1485-9.
[http://dx.doi.org/10.1089/jmf.2011.0002] [PMID: 21861724]
[37]
Hannan JMA, Ali L, Rokeya B, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose ho-meostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin ac-tion. Br J Nutr 2007; 97(3): 514-21.
[http://dx.doi.org/10.1017/S0007114507657869] [PMID: 17313713]
[38]
Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr 2007; 16(Suppl. 1): 422-6.
[PMID: 17392143]
[39]
Eidi A, Eidi M, Sokhteh M. Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr Res 2007; 27: 728-33.
[http://dx.doi.org/10.1016/j.nutres.2007.09.006]
[40]
Kumar P, Kale RK, Mukherjee S, Prakash K, McLean P, Baquer NZ. Antidiabetic effects of Trigonella foenum-graecum seed powder in a rat model. Toxicol Environ Chem 2011; 93(10): 2085-97.
[http://dx.doi.org/10.1080/02772248.2011.626418]
[41]
Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum-graecum L.) on hyperlipidemia in diabetic patients. J Diabetes Res 2019; 20198507453
[http://dx.doi.org/10.1155/2019/8507453] [PMID: 31583253]
[42]
Srinivasan K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceuti-cal effects. Food Quality and Safety 2018; 2: 1-16.
[http://dx.doi.org/10.1093/fqsafe/fyx031]
[43]
Allaq AA, Sidik NJ, Abdul-Aziz A, Ahmed IA. Cumin (Cuminum cyminum L.): A review of its ethnopharmacology, phytochemistry. Biomed Res Ther 2020; 7(9): 4016-21.
[http://dx.doi.org/10.15419/bmrat.v7i9.634]
[44]
Al-Snafi AE. The pharmacological activities of Cuminum cyminum - A review. IOSR J Pharm 2016; 6(6): 46-65.
[45]
Mnif S, Aifa S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem Biodivers 2015; 12(5): 733-42.
[http://dx.doi.org/10.1002/cbdv.201400305] [PMID: 26010662]
[46]
Johri RK. Cuminum cyminum and Carum carvi: An update. Pharmacogn Rev 2011; 5(9): 63-72.
[http://dx.doi.org/10.4103/0973-7847.79101] [PMID: 22096320]
[47]
Jagtap AG, Patil PB. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem Toxicol 2010; 48(8-9): 2030-6.
[http://dx.doi.org/10.1016/j.fct.2010.04.048] [PMID: 20451573]
[48]
Patil SB, Takalikar SS, Joglekar MM, Haldavnekar VS, Arvindekar AU. Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats. Br J Nutr 2013; 110(8): 1434-43.
[http://dx.doi.org/10.1017/S0007114513000627] [PMID: 23507295]
[49]
Andallu B, Ramya V. Anti-hyperglycemic, cholesterol-lowering and HDL–raising effects of cumin (Cuminum cyminum) seeds in type 2 diabetes. J Nat Rem 2007; 7(1): 142-9.
[50]
Laribi B, Kouki K, M’Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015; 103: 9-26.
[http://dx.doi.org/10.1016/j.fitote.2015.03.012] [PMID: 25776008]
[51]
Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM. Coriander (Coriandrum sativum L.): A potential source of high-value components for functional foods and nutraceuticals--a review. Phytother Res 2013; 27(10): 1439-56.
[http://dx.doi.org/10.1002/ptr.4897] [PMID: 23281145]
[52]
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int 2018; 105: 305-23.
[http://dx.doi.org/10.1016/j.foodres.2017.11.019] [PMID: 29433220]
[53]
Al-Snafi AE. A review on chemical constituents and pharmacological activities of Coriandrum sativum. IOSR J Pharm 2016; 6(7): 17-42.
[http://dx.doi.org/10.9790/3013-067031742]
[54]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[http://dx.doi.org/10.1002/ptr.2642] [PMID: 19003941]
[55]
Aissaoui A, Zizi S, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J Ethnopharmacol 2011; 137(1): 652-61.
[http://dx.doi.org/10.1016/j.jep.2011.06.019] [PMID: 21718774]
[56]
Sreelatha S, Inbavalli R. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats. J Food Sci 2012; 77(7): T119-23.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02755.x] [PMID: 22671941]
[57]
Waheed A, Miana GA, Ahmad SI, Khan MA. Clinical investigation of hypoglycemic effect of Coriandrum sativum in type-2 (NIDDM) diabetic patients. Pak J Pharmacol 2006; 23(1): 7-11.
[58]
Das S, Chaware S, Narkar N, Tilak AV, Raveendran S, Rane P. Antidiabetic activity of Coriandrum sativum in streptozotocin induced dia-betic rats. Int J Basic Clin Pharmacol 2019; 8(5): 925-9.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20191577]
[59]
Hamdan A, Haji Idrus R, Mokhtar MH. Effects of Nigella Sativa on type-2 diabetes mellitus: A systematic review. Int J Environ Res Public Health 2019; 16(24): 4911.
[http://dx.doi.org/10.3390/ijerph16244911] [PMID: 31817324]
[60]
Ahmad A, Husain A, Mujeeb M, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 2013; 3(5): 337-52.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[61]
Ahmad MF, Ahmad FA, Ashraf SA, et al. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constitu-ents and pharmacological properties. J Herb Med 2021; 25100404
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[62]
Kooti W, Hasanzadeh-Noohi Z, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med 2016; 14(10): 732-45.
[http://dx.doi.org/10.1016/S1875-5364(16)30088-7] [PMID: 28236403]
[63]
Abdelmeguid NE, Fakhoury R, Kamal SM, Al Wafai RJ. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes 2010; 2(4): 256-66.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00091.x] [PMID: 20923501]
[64]
Benhaddou-Andaloussi A, Martineau L, Vuong T, et al. The in vivo antidiabetic activity of Nigella sativa is mediated through activation of the AMPK pathway and increased muscle Glut4 content. Evid Based Complement Alternat Med 2011; 2011538671
[http://dx.doi.org/10.1155/2011/538671] [PMID: 21584245]
[65]
Ikram F, Hussain F. Antidiabetic efficacy of Nigella sativa Linn. in alloxan-induced diabetic rabbits. Int Med J Malays 2014; 13(1): 13-8.
[http://dx.doi.org/10.31436/imjm.v13i1.487]
[66]
Meddah B, Ducroc R, El Abbes Faouzi M, et al. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J Ethnopharmacol 2009; 121(3): 419-24.
[http://dx.doi.org/10.1016/j.jep.2008.10.040] [PMID: 19061948]
[67]
Singh R, Parasuraman S, Kathiresan S. Antioxidant and antidiabetic activities of methanolic extract of bark of Cinnamomum zeylanicum in diabetic rats. Free Radic Antioxid 2020; 10(1): 16-23.
[http://dx.doi.org/10.5530/fra.2020.1.4]
[68]
Roffey B, Atwal A, Kubow S. Cinnamon water extracts increase glucose uptake but inhibit adiponectin secretion in 3T3-L1 adipose cells. Mol Nutr Food Res 2006; 50(8): 739-45.
[http://dx.doi.org/10.1002/mnfr.200500253] [PMID: 16835867]
[69]
Anand V. Varalakshmi, Prasana, Kumar S, Pushpa, Hedina A. Cinnamomum zeylanicum Linn. The spice with multi potential. Systematic Reviews in Pharmacy 2016; 7(1): 24-9.
[http://dx.doi.org/10.5530/srp.2016.7.3]
[70]
Ranasinghe P, Perera S, Gunatilake M, et al. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a dia-betic and healthy rat model. Pharmacognosy Res 2012; 4(2): 73-9.
[http://dx.doi.org/10.4103/0974-8490.94719] [PMID: 22518078]
[71]
Beji RS, Khemir S, Wannes WA, Ayari K, Ksouri R. Antidiabetic, antihyperlipidemic and antioxidant influences of the spice cinnamon (Cinnamomum zeylanicum) in experimental rats. Braz J Pharm Sci 2018; 54(2): 17576.
[http://dx.doi.org/10.1590/s2175-97902018000217576]
[72]
Governa P, Baini G, Borgonetti V, et al. Phytotherapy in the management of diabetes: A review. Molecules 2018; 23(1): 105.
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy