Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

MRI Breast: Current Imaging Trends, Clinical Applications, and Future Research Directions

Author(s): Kartini Rahmat*, Nazimah Ab Mumin*, Marlina Tanty Ramli Hamid, Shamsiah Abdul Hamid and Wei Lin Ng

Volume 18, Issue 13, 2022

Published on: 27 July, 2022

Article ID: e150422203668 Pages: 15

DOI: 10.2174/1573405618666220415130131

Price: $65

Abstract

Magnetic Resonance Imaging (MRI) is the most sensitive and advanced imaging technique in diagnosing breast cancer and is essential in improving cancer detection, lesion characterization, and determining therapy response. In addition to the dynamic contrast-enhanced (DCE) technique, functional techniques such as magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), diffusion kurtosis imaging (DKI), and intravoxel incoherent motion (IVIM) further characterize and differentiate benign and malignant lesions thus, improving diagnostic accuracy.

There is now an increasing clinical usage of MRI breast, including screening in high risk and supplementary screening tools in average-risk patients. MRI is becoming imperative in assisting breast surgeons in planning breast-conserving surgery for preoperative local staging and evaluation of neoadjuvant chemotherapy response. Other clinical applications for MRI breast include occult breast cancer detection, investigation of nipple discharge, and breast implant assessment. There is now an abundance of research publications on MRI Breast with several areas that still remain to be explored.

This review gives a comprehensive overview of the clinical trends of MRI breast with emphasis on imaging features and interpretation using conventional and advanced techniques. In addition, future research areas in MRI breast include developing techniques to make MRI more accessible and costeffective for screening. The abbreviated MRI breast procedure and an area of focused research in the enhancement of radiologists' work with artificial intelligence have high impact for the future in MRI Breast.

Keywords: Magnetic resonance imaging, breast, neoplasms, diffusion magnetic resonance imaging, diffusion tensor imaging, magnetic resonance spectroscopy.

Graphical Abstract

[1]
Saunders C, Taylor D. Expanding the indications for MRI in the diagnosis and treatment of breast cancer: what is best practice? J Med Radiat Sci 2015; 62(1): 47-53.
[http://dx.doi.org/10.1002/jmrs.95] [PMID: 26229667]
[2]
Heywang-Köbrunner SH, Hacker A, Sedlacek S. Magnetic resonance imaging: The evolution of breast imaging. Breast 2013; 22(Suppl. 2): S77-82.
[http://dx.doi.org/10.1016/j.breast.2013.07.014] [PMID: 24074797]
[3]
Spick C, Szolar DHM, Preidler KW, Tillich M, Reittner P, Baltzer PA. Breast MRI used as a problem-solving tool reliably excludes malignancy. Eur J Radiol 2015; 84(1): 61-4.
[http://dx.doi.org/10.1016/j.ejrad.2014.10.005] [PMID: 25454098]
[4]
Taşkın F, Polat Y, Erdoğdu İH, Türkdoğan FT, Öztürk VS, Özbaş S. Problem-solving breast MRI: Useful or a source of new problems? Diagn Interv Radiol 2018; 24(5): 255-61.
[http://dx.doi.org/10.5152/dir.2018.17504] [PMID: 30211678]
[5]
Marino MA, Helbich T, Baltzer P, Pinker-Domenig K. Multiparametric MRI of the breast: A review. J Magn Reson Imaging 2018; 47(2): 301-15.
[http://dx.doi.org/10.1002/jmri.25790] [PMID: 28639300]
[6]
Sardanelli F, Boetes C, Borisch B, et al. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur J Cancer 2010; 46(8): 1296-316.
[http://dx.doi.org/10.1016/j.ejca.2010.02.015] [PMID: 20304629]
[7]
Dontchos BN, Rahbar H, Partridge SC, et al. Are qualitative assessments of background parenchymal enhancement, amount of fibro-glandular tissue on MR images, and mammographic density associated with breast cancer risk? Radiology 2015; 276(2): 371-80.
[http://dx.doi.org/10.1148/radiol.2015142304] [PMID: 25965809]
[8]
Tan SL, Rahmat K, Rozalli FI, et al. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI. Clin Radiol 2014; 69(1): 63-71.
[http://dx.doi.org/10.1016/j.crad.2013.08.007] [PMID: 24156797]
[9]
Suppiah S, Rahmat K, Mohd-Shah MN, et al. Improved diagnostic accuracy in differentiating malignant and benign lesions using single-voxel proton MRS of the breast at 3 T MRI. Clin Radiol 2013; 68(9): e502-10.
[http://dx.doi.org/10.1016/j.crad.2013.04.002] [PMID: 23706826]
[10]
Sivarajan U, Jayapragasam K, Aziz A, Rahmat K, Bux S. Dynamic contrast enhanced magnetic resonance imaging evaluation of breast lesions: A morphological and quantitative analysis. JHK Coll Radiol 2009; 12: 43-52.
[11]
D'Orsi CJ. ACR BI-RADS Atlas: Breast Imaging Reporting and Data System 2013. Available from: https://radiologyassistant.nl/breast/bi-rads/bi-rads-for-mammography-and-ultrasound-2013
[12]
Thompson CM, Mallawaarachchi I, Dwivedi DK, et al. The association of background parenchymal enhancement at breast MRI with breast cancer: A systematic review and meta-analysis. Radiology 2019; 292(3): 552-61.
[http://dx.doi.org/10.1148/radiol.2019182441] [PMID: 31237494]
[13]
Ray KM, Kerlikowske K, Lobach IV, et al. Effect of background parenchymal enhancement on breast MR imaging interpretive performance in community-based practices. Radiology 2018; 286(3): 822-9.
[http://dx.doi.org/10.1148/radiol.2017170811] [PMID: 29072981]
[14]
Shimauchi A, Jansen SA, Abe H, Jaskowiak N, Schmidt RA, Newstead GM. Breast cancers not detected at MRI: Review of false-negative lesions. AJR Am J Roentgenol 2010; 194(6): 1674-9.
[http://dx.doi.org/10.2214/AJR.09.3568] [PMID: 20489112]
[15]
Kuhl CK. MRI of breast tumors. Eur Radiol 2000; 10(1): 46-58.
[http://dx.doi.org/10.1007/s003300050006] [PMID: 10663717]
[16]
Sakamoto N, Tozaki M, Higa K, et al. Categorization of non-mass-like breast lesions detected by MRI. Breast Cancer 2008; 15(3): 241-6.
[http://dx.doi.org/10.1007/s12282-007-0028-6] [PMID: 18224381]
[17]
Tozaki M, Igarashi T, Fukuda K. Breast MRI using the VIBE sequence: Clustered ring enhancement in the differential diagnosis of le-sions showing non-masslike enhancement. AJR Am J Roentgenol 2006; 187(2): 313-21.
[http://dx.doi.org/10.2214/AJR.05.0881] [PMID: 16861532]
[18]
Chikarmane SA, Michaels AY, Giess CS. Revisiting nonmass enhancement in breast MRI: Analysis of outcomes and follow-up using the updated BI-RADS atlas. AJR Am J Roentgenol 2017; 209(5): 1178-84.
[http://dx.doi.org/10.2214/AJR.17.18086] [PMID: 28834447]
[19]
Tozaki M, Fukuda K. High-spatial-resolution MRI of non-masslike breast lesions: Interpretation model based on BI-RADS MRI descriptors. AJR Am J Roentgenol 2006; 187(2): 330-7.
[http://dx.doi.org/10.2214/AJR.05.0998] [PMID: 16861534]
[20]
Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 1999; 211(1): 101-10.
[http://dx.doi.org/10.1148/radiology.211.1.r99ap38101] [PMID: 10189459]
[21]
Lee CH, Dershaw DD, Kopans D, et al. Breast cancer screening with imaging: Recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 2010; 7(1): 18-27.
[http://dx.doi.org/10.1016/j.jacr.2009.09.022] [PMID: 20129267]
[22]
Mann RM, Balleyguier C, Baltzer PA, et al. Breast MRI: EUSOBI recommendations for women’s information. Eur Radiol 2015; 25(12): 3669-78.
[http://dx.doi.org/10.1007/s00330-015-3807-z] [PMID: 26002130]
[23]
Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: Recommendations from the ACR. J Am Coll Radiol 2018; 15(3 Pt A): 408-14.
[http://dx.doi.org/10.1016/j.jacr.2017.11.034] [PMID: 29371086]
[24]
Saslow D, Boetes C, Burke W, et al. American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007; 57(2): 75-89.
[http://dx.doi.org/10.3322/canjclin.57.2.75] [PMID: 17392385]
[25]
Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: A combined analysis of 22 studies. Am J Hum Genet 2003; 72(5): 1117-30.
[http://dx.doi.org/10.1086/375033] [PMID: 12677558]
[26]
Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 2004; 292(11): 1317-25.
[http://dx.doi.org/10.1001/jama.292.11.1317] [PMID: 15367553]
[27]
Kuhl CK, Schrading S, Leutner CC, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 2005; 23(33): 8469-76.
[http://dx.doi.org/10.1200/JCO.2004.00.4960] [PMID: 16293877]
[28]
Leach MO, Boggis CR, Dixon AK, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: A prospective multicentre cohort study (MARIBS). Lancet 2005; 365(9473): 1769-78.
[http://dx.doi.org/10.1016/S0140-6736(05)66481-1] [PMID: 15910949]
[29]
Veltman J, Mann R, Kok T, et al. Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI. Eur Radiol 2008; 18(5): 931-8.
[http://dx.doi.org/10.1007/s00330-008-0851-y] [PMID: 18270717]
[30]
Le-Petross HT, Shetty MK. Magnetic resonance imaging and breast ultrasonography as an adjunct to mammographic screening in high-risk patients. Semin Ultrasound CT MR 2011; 32(4): 266-72.
[31]
Phi X-A, Saadatmand S, De Bock GH, et al. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: Individual patient data meta-analysis. Br J Cancer 2016; 114(6): 631-7.
[http://dx.doi.org/10.1038/bjc.2016.32] [PMID: 26908327]
[32]
Vreemann S, van Zelst JCM, Schlooz-Vries M, et al. The added value of mammography in different age-groups of women with and without BRCA mutation screened with breast MRI. Breast Cancer Res 2018; 20(1): 84.
[http://dx.doi.org/10.1186/s13058-018-1019-6] [PMID: 30075794]
[33]
Lo G, Scaranelo AM, Aboras H, et al. Evaluation of the utility of screening mammography for high-risk women undergoing screening breast MR imaging. Radiology 2017; 285(1): 36-43.
[http://dx.doi.org/10.1148/radiol.2017161103] [PMID: 28586291]
[34]
Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology 2017; 283(2): 361-70.
[http://dx.doi.org/10.1148/radiol.2016161444] [PMID: 28221097]
[35]
Friedewald SM, Rafferty EA, Rose SL, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 2014; 311(24): 2499-507.
[http://dx.doi.org/10.1001/jama.2014.6095] [PMID: 25058084]
[36]
Scheel JR, Lee JM, Sprague BL, Lee CI, Lehman CD. Screening ultrasound as an adjunct to mammography in women with mammographically dense breasts. Am J Obstet Gynecol 2015; 212(1): 9-17.
[http://dx.doi.org/10.1016/j.ajog.2014.06.048] [PMID: 24959654]
[37]
Cho J, Chung J, Cha E-S, Lee JE, Kim JH. Can preoperative 3-T MRI predict nipple-areolar complex involvement in patients with breast cancer? Clin Imaging 2016; 40(1): 119-24.
[http://dx.doi.org/10.1016/j.clinimag.2015.08.002] [PMID: 26423158]
[38]
Sung JS, Li J, Da Costa G, et al. Preoperative breast MRI for early-stage breast cancer: Effect on surgical and long-term outcomes. AJR Am J Roentgenol 2014; 202(6): 1376-82.
[http://dx.doi.org/10.2214/AJR.13.11355] [PMID: 24848838]
[39]
Turnbull L, Brown S, Harvey I, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: A randomised controlled trial. Lancet 2010; 375(9714): 563-71.
[http://dx.doi.org/10.1016/S0140-6736(09)62070-5] [PMID: 20159292]
[40]
Lobbes MB, Vriens IJ, van Bommel AC, et al. Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers. Breast Cancer Res Treat 2017; 162(2): 353-64.
[http://dx.doi.org/10.1007/s10549-017-4117-8] [PMID: 28132393]
[41]
Haraldsdóttir KH, Jónsson Þ, Halldórsdóttir AB, Tranberg K-G, Ásgeirsson KS. Tumor Size of invasive breast cancer on magnetic resonance imaging and conventional imaging (mammogram/ultrasound): Comparison with pathological size and clinical implications. Scand J Surg 2017; 106(1): 68-73.
[http://dx.doi.org/10.1177/1457496916631855] [PMID: 26929290]
[42]
Wang S-Y, Long JB, Killelea BK, et al. Associations of preoperative breast magnetic resonance imaging with subsequent mastectomy and breast cancer mortality. Breast Cancer Res Treat 2018; 172(2): 453-61.
[http://dx.doi.org/10.1007/s10549-018-4919-3] [PMID: 30099634]
[43]
Sardanelli F, Trimboli RM, Houssami N, et al. Solving the preoperative breast MRI conundrum: Design and protocol of the MIPA study. Eur Radiol 2020; 30(10): 5427-36.
[http://dx.doi.org/10.1007/s00330-020-06824-7] [PMID: 32377813]
[44]
Sardanelli F, Trimboli RM, Houssami N, et al. Magnetic resonance imaging before breast cancer surgery: Results of an observational Multicenter International Prospective Analysis (MIPA). Eur Radiol 2022; 32(3): 1611-23.
[PMID: 34643778]
[45]
Solin LJ. Counterview: Pre-operative breast MRI (Magnetic Resonance Imaging) is not recommended for all patients with newly diagnosed breast cancer. Breast 2010; 19(1): 7-9.
[http://dx.doi.org/10.1016/j.breast.2009.11.004] [PMID: 20159457]
[46]
Kuhl C, Kuhn W, Braun M, Schild H. Pre-operative staging of breast cancer with breast MRI: One step forward, two steps back? Breast 2007; 16(Suppl. 2): S34-44.
[http://dx.doi.org/10.1016/j.breast.2007.07.014] [PMID: 17959382]
[47]
Lim HI, Choi JH, Yang J-H, et al. Does pre-operative breast magnetic resonance imaging in addition to mammography and breast ultra-sonography change the operative management of breast carcinoma? Breast Cancer Res Treat 2010; 119(1): 163-7.
[http://dx.doi.org/10.1007/s10549-009-0525-8] [PMID: 19760039]
[48]
Mann RM, Cho N, Moy L. Breast MRI: State of the art. Radiology 2019; 292(3): 520-36.
[http://dx.doi.org/10.1148/radiol.2019182947] [PMID: 31361209]
[49]
Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: Guidelines from the European society of breast imaging. Eur Radiol 2008; 18(7): 1307-18.
[http://dx.doi.org/10.1007/s00330-008-0863-7] [PMID: 18389253]
[50]
Marinovich ML, Macaskill P, Irwig L, et al. Agreement between MRI and pathologic breast tumor size after neoadjuvant chemotherapy, and comparison with alternative tests: Individual patient data meta-analysis. BMC Cancer 2015; 15(1): 662.
[http://dx.doi.org/10.1186/s12885-015-1664-4] [PMID: 26449630]
[51]
Scheel JR, Kim E, Partridge SC, et al. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 trial. AJR Am J Roentgenol 2018; 210(6): 1376-85.
[http://dx.doi.org/10.2214/AJR.17.18323] [PMID: 29708782]
[52]
Rosen EL, Blackwell KL, Baker JA, et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol 2003; 181(5): 1275-82.
[http://dx.doi.org/10.2214/ajr.181.5.1811275] [PMID: 14573420]
[53]
Partridge SC, Gibbs JE, Lu Y, et al. MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 2005; 184(6): 1774-81.
[http://dx.doi.org/10.2214/ajr.184.6.01841774] [PMID: 15908529]
[54]
Rieber A, Brambs H-J, Gabelmann A, Heilmann V, Kreienberg R, Kühn T. Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 2002; 12(7): 1711-9.
[http://dx.doi.org/10.1007/s00330-001-1233-x] [PMID: 12111062]
[55]
Recht A, Silen W, Schnitt SJ, et al. Time-course of local recurrence following conservative surgery and radiotherapy for early stage breast cancer. Int J Radiat Oncol Biol Phys 1988; 15(2): 255-61.
[http://dx.doi.org/10.1016/S0360-3016(98)90002-5]
[56]
Hill MV, Beeman JL, Jhala K, Holubar SD, Rosenkranz KM, Barth RJ Jr. Relationship of breast MRI to recurrence rates in patients undergoing breast-conservation treatment. Breast Cancer Res Treat 2017; 163(3): 615-22.
[http://dx.doi.org/10.1007/s10549-017-4205-9] [PMID: 28315967]
[57]
Gervais M-K, Maki E, Schiller DE, Crystal P, McCready DR. Preoperative MRI of the breast and ipsilateral breast tumor recurrence: Long-term follow up. J Surg Oncol 2017; 115(3): 231-7.
[http://dx.doi.org/10.1002/jso.24520] [PMID: 28105662]
[58]
Van Goethem M, Verslegers I, Biltjes I, Hufkens G, Parizel PM. Role of MRI of the breast in the evaluation of the symptomatic patient. Curr Opin Obstet Gynecol 2009; 21(1): 74-9.
[http://dx.doi.org/10.1097/GCO.0b013e328321e45e] [PMID: 19130631]
[59]
Ramli Hamid MT, Rahmat K, Hamid SA, Kirat Singh SK, Hooi TG. Spectrum of multimodality findings in post-surgical breast cancer imaging. Curr Med Imaging Rev 2019; 15(9): 866-72.
[http://dx.doi.org/10.2174/1573405614666180627101520] [PMID: 32008533]
[60]
Song JW, Kim HM, Bellfi LT, Chung KC. The effect of study design biases on the diagnostic accuracy of magnetic resonance imaging for detecting silicone breast implant ruptures: A meta-analysis. Plast Reconstr Surg 2011; 127(3): 1029-44.
[http://dx.doi.org/10.1097/PRS.0b013e3182043630] [PMID: 21364405]
[61]
Mango VL, Kaplan J, Sung JS, Moskowitz CS, Dershaw DD, Morris EA. Breast carcinoma in augmented breasts: MRI findings. AJR Am J Roentgenol 2015; 204(5): W599-604.
[http://dx.doi.org/10.2214/AJR.14.13221] [PMID: 25905968]
[62]
Cheung Y-C, Su M-Y, Ng S-H, Lee K-F, Chen S-C, Lo Y-F. Lumpy silicone-injected breasts: Enhanced MRI and microscopic correlation. Clin Imaging 2002; 26(6): 397-404.
[http://dx.doi.org/10.1016/S0899-7071(02)00453-9] [PMID: 12427435]
[63]
Pavlidis N, Pentheroudakis G. Cancer of unknown primary site. Lancet 2012; 379(9824): 1428-35.
[http://dx.doi.org/10.1016/S0140-6736(11)61178-1] [PMID: 22414598]
[64]
de Bresser J, de Vos B, van der Ent F, Hulsewé K. Breast MRI in clinically and mammographically occult breast cancer presenting with an axillary metastasis: A systematic review. Eur J Surg Oncol 2010; 36(2): 114-9.
[http://dx.doi.org/10.1016/j.ejso.2009.09.007] [PMID: 19822403]
[65]
Buchanan CL, Morris EA, Dorn PL, Borgen PI, Van Zee KJ. Utility of breast magnetic resonance imaging in patients with occult primary breast cancer. Ann Surg Oncol 2005; 12(12): 1045-53.
[http://dx.doi.org/10.1245/ASO.2005.03.520] [PMID: 16244803]
[66]
Douvetzemis SE. Management of occult breast cancer with axillary involvement. Hell Cheirourgike 2018; 90(1): 33-5.
[http://dx.doi.org/10.1007/s13126-018-0432-8]
[67]
Orel SG, Dougherty CS, Reynolds C, Czerniecki BJ, Siegelman ES, Schnall MD. MR imaging in patients with nipple discharge: Initial experience. Radiology 2000; 216(1): 248-54.
[http://dx.doi.org/10.1148/radiology.216.1.r00jn28248] [PMID: 10887256]
[68]
Berger N, Luparia A, Di Leo G, et al. Diagnostic performance of MRI versus galactography in women with pathologic nipple discharge: A systematic review and meta-analysis. AJR Am J Roentgenol 2017; 209(2): 465-71.
[http://dx.doi.org/10.2214/AJR.16.16682] [PMID: 28537847]
[69]
Bahl M, Baker JA, Greenup RA, Ghate SV. Evaluation of pathologic nipple discharge: What is the added diagnostic value of MRI? Ann Surg Oncol 2015; 22(3)(Suppl. 3): S435-41.
[http://dx.doi.org/10.1245/s10434-015-4792-9] [PMID: 26249144]
[70]
Martincich L, Deantoni V, Bertotto I, et al. Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol 2012; 22(7): 1519-28.
[http://dx.doi.org/10.1007/s00330-012-2403-8] [PMID: 22411304]
[71]
McDonald ES, Hammersley JA, Chou S-HS, et al. Performance of DWI as a rapid unenhanced technique for detecting mammographically occult breast cancer in elevated-risk women with dense breasts. AJR Am J Roentgenol 2016; 207(1): 205-16.
[http://dx.doi.org/10.2214/AJR.15.15873] [PMID: 27077731]
[72]
Ei Khouli RH, Jacobs MA, Mezban SD, et al. Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 2010; 256(1): 64-73.
[http://dx.doi.org/10.1148/radiol.10091367] [PMID: 20574085]
[73]
Park SH, Moon WK, Cho N, et al. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 2012; 22(1): 18-25.
[http://dx.doi.org/10.1007/s00330-011-2236-x] [PMID: 21845462]
[74]
Pinker K, Moy L, Sutton EJ, et al. Diffusion-Weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: Comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging. Invest Radiol 2018; 53(10): 587-95.
[http://dx.doi.org/10.1097/RLI.0000000000000465] [PMID: 29620604]
[75]
Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 2006; 24(7): 843-7.
[http://dx.doi.org/10.1016/j.mri.2005.11.005] [PMID: 16916701]
[76]
Song SE, Park EK, Cho KR, et al. Additional value of diffusion-weighted imaging to evaluate multifocal and multicentric breast cancer detected using pre-operative breast MRI. Eur Radiol 2017; 27(11): 4819-27.
[http://dx.doi.org/10.1007/s00330-017-4898-5] [PMID: 28593433]
[77]
Rahbar H, Zhang Z, Chenevert TL, et al. Utility of diffusion-weighted imaging to decrease unnecessary biopsies prompted by breast MRI: A trial of the ECOG-ACRIN cancer research group (A6702). Clin Cancer Res 2019; 25(6): 1756-65.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2967] [PMID: 30647080]
[78]
Dijkstra H, Dorrius MD, Wielema M, Pijnappel RM, Oudkerk M, Sijens PE. Quantitative DWI implemented after DCE-MRI yields in-creased specificity for BI-RADS 3 and 4 breast lesions. J Magn Reson Imaging 2016; 44(6): 1642-9.
[http://dx.doi.org/10.1002/jmri.25331] [PMID: 27273694]
[79]
Cheeney S, Rahbar H, Dontchos BN, Javid SH, Rendi MH, Partridge SC. Apparent diffusion coefficient values may help predict which MRI-detected high-risk breast lesions will upgrade at surgical excision. J Magn Reson Imaging 2017; 46(4): 1028-36.
[http://dx.doi.org/10.1002/jmri.25656] [PMID: 28181343]
[80]
Abraham J, Haut MW, Moran MT, Filburn S, Lemiuex S, Kuwabara H. Adjuvant chemotherapy for breast cancer: Effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer 2008; 8(1): 88-91.
[http://dx.doi.org/10.3816/CBC.2008.n.007] [PMID: 18501063]
[81]
Baltzer PA, Schäfer A, Dietzel M, et al. Diffusion tensor magnetic resonance imaging of the breast: A pilot study. Eur Radiol 2011; 21(1): 1-10.
[http://dx.doi.org/10.1007/s00330-010-1901-9] [PMID: 20668860]
[82]
Partridge SC, Ziadloo A, Murthy R, et al. Diffusion tensor MRI: Preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging 2010; 31(2): 339-47.
[http://dx.doi.org/10.1002/jmri.22045] [PMID: 20099346]
[83]
Furman-Haran E, Nissan N, Ricart-Selma V, Martinez-Rubio C, Degani H, Camps-Herrero J. Quantitative evaluation of breast cancer response to neoadjuvant chemotherapy by diffusion tensor imaging: Initial results. J Magn Reson Imaging 2018; 47(4): 1080-90.
[http://dx.doi.org/10.1002/jmri.25855] [PMID: 28901594]
[84]
Kim JY, Kim JJ, Kim S, et al. Diffusion tensor magnetic resonance imaging of breast cancer: Associations between diffusion metrics and histological prognostic factors. Eur Radiol 2018; 28(8): 3185-93.
[http://dx.doi.org/10.1007/s00330-018-5429-8] [PMID: 29713771]
[85]
Sun K, Chen X, Chai W, et al. Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors. Radiology 2015; 277(1): 46-55.
[http://dx.doi.org/10.1148/radiol.15141625] [PMID: 25938679]
[86]
Park VY, Kim SG, Kim E-K, Moon HJ, Yoon JH, Kim MJ. Diffusional kurtosis imaging for differentiation of additional suspicious lesions on preoperative breast MRI of patients with known breast cancer. Magn Reson Imaging 2019; 62: 199-208.
[http://dx.doi.org/10.1016/j.mri.2019.07.011] [PMID: 31323316]
[87]
Li T, Yu T, Li L, et al. Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors. J Magn Reson Imaging 2018; 48(5): 1358-66.
[http://dx.doi.org/10.1002/jmri.26059] [PMID: 29717790]
[88]
Liu C, Liang C, Liu Z, Zhang S, Huang B. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: Comparison with conventional DWI. Eur J Radiol 2013; 82(12): e782-9.
[http://dx.doi.org/10.1016/j.ejrad.2013.08.006] [PMID: 24034833]
[89]
Cho GY, Gennaro L, Sutton EJ, et al. Intravoxel incoherent motion (IVIM) histogram biomarkers for prediction of neoadjuvant treatment response in breast cancer patients. Eur J Radiol Open 2017; 4: 101-7.
[http://dx.doi.org/10.1016/j.ejro.2017.07.002] [PMID: 28856177]
[90]
Baltzer PA, Dietzel M. Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T--systematic review and meta-analysis. Radiology 2013; 267(3): 735-46.
[http://dx.doi.org/10.1148/radiol.13121856] [PMID: 23468577]
[91]
Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy--a pilot study at 4 T. Radiology 2004; 233(2): 424-31.
[http://dx.doi.org/10.1148/radiol.2332031285] [PMID: 15516615]
[92]
Kuhl CK. Abbreviated breast MRI for screening women with dense breast: The EA1141 trial. Br J Radiol 2018; 91(1090): 20170441.
[http://dx.doi.org/10.1259/bjr.20170441] [PMID: 28749202]
[93]
Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers R-D, Bieling HB. Abbreviated breast Magnetic Resonance Imaging (MRI): First postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol 2014; 32(22): 2304-10.
[http://dx.doi.org/10.1200/JCO.2013.52.5386] [PMID: 24958821]
[94]
Mango VL, Morris EA, David Dershaw D, et al. Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection? Eur J Radiol 2015; 84(1): 65-70.
[http://dx.doi.org/10.1016/j.ejrad.2014.10.004] [PMID: 25454099]
[95]
Moschetta M, Telegrafo M, Rella L, Stabile Ianora AA, Angelelli G. Abbreviated combined MR protocol: A new faster strategy for characterizing breast lesions. Clin Breast Cancer 2016; 16(3): 207-11.
[http://dx.doi.org/10.1016/j.clbc.2016.02.008] [PMID: 27108218]
[96]
Mann RM, Mus RD, van Zelst J, Geppert C, Karssemeijer N, Platel B. A novel approach to contrast-enhanced breast magnetic resonance imaging for screening: High-resolution ultrafast dynamic imaging. Invest Radiol 2014; 49(9): 579-85.
[http://dx.doi.org/10.1097/RLI.0000000000000057] [PMID: 24691143]
[97]
Mus RD, Borelli C, Bult P, et al. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions. Eur J Radiol 2017; 89: 90-6.
[http://dx.doi.org/10.1016/j.ejrad.2017.01.020] [PMID: 28267555]
[98]
Honda M, Kataoka M, Onishi N, et al. New parameters of ultrafast dynamic contrast-enhanced breast MRI using compressed sensing. J Magn Reson Imaging 2020; 51(1): 164-74.
[http://dx.doi.org/10.1002/jmri.26838] [PMID: 31215107]
[99]
Lee S-H, Park H, Ko ES. Radiomics in breast imaging from techniques to clinical applications: A review. Korean J Radiol 2020; 21(7): 779-92.
[http://dx.doi.org/10.3348/kjr.2019.0855] [PMID: 32524780]
[100]
Cai X, Li X, Razmjooy N, Ghadimi N. Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm. Comput Math Methods Med 2021; 2021: 5595180.
[http://dx.doi.org/10.1155/2021/5595180]
[101]
Wang Q, Mao N, Liu M, et al. Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: A feasibility study. Clin Imaging 2021; 72: 136-41.
[http://dx.doi.org/10.1016/j.clinimag.2020.11.024] [PMID: 33242692]
[102]
Kayadibi Y, Kocak B, Ucar N, Akan YN, Akbas P, Bektas S. Radioproteomics in breast cancer: Prediction of Ki-67 expression with MRI-based radiomic models. Acad Radiol 2021; 29(Suppl. 1): S116-25.
[PMID: 33744071]
[103]
Musall BC, Abdelhafez AH, Adrada BE, et al. Functional tumor volume by fast dynamic contrast-enhanced MRI for predicting neoadjuvant systemic therapy response in triple-negative breast cancer. J Magn Reson Imaging 2021; 54(1): 251-60.
[http://dx.doi.org/10.1002/jmri.27557] [PMID: 33586845]
[104]
Tang Z, Tan L, Ng B, Rahmat K, Ramli M, Ninomiya K. A radiomics study of textural features using magnetic resonance imaging for classification of breast cancer subtypes. J Phys: Conf Ser 2020; 1497: 012015.
[http://dx.doi.org/10.1088/1742-6596/1497/1/012015]
[105]
Parekh VS, Jacobs MA. Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging. Breast Cancer Res Treat 2020; 180(2): 407-21.
[http://dx.doi.org/10.1007/s10549-020-05533-5] [PMID: 32020435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy