Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Review Article

A Timeline of Ca2+/cAMP Signalling: From Basic Research to Potential Therapeutics for Dementia

Author(s): Leandro B. Bergantin*

Volume 19, Issue 3, 2022

Published on: 25 May, 2022

Page: [179 - 187] Pages: 9

DOI: 10.2174/1567205019666220415125447

Price: $65

Abstract

Background: The hypothesis that a dyshomeostasis of Ca2+ increases the incidence of dementia has been established. Several discoveries have emphasized the concept that a decrease in the excess of Ca2+ could be an interesting pharmacological target to alleviate dementia symptoms. Aging along with a healthy brain can be supported by daily exercise, self-control in caloric ingestion, and participation in intellectually challenging events. These lifestyle factors may alleviate the excess of Ca2+ resulting from a Ca2+ dyshomeostasis. Curiously, epidemiological and clinical studies have also reported a clinical relationship between hypertension, diabetes, and other inflammatory processes, and a higher risk of cognition decline. Considering the cumulative data from the scientific literature, including data of high evidence such as meta-analysis and systematic reviews, we can now link a Ca2+ dyshomeostasis as an upstream factor for hypertension, diabetes and other inflammatory processes, and dementia. Several reports have also indicated that increasing cAMP levels may induce neuroprotective outcomes, thus alleviating dementia symptoms.

Methods: With these concepts in mind, we found that the pharmacological manipulation of Ca2+/cAMP signalling could be a novel plausible target to treat dementia. This article puts together fundamental concepts and current therapies to treat dementia, including novel therapeutics coming from the pharmacological manipulation of Ca2+/cAMP signalling.

Results: Then, combined with improvements in the lifestyle issues, these novel therapeutics may allow sustained improvements in the life quality of age-related neurological patients.

Conclusions: In addition, considering coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviewed recent reports about Ca2+ channel blockers' role in restoring Ca2+ signalling disruption due to COVID-19. Finally, this article also presents a timeline of the major events in Ca2+/cAMP signaling.

Keywords: Alzheimer’s disease, neurodegenerative diseases, Ca2+/cAMP signaling, Ca2+ channel blockers, rolipram, COVID- 19.

Next »
[1]
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 2008; 31(9): 454-63.
[http://dx.doi.org/10.1016/j.tins.2008.06.005] [PMID: 18675468]
[2]
Bergantin LB, Caricati-Neto A. The “calcium paradox” and its impact on neurological and psychiatric diseases. Cambridge Scholars Publishing 2018.
[3]
Neher E, Zucker RS. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 1993; 10(1): 21-30.
[http://dx.doi.org/10.1016/0896-6273(93)90238-M] [PMID: 8427700]
[4]
Caricati-Neto A, Padín JF, Silva-Junior ED, et al. Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C. Physiol Rep 2013; 1(7): e00182.
[http://dx.doi.org/10.1002/phy2.182] [PMID: 24744861]
[5]
Bergantin LB, Souza CF, Ferreira RM, et al. Novel model for “calcium paradox” in sympathetic transmission of smooth muscles: Role of cyclic AMP pathway. Cell Calcium 2013; 54(3): 202-12.
[http://dx.doi.org/10.1016/j.ceca.2013.06.004] [PMID: 23849429]
[6]
Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 2013; 7(1): 2-13.
[http://dx.doi.org/10.4161/pri.21767] [PMID: 22895098]
[7]
Caricati-Neto A, Bergantin LB. Pharmacological modulation of neural Ca2+/camp signaling interaction as therapeutic goal for treatment of Alzheimer’s disease. J Syst Integr Neurosci 2017; 3.
[http://dx.doi.org/10.15761/JSIN.1000185]
[8]
Bergantin LB. A link between brain insulin resistance and cognitive dysfunctions: Targeting Ca2+/cAMP signalling. Cent Nerv Syst Agents Med Chem 2020; 20(2): 103-9.
[http://dx.doi.org/10.2174/1871524920666200129121232] [PMID: 31995022]
[9]
Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca(2+)/cAMP intracellular signalling interaction. Eur J Pharmacol 2016; 788: 255-60.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.034] [PMID: 27349146]
[10]
Ashby EL, Miners JS, Kehoe PG, Love S. Effects of hypertension and anti-hypertensive treatment on amyloid-ß plaque load and Aß- synthesizing and Aß-degrading enzymes in frontal cortex. J Alzheimers Dis 2016; 50: 1191-203.
[http://dx.doi.org/10.3233/JAD-150831] [PMID: 26836178]
[11]
Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: A review. Curr Hypertens Rep 2017; 19(3): 24.
[http://dx.doi.org/10.1007/s11906-017-0724-3] [PMID: 28299725]
[12]
Langbaum JBS, Chen K, Launer LJ, et al. Blood pressure is associated with higher brain amyloid burden and lower glucose metabolism in healthy late middle-age persons. Neurobiol Aging 2012; 33(4): 827.e11-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.020] [PMID: 21821316]
[13]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[14]
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993; 259(5091): 87-91.
[http://dx.doi.org/10.1126/science.7678183] [PMID: 7678183]
[15]
Ogston D, McAndrew GM. Fibrinolysis in obesity. Lancet 1964; 2(7371): 1205-7.
[http://dx.doi.org/10.1016/S0140-6736(64)91042-6] [PMID: 14215560]
[16]
Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010; 375(9709): 132-40.
[http://dx.doi.org/10.1016/S0140-6736(09)61717-7] [PMID: 20031199]
[17]
Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336(14): 973-9.
[http://dx.doi.org/10.1056/NEJM199704033361401] [PMID: 9077376]
[18]
Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 2003; 52(7): 1799-805.
[http://dx.doi.org/10.2337/diabetes.52.7.1799] [PMID: 12829649]
[19]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4: 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[20]
Dalal PJ, Muller WA, Sullivan DP. Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol 2020; 190(3): 535-42.
[http://dx.doi.org/10.1016/j.ajpath.2019.11.004] [PMID: 31866349]
[21]
Bergantin LB. The interactions between Alzheimer’s disease and major depression: Role of Ca2+ channel blockers and Ca2+/cAMP signalling. Curr Drug Res Rev 2020; 12(2): 97-102.
[http://dx.doi.org/10.2174/2589977512666200217093356] [PMID: 32065096]
[22]
Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 1998; 352(9137): 1347-51.
[http://dx.doi.org/10.1016/S0140-6736(98)03086-4] [PMID: 9802273]
[23]
Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: From risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect 2015; 3(5): e00181.
[http://dx.doi.org/10.1002/prp2.181] [PMID: 26516591]
[24]
Forette F, Seux ML, Staessen JA, et al. The prevention of dementia with antihypertensive treatment: New evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med 2002; 162(18): 2046-52.
[http://dx.doi.org/10.1001/archinte.162.18.2046] [PMID: 12374512]
[25]
Fritze J, Walden J. Clinical findings with nimodipine in dementia: Test of the calcium hypothesis. J Neural Transm Suppl 1995; 46: 439-53.
[PMID: 8821080]
[26]
Hanon O, Pequignot R, Seux ML, et al. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens 2006; 24(10): 2101-7.
[http://dx.doi.org/10.1097/01.hjh.0000244961.69985.05] [PMID: 16957572]
[27]
Paran E, Anson O, Lowenthal DT. Cognitive function and antihypertensive treatment in the elderly: A 6-year follow-up study. Am J Ther 2010; 17(4): 358-64.
[http://dx.doi.org/10.1097/MJT.0b013e3181bf325c] [PMID: 20019592]
[28]
Peters R, Booth A, Peters J. A systematic review of calcium channel blocker use and cognitive decline/dementia in the elderly. J Hypertens 2014; 32(10): 1945-57.
[http://dx.doi.org/10.1097/HJH.0000000000000273] [PMID: 25068540]
[29]
Rouch L, Cestac P, Hanon O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: A systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 2015; 29(2): 113-30.
[http://dx.doi.org/10.1007/s40263-015-0230-6] [PMID: 25700645]
[30]
Tollefson GD. Short-term effects of the calcium channel blocker nimodipine (Bay-e-9736) in the management of primary degenerative dementia. Biol Psychiatry 1990; 27(10): 1133-42.
[http://dx.doi.org/10.1016/0006-3223(90)90050-C] [PMID: 2187540]
[31]
Trompet S, Westendorp RG, Kamper AM, de Craen AJ. Use of calcium antagonists and cognitive decline in old age. The Leiden 85-plus study. Neurobiol Aging 2008; 29(2): 306-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.10.006] [PMID: 17101196]
[32]
Wu CL, Wen SH. A 10-year follow-up study of the association between calcium channel blocker use and the risk of dementia in elderly hypertensive patients. Medicine (Baltimore) 2016; 95(32): e4593.
[http://dx.doi.org/10.1097/MD.0000000000004593] [PMID: 27512890]
[33]
Yasar S, Corrada M, Brookmeyer R, Kawas C. Calcium channel blockers and risk of AD: The baltimore longitudinal study of aging. Neurobiol Aging 2005; 26(2): 157-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.03.009] [PMID: 15582745]
[34]
Nimmrich V, Eckert A. Calcium channel blockers and dementia. Br J Pharmacol 2013; 169(6): 1203-10.
[http://dx.doi.org/10.1111/bph.12240] [PMID: 23638877]
[35]
Zhang L, Yu J, Pan H, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 2007; 104(48): 19023-8.
[http://dx.doi.org/10.1073/pnas.0709695104] [PMID: 18024584]
[36]
Mai A, Valente S, Meade S, et al. Study of 1,4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors. J Med Chem 2009; 52(17): 5496-504.
[http://dx.doi.org/10.1021/jm9008289] [PMID: 19663498]
[37]
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105(9): 3374-9.
[http://dx.doi.org/10.1073/pnas.0712145105] [PMID: 18296641]
[38]
Bachmeier C, Beaulieu-Abdelahad D, Mullan M, Paris D. Selective dihydropyiridine compounds facilitate the clearance of β-amyloid across the blood-brain barrier. Eur J Pharmacol 2011; 659(2-3): 124-9.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.048] [PMID: 21497592]
[39]
Paris D, Bachmeier C, Patel N, et al. Selective antihypertensive dihydropyridines lower Aβ accumulation by targeting both the production and the clearance of Aβ across the blood-brain barrier. Mol Med 2011; 17(3-4): 149-62.
[http://dx.doi.org/10.2119/molmed.2010.00180] [PMID: 21170472]
[40]
Kelly MP. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal 2018; 42: 281-91.
[http://dx.doi.org/10.1016/j.cellsig.2017.11.004] [PMID: 29175000]
[41]
Prickaerts J, Heckman PRA, Blokland A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin Investig Drugs 2017; 26(9): 1033-48.
[http://dx.doi.org/10.1080/13543784.2017.1364360] [PMID: 28772081]
[42]
Caricati-Neto A, Bergantin LB. The passion of a scientific discovery: The “calcium paradox” due to Ca2+/camp interaction. J Syst Integr Neurosci 2017; 3: 8.
[http://dx.doi.org/10.15761/JSIN.1000186]
[43]
Xiao L, O’Callaghan JP, O’Donnell JM. Effects of repeated treatment with phosphodiesterase-4 inhibitors on cAMP signaling, hippocampal cell proliferation, and behavior in the forced-swim test. J Pharmacol Exp Ther 2011; 338(2): 641-7.
[http://dx.doi.org/10.1124/jpet.111.179358] [PMID: 21566211]
[44]
Raker VK, Becker C, Steinbrink K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol 2016; 7: 123.
[http://dx.doi.org/10.3389/fimmu.2016.00123] [PMID: 27065076]
[45]
Bergantin LB. Hypertension, diabetes and neurodegenerative diseases: Is there a clinical link through the Ca2+/cAMP signalling interaction? Curr Hypertens Rev 2019; 15(1): 32-9.
[http://dx.doi.org/10.2174/1573402114666180817113242] [PMID: 30117399]
[46]
Bergantin LB. The complex link between schizophrenia and dementia: targeting Ca2+/cAMP signalling. Curr Pharm Des 2020; 26(27): 3326-31.
[http://dx.doi.org/10.2174/1381612826666200318144521] [PMID: 32186273]
[47]
To KK, Sridhar S, Chiu KH, et al. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect 2021; 10(1): 507-35.
[http://dx.doi.org/10.1080/22221751.2021.1898291] [PMID: 33666147]
[48]
Zhang LK, Sun Y, Zeng H, et al. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov 2020; 6(1): 96.
[http://dx.doi.org/10.1038/s41421-020-00235-0] [PMID: 33349633]
[49]
Olivier M. Modulation of host cell intracellular Ca2+. Parasitol Today 1996; 12(4): 145-50.
[http://dx.doi.org/10.1016/0169-4758(96)10006-5] [PMID: 15275223]
[50]
Scherbik SV, Brinton MA. Virus-induced Ca2+ influx extends survival of west nile virus-infected cells. J Virol 2010; 84(17): 8721-31.
[http://dx.doi.org/10.1128/JVI.00144-10] [PMID: 20538858]
[51]
Dionicio CL, Peña F, Constantino-Jonapa LA, et al. Dengue virus induced changes in Ca2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Res 2018; 245: 17-28.
[http://dx.doi.org/10.1016/j.virusres.2017.11.029] [PMID: 29269104]
[52]
Nugent KM, Shanley JD. Verapamil inhibits influenza A virus replication. Arch Virol 1984; 81(1-2): 163-70.
[http://dx.doi.org/10.1007/BF01309305] [PMID: 6743023]
[53]
Johansen LM, DeWald LE, Shoemaker CJ, et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci Transl Med 2015; 7(290): 290ra89.
[http://dx.doi.org/10.1126/scitranslmed.aaa5597] [PMID: 26041706]
[54]
Bergantin LB. Diabetes and inflammatory diseases: An overview from the perspective of Ca2+/3′-5′-cyclic adenosine monophosphate signaling. World J Diabetes 2021; 12(6): 767-79.
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[55]
Bergantin LB. The interplay among epilepsy, Parkinson’s disease and inflammation: Revisiting the link through Ca2+/cAMP signalling. Curr Neurovasc Res 2021; 18(1): 162-8.
[http://dx.doi.org/10.2174/1567202618666210603123345] [PMID: 34082680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy