Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Arterial Stiffness Assessment in Healthy Participants Using Shear Wave Elastography

Author(s): Jaber Alyami* and Fahad Almutairi*

Volume 18, Issue 10, 2022

Published on: 10 June, 2022

Article ID: e150422203662 Pages: 7

DOI: 10.2174/1573405618666220415124535

Price: $65

Abstract

Background: Arterial stiffness is an important biomarker for cardiovascular disease. Shear wave elastography (SWE) provides quantitative estimates of tissue stiffness.

Objective: This study aimed to provide reference values for arterial wall, assessing the suitability of SWE to quantify elasticity of the common carotid artery (CCA) and evaluating inter-and intra-observer reproducibility.

Methods: A Supersonic Aixplorer ultrasound system with L15-4 probe was used to scan longitudinal sections of the CCA. Young’s modulus (YM) was measured within 2-mm regions of interest. Reproducibility was assessed within a subgroup of 16 participants by two operators (one novice and one experienced) during two sessions >one week apart.

Results: This study involves seventy-three participants with a mean age of 40±10 years and a body mass index of 26 ±6 kg/m2. YM estimates were 59 kPa ±19 in men and 56 kPa ±12 in women. The average YM of the CCA walls was 58 kPa ±15 (57 ±15 kPa for the anterior wall and 58 ±20 kPa for the posterior wall, p=0.75). There was no significant difference in the mean of YM estimates of the CCA between the observers (observer: one 51 ±14 kPa and observer two: 55 ±17 kPa[p=0.46]). Interand intra-observer reproducibility was fair to good (Intra-class correlations, ranging from 0.46 to 0.71). Inter-frame variability was 28%.

Conclusion: In healthy individuals, SWE provided an estimate of YM of the CCA (58 kPa) with fair to good reproducibility. This study demonstrated the potential of using SWE for assessing biomechanical properties of blood vessels.

Keywords: Atherosclerosis, carotid arteries, carotid intima-media thickness, dissection, elasticity imaging techniques, elastic modulus, risk assessment, vascular stiffness.

[1]
Mendis S, Puska P, Norrving B. World Health Organization, World Heart Federation, and World Stroke Organization (2011). Global atlas on cardiovascular disease prevention and control 2011.
[2]
Tjan A, Widiana IGR, Martadiani ED, Ayusta IMD, Asih MW, Sitanggang FP. Carotid artery stiffness measured by strain elastography ultra-sound is a stroke risk factor. Clin Epidemiol Glob Health 2021; 12: 100850.
[http://dx.doi.org/10.1016/j.cegh.2021.100850]
[3]
Kan P, Mokin M, Dumont TM, et al. Cervical carotid artery stenosis: Latest update on diagnosis and management. Curr Probl Cardiol 2012; 37(4): 127-69.
[http://dx.doi.org/10.1016/j.cpcardiol.2011.11.001] [PMID: 22391407]
[4]
Maksuti E, Widman E, Larsson D, Urban MW, Larsson M, Bjällmark A. Arterial stiffness estimation by shear wave elastography: Valida-tion in phantoms with mechanical testing. Ultrasound Med Biol 2016; 42(1): 308-21.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.08.012] [PMID: 26454623]
[5]
Franklin SS. Arterial stiffness and diastolic blood pressure: What is the connection? Artery Res 2006; 1: S1-6.
[6]
Luo KQ, Feng XW, Xu BC, Long HB. Association between arterial stiffness and risk of coronary artery disease. Pak J Med Sci 2014; 30(6): 1314-8.
[http://dx.doi.org/10.12669/pjms.306.5584] [PMID: 25674130]
[7]
Kim H-L, Lim W-H, Seo J-B, et al. Association between arterial stiffness and left ventricular diastolic function in relation to gender and age. Medicine (Baltimore) 2017; 96(1): e5783.
[http://dx.doi.org/10.1097/MD.0000000000005783] [PMID: 28072727]
[8]
Calvet D, Boutouyrie P, Touze E, Laloux B, Mas J-L, Laurent S. Increased stiffness of the carotid wall material in patients with spontaneous cervical artery dissection. Stroke 2004; 35(9): 2078-82.
[http://dx.doi.org/10.1161/01.STR.0000136721.95301.8d] [PMID: 15243148]
[9]
Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med 2014; 5(8): 927-46.
[PMID: 25489440]
[10]
Hoskins PR, Kenwright DA. Recent developments in vascular ultrasound technology. Ultrasound 2015; 23(3): 158-65.
[http://dx.doi.org/10.1177/1742271X15578778] [PMID: 27433252]
[11]
Mahmood B, Ewertsen C, Carlsen J, Nielsen MB. Ultrasound vascular elastography as a tool for assessing atherosclerotic plaques-a sys-tematic literature review. Ultrasound Int Open 2016; 2(4): E106-12.
[http://dx.doi.org/10.1055/s-0042-115564] [PMID: 27896334]
[12]
Huang C, Guo D, Lan F, Zhang H, Luo J. Noninvasive measurement of regional pulse wave velocity in human ascending aorta with ultra-sound imaging: An in-vivo feasibility study. J Hypertens 2016; 34(10): 2026-37.
[http://dx.doi.org/10.1097/HJH.0000000000001060] [PMID: 27467765]
[13]
Khamdaeng T, Luo J, Vappou J, Terdtoon P, Konofagou EE. Arterial stiffness identification of the human carotid artery using the stress-strain relationship in vivo. Ultrasonics 2012; 52(3): 402-11.
[http://dx.doi.org/10.1016/j.ultras.2011.09.006] [PMID: 22030473]
[14]
Hoeks AP, Brands PJ, Smeets FA, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 1990; 16(2): 121-8.
[http://dx.doi.org/10.1016/0301-5629(90)90139-4] [PMID: 2183458]
[15]
Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc Res 1987; 21(9): 678-87.
[http://dx.doi.org/10.1093/cvr/21.9.678] [PMID: 3328650]
[16]
Ribbers H, Lopata RG, Holewijn S, Pasterkamp G, Blankensteijn JD, de Korte CL. Noninvasive two-dimensional strain imaging of arteries: Validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound Med Biol 2007; 33(4): 530-40.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2006.09.009] [PMID: 17280769]
[17]
Golemati S, Tzortzi M, Li RX, Russo C, Konofagou EE. Noninvasive assessment of age-related arterial changes using the carotid stress-strain relationship in vivo: A pilot study. In: 2015 IEEE International Ultrasonics Symposium (IUS). 2015 Oct 21-24; Taipei, Taiwan. 1-4.
[http://dx.doi.org/10.1109/ULTSYM.2015.0242]
[18]
Su-Angka N, Khositseth A, Vilaiyuk S, Tangnararatchakit K, Prangwatanagul W. Carotid intima-media thickness and arterial stiffness in pediatric systemic lupus erythematosus. Lupus 2017; 26(9): 989-95.
[http://dx.doi.org/10.1177/0961203317692434] [PMID: 28420050]
[19]
Luo X, Du L, Li Z. Ultrasound assessment of tensile stress in carotid arteries of healthy human subjects with varying age. BMC Med Imaging 2019; 19(1): 93.
[http://dx.doi.org/10.1186/s12880-019-0394-5] [PMID: 31783804]
[20]
Ricci P, Maggini E, Mancuso E, Lodise P, Cantisani V, Catalano C. Clinical application of breast elastography: State of the art. Eur J Radiol 2014; 83(3): 429-37.
[http://dx.doi.org/10.1016/j.ejrad.2013.05.007] [PMID: 23787274]
[21]
Varbobitis IC, Siakavellas SI, Koutsounas IS, et al. Reliability and applicability of two-dimensional shear-wave elastography for the evalua-tion of liver stiffness. Eur J Gastroenterol Hepatol 2016; 28(10): 1204-9.
[http://dx.doi.org/10.1097/MEG.0000000000000686] [PMID: 27340898]
[22]
Ferraioli G, Tinelli C, Lissandrin R, et al. Ultrasound point shear wave elastography assessment of liver and spleen stiffness: Effect of training on repeatability of measurements. Eur Radiol 2014; 24(6): 1283-9.
[http://dx.doi.org/10.1007/s00330-014-3140-y] [PMID: 24643497]
[23]
Couade M, Pernot M, Prada C, et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med Biol 2010; 36(10): 1662-76.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.07.004] [PMID: 20800942]
[24]
Ramnarine KV, Garrard JW, Kanber B, Nduwayo S, Hartshorne TC, Robinson TG. Shear wave elastography imaging of carotid plaques: Feasible, reproducible and of clinical potential. Cardiovasc Ultrasound 2014; 12(1): 49.
[http://dx.doi.org/10.1186/1476-7120-12-49] [PMID: 25487290]
[25]
Ramnarine KV, Garrard JW, Dexter K, Nduwayo S, Panerai RB, Robinson TG. Shear wave elastography assessment of carotid plaque stiff-ness: In vitro reproducibility study. Ultrasound Med Biol 2014; 40(1): 200-9.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.09.014] [PMID: 24210861]
[26]
Woo S, Kim SY, Lee MS, Cho JY, Kim SH. Shear wave elastography assessment in the prostate: An intraobserver reproducibility study. Clin Imaging 2015; 39(3): 484-7.
[http://dx.doi.org/10.1016/j.clinimag.2014.11.013] [PMID: 25481218]
[27]
Sivasankar R, Singh R, Hashim P, Soni BK, Patel RK, Bajpai A. Evaluation of carotid plaque vulnerability using shear-wave elastography: An observational comparative study. Journal of Marine Medical Society 2019; 21(2): 134.
[http://dx.doi.org/10.4103/jmms.jmms_31_19]
[28]
Maurice RL, Vaujois L, Dahdah N, Nuyt A-M, Bigras J-L. Comparing carotid and brachial artery stiffness: A first step toward mechanical mapping of the arterial tree. Ultrasound Med Biol 2015; 41(7): 1808-13.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.02.013] [PMID: 25840477]
[29]
Li Z, Du L, Wang F, Luo X. Assessment of the arterial stiffness in patients with acute ischemic stroke using longitudinal elasticity modulus measurements obtained with shear wave elastography. Med Ultrason 2016; 18(2): 182-9.
[http://dx.doi.org/10.11152/mu.2013.2066.182.wav] [PMID: 27239652]
[30]
Kanber B, Hartshorne TC, Horsfield MA, Naylor AR, Robinson TG, Ramnarine KV. Quantitative assessment of carotid plaque surface irregularities and correlation to cerebrovascular symptoms. Cardiovasc Ultrasound 2013; 11(1): 38.
[http://dx.doi.org/10.1186/1476-7120-11-38] [PMID: 24195596]
[31]
Prabhakaran S, Rundek T, Ramas R, et al. Carotid plaque surface irregularity predicts ischemic stroke: The northern Manhattan study. Stroke 2006; 37(11): 2696-701.
[http://dx.doi.org/10.1161/01.STR.0000244780.82190.a4] [PMID: 17008627]
[32]
Lou Z, Yang J, Tang L, et al. Shear wave elastography imaging for the features of symptomatic carotid plaques: A feasibility study. J Ultrasound Med 2017; 36(6): 1213-23.
[http://dx.doi.org/10.7863/ultra.16.04073] [PMID: 28218798]
[33]
Maurice RL, Soulez G, Giroux MF, Cloutier G. Noninvasive vascular elastography for carotid artery characterization on subjects without previous history of atherosclerosis. Med Phys 2008; 35(8): 3436-43.
[http://dx.doi.org/10.1118/1.2948320] [PMID: 18777903]
[34]
Shang J, Wang W, Feng J, et al. Carotid plaque stiffness measured with supersonic shear imaging and its correlation with serum homocyste-ine level in ischemic stroke patients. Korean J Radiol 2018; 19(1): 15-22.
[http://dx.doi.org/10.3348/kjr.2018.19.1.15] [PMID: 29353995]
[35]
Maksuti E, Bini F, Fiorentini S, et al. Influence of wall thickness and diameter on arterial shear wave elastography: A phantom and finite element study. Phys Med Biol 2017; 62(7): 2694-718.
[http://dx.doi.org/10.1088/1361-6560/aa591d] [PMID: 28081009]
[36]
Sande JA, Verjee S, Vinayak S, Amersi F, Ghesani M. Ultrasound shear wave elastography and liver fibrosis: A prospective multicenter study. World J Hepatol 2017; 9(1): 38-47.
[http://dx.doi.org/10.4254/wjh.v9.i1.38] [PMID: 28105257]
[37]
Park AY, Son EJ, Han K, Youk JH, Kim J-A, Park CS. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol 2015; 84(3): 407-12.
[http://dx.doi.org/10.1016/j.ejrad.2014.11.019] [PMID: 25533720]
[38]
Cortez CD, Hermitte L, Ramain A, Mesmann C, Lefort T, Pialat JB. Ultrasound shear wave velocity in skeletal muscle: A reproducibility study. Diagn Interv Imaging 2016; 97(1): 71-9.
[http://dx.doi.org/10.1016/j.diii.2015.05.010] [PMID: 26119864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy