Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Vitamin C and D Supplements to Prevent the Risk of COVID-19

Author(s): Mohamad Hesam Shahrajabian*, Qi Cheng and Wenli Sun*

Volume 13, Issue 1, 2023

Published on: 20 August, 2022

Article ID: e140422203571 Pages: 13

DOI: 10.2174/2210315512666220414104141

Price: $65

Abstract

Background: A virus is a tiny agent, around one-hundredth the size of a bacterium which can infect cells of plants and animals. Seven coronaviruses are known to infect humans; three of them are serious, namely, SARS (severe acute respiratory syndrome, China, 2002), MERS (Middle East respiratory syndrome, Saudi Arabia, 2012), and SARS-CoV-2 (COVID-19) (2019-2020). SARS-CoV and MERS-CoV belong to beta coronaviruses (betaCoVs).

Objective: In this mini-review, we want to consider the importance of vitamin D and C, especially plants containing these two vitamins, in the fight against COVID-19.

Methods: The manuscript includes review articles, randomized control experiments, analytical studies, and observations, which have been gathered from different sources such as Google Scholar, Scopus, Science Direct, and PubMed. A literature review was carried out using keywords such as vitamin D, vitamin C, COVID-19, influenza, plant, and coronaviruses.

Results: Various sources of vitamin D for humans are food, dietary supplements, and the skin by exposure to 7-dehydrocholesterol to ultraviolet light. There are some new findings on the influence of vitamin D in preventing and controlling influenza and COVID-19. Vitamin D may play a role in preventing influenza and COVID-19 by producing large quantities of IL-1 and IL-6 or interleukins.

Conclusion: Vitamin D deficiency is a potential link between respiratory infection and immune evasion, and vitamin D is a pleiotropic factor known to modulate the immune response against the pathogen.

Keywords: Vitamin D, Vitamin C, COVID-19, Influenza, Plant, Coronaviruses

Graphical Abstract

[1]
Çimke, S. Yıldırım Gürkan, D. Determination of interest in vitamin use during COVID-19 pandemic using Google Trends data: Infodemi-ology study. Nutrition, 2021, 85, 111138.
[http://dx.doi.org/10.1016/j.nut.2020.111138] [PMID: 33578243]
[2]
Yu, H.J.; Kwon, M.J.; Woo, H.Y.; Park, H. Analysis of 25-hydroxyvitamin D status according to age, gender, and seasonal variation. J. Clin. Lab. Anal., 2016, 30(6), 905-911.
[http://dx.doi.org/10.1002/jcla.21955] [PMID: 27075522]
[3]
Katz, J.; Yue, S.; Xue, W. Increased risk for COVID-19 in patients with vitamin D deficiency. Nutrition, 2021, 84, 111106.
[http://dx.doi.org/10.1016/j.nut.2020.111106] [PMID: 33418230]
[4]
Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord., 2017, 18(2), 153-165.
[http://dx.doi.org/10.1007/s11154-017-9424-1] [PMID: 28516265]
[5]
Thacher, T.D. Vitamin D and COVID-19. Mayo Clin. Proc., 2021, 96(4), 838-840.
[http://dx.doi.org/10.1016/j.mayocp.2021.02.014] [PMID: 33814087]
[6]
Sassi, F.; Tamone, C.; D’Amelio, P.; Vitamin, D. Nutrient, hormone and immunomodulator. Nutrients, 2018, 10(11), 1656.
[http://dx.doi.org/10.3390/nu10111656]
[7]
Brighthope, I.; Sali Am, A.; Ried, K. Vitamin-D and COVID-19: Time for the profession to take a stand. Adv. Integr. Med., 2021, 8(2), 77-78.
[http://dx.doi.org/10.1016/j.aimed.2021.01.003] [PMID: 33520645]
[8]
Song, Y.; Qayyum, S.; Slominski, R.; Raman, C.; Slominski, A.; Song, Y. Vitamin D and its derivatives as promising drugs against COVID-19- A computational study. Biophys. J., 2021, 120(3), 205a.
[http://dx.doi.org/10.1016/j.bpj.2020.11.1396]
[9]
Vassiliou, A.G.; Jahaj, E.; Pratikaki, M.; Keskinidou, C.; Detsika, M.; Grigoriou, E.; Psarra, K.; Orfanos, S.E.; Tsirogianni, A.; Dimopou-lou, I.; Kotanidou, A. Vitamin D deficiency correlated with a reduced number of natural killer cells in intensive care unit (ICU) and non-ICU patients with COVID-19 pneumonia. Hellenic J. Cardiol., 2021, 62(5), 381-383.
[http://dx.doi.org/10.1016/j.hjc.2020.11.011] [PMID: 33309735]
[10]
Tehrani, S.; Khabiri, N.; Moradi, H.; Mosavat, M.S.; Khabiri, S.S. Evaluation of vitamin D levels in COVID-19 patients referred to Labaf-inejad hospital in Tehran and its relationship with disease severity and mortality. Clin. Nutr. ESPEN, 2021, 42, 313-317.
[http://dx.doi.org/10.1016/j.clnesp.2021.01.014] [PMID: 33745598]
[11]
Mardani, R.; Alamdary, A.; Mousavi Nasab, S.D.; Gholami, R.; Ahmadi, N.; Gholami, A. Association of vitamin D with the modulation of the disease severity in COVID-19. Virus Res., 2020, 289, 198148.
[http://dx.doi.org/10.1016/j.virusres.2020.198148] [PMID: 32866536]
[12]
Khusid, J.A.; Atallah, W.M.; Kyprianou, N.; Gupta, M. What stone-formers should know about vitamin C and D supplementation in the COVID-19 era. Euro Urol Open Sci, 2020, 21, 9-11.
[http://dx.doi.org/10.1016/j.euros.2020.07.006] [PMID: 33117994]
[13]
Lu, H.T.; Yang, J.C.; Yuan, Z.C.; Sheng, W.H.; Yan, W.H. Effect of combined treatment of Shuanghuanglian and recombinant interferon alpha 2a on coxsackievirus B3 replication in vitro. Zhongguo Zhongyao Zazhi, 2000, 25(11), 682-684.
[PMID: 12525074]
[14]
Chen, X.; Howard, O.M.; Yang, X.; Wang, L.; Oppenheim, J.J.; Krakauer, T. Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sci., 2002, 70(24), 2897-2913.
[http://dx.doi.org/10.1016/S0024-3205(02)01541-2] [PMID: 12269401]
[15]
Li, W. The curative effect observation of shuanghuanglian and penicillin on acute tonsillitis. Lin Chuang Er bi Yan Hou ke Za Zhi, 2002, 16, 475-476.
[16]
Ding, Y.; Zeng, L.; Li, R.; Chen, Q.; Zhou, B.; Chen, Q.; Cheng, P.L.; Yutao, W.; Zheng, J.; Yang, Z.; Zhang, F. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement. Altern. Med., 2017, 17(1), 130.
[http://dx.doi.org/10.1186/s12906-017-1585-7] [PMID: 28235408]
[17]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[18]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese med-icine and modern industry. Acta Agric. Scand. B Soil Plant Sci., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[19]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese star anise (Illicium verum) and pyrethrum (Chrysanthemum cinerariifolium) as natural alternatives for organic farming and health care- A review. Aust. J. Crop Sci., 2020, 14(03), 517-523.
[http://dx.doi.org/10.21475/ajcs.20.14.03.p2209]
[20]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encour-aging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[21]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped wit COVID-19. Nat. Prod. Commun., 2020, 15(8), 1-10.
[http://dx.doi.org/10.1177/1934578X20951431]
[22]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Product of natural evolution (SARS, MERS and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum. Vaccin. Immunother., 2021, 17(1), 62-83.
[http://dx.doi.org/10.1080/21645515.2020.1797369]
[23]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives from traditional Chinese wonder medicinal science. Not. Bot. Horti Agrobot. Cluj-Napoca, 2020, 48(4), 1719-1741.
[http://dx.doi.org/10.15835/nbha48412002]
[24]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[PMID: 33350538]
[25]
Shahrajabian, M.H.; Sun, W.; Khoshkharam, M.; Cheng, Q. Caraway, Chinese chives and cassia as functional foods with considering nu-trients and health benefits. Carpathian. J. Food Sci. Technol., 2021, 13(1), 101-119.
[26]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sus-tainable farming of vegetables. Biomolecules, 2021, 11(5), 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[27]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Spanish chamomile (Anacyclus pyrethrum) and pyrethrum (Tanacetum cineraiifolium): Organic and natural pesticides and treasure of medicinal herbs. Not. Sci. Biol., 2021, 13(1), 10816.
[http://dx.doi.org/10.15835/nsb13110816]
[28]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Asafoetida, a natural medicine for a future. Curr. Nutr. Food Sci., 2021, 17(9), 1-10.
[http://dx.doi.org/10.2174/1573401317666210222161609]
[29]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. Clin. Phytosci., 2021, 7(1), 1-10.
[http://dx.doi.org/10.1186/s40816-021-00255-7]
[30]
Razdan, K.; Singh, K.; Singh, D. Vitamin D levels and COVID-19 susceptibility: Is there any correlation? Med Drug Discov., 2020, 7, 100051.
[http://dx.doi.org/10.1016/j.medidd.2020.100051] [PMID: 32835212]
[31]
Arvinte, C.; Singh, M.; Marik, P.E. Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a North American community hospital intensive care unit in May 2020: A pilot study. Med Drug Discov., 2020, 8, 100064.
[http://dx.doi.org/10.1016/j.medidd.2020.100064] [PMID: 32964205]
[32]
Biesalski, H.K. Vitamin D deficiency and co-morbidities in COVID-19 patients- A fatal relationship? NFS J., 2020, 20, 10-21.
[http://dx.doi.org/10.1016/j.nfs.2020.06.001]
[33]
Silberstein, M.; Vitamin, D. A simpler alternative to tocilizumab for trial in COVID-19? Med. Hypotheses, 2020, 140, 109767.
[http://dx.doi.org/10.1016/j.mehy.2020.109767] [PMID: 32353742]
[34]
Im, J.H.; Je, Y.S.; Baek, J.; Chung, M-H.; Kwon, H.Y.; Lee, J-S. Nutritional status of patients with COVID-19. Int. J. Infect. Dis., 2020, 100, 390-393.
[http://dx.doi.org/10.1016/j.ijid.2020.08.018] [PMID: 32795605]
[35]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and western modern medicine. Avicenna J. Phytomed., 2021, 11(2), 109-119.
[PMID: 33907670]
[36]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceuti-cal uses. Isr. J. Plant Sci., 2021, 68(1-2), 1-11.
[http://dx.doi.org/10.1163/22238980-bja10019]
[37]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/1389557520666201127104907] [PMID: 33245271]
[38]
Liu, N.; Sun, J.; Wang, X.; Zhang, T.; Zhao, M.; Li, H. Low vitamin D status is associated with coronavirus disease 2019 outcomes: A systematic review and meta-analysis. Int. J. Infect. Dis., 2021, 104, 58-64.
[http://dx.doi.org/10.1016/j.ijid.2020.12.077] [PMID: 33401034]
[39]
Bendik, I.; Friedel, A.; Roos, F.F.; Weber, P.; Eggersdorfer, M.; Vitamin, D. A critical and essential micronutrient for human health. Front. Physiol., 2014, 5, 248.
[http://dx.doi.org/10.3389/fphys.2014.00248] [PMID: 25071593]
[40]
López-Bautista, F.; Posadas-Romero, C.; Ruiz-Vargas, L.Y.; Cardoso-Saldaña, G.; Juárez-Rojas, J.G.; Medina-Urrutia, A.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Vargas-Alarcón, G.; Posadas-Sánchez, R. Vitamin D deficiency is not associated with fatty liver in a Mexican population. Ann. Hepatol., 2018, 17(3), 419-425.
[http://dx.doi.org/10.5604/01.3001.0011.7386] [PMID: 29735791]
[41]
Gruber-Bzura, B.M. Vitamin D and influenza-Prevention or therapy? Int. J. Mol. Sci., 2018, 19(8), 2419.
[http://dx.doi.org/10.3390/ijms19082419] [PMID: 30115864]
[42]
Zou, R.; El Marroun, H.; McGrath, J.J.; Muetzel, R.L.; Hillegers, M.; White, T.; Tiemeier, H. A prospective population-based study of gestational vitamin D status and brain morphology in preadolescents. Neuroimage, 2020, 209, 116514.
[http://dx.doi.org/10.1016/j.neuroimage.2020.116514] [PMID: 31904491]
[43]
Zhang, Q.; Chen, H.; Wang, Y.; Zhang, C.; Tang, Z.; Li, H.; Huang, X.; Ouyang, F.; Huang, H.; Liu, Z. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clin. Nutr., 2019, 38(4), 1921-1926.
[http://dx.doi.org/10.1016/j.clnu.2018.06.978] [PMID: 30031659]
[44]
Zittermann, A.; Pilz, S.; Hoffmann, H.; März, W. Vitamin D and airway infections: A European perspective. Eur. J. Med. Res., 2016, 21(1), 14.
[http://dx.doi.org/10.1186/s40001-016-0208-y] [PMID: 27009076]
[45]
Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; Kamen, D.L.; Wagner, M.; Bals, R.; Steinmeyer, A.; Zügel, U.; Gallo, R.L.; Eisenberg, D.; Hewison, M.; Hollis, B.W.; Adams, J.S.; Bloom, B.R.; Modlin, R.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768), 1770-1773.
[http://dx.doi.org/10.1126/science.1123933] [PMID: 16497887]
[46]
Di Rosa, M.; Malaguarnera, G.; De Gregorio, C.; Palumbo, M.; Nunnari, G.; Malaguarnera, L. Immuno-modulatory effects of vitamin D3 in human monocyte and macrophages. Cell. Immunol., 2012, 280(1), 36-43.
[http://dx.doi.org/10.1016/j.cellimm.2012.10.009] [PMID: 23261827]
[47]
Zhang, Y.; Leung, D.Y.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage proin-flammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol., 2012, 188(5), 2127-2135.
[http://dx.doi.org/10.4049/jimmunol.1102412] [PMID: 22301548]
[48]
Albrahim, T.I.; Binobead, M.A. Vitamin D status in relation to age, bone mineral density of the spine and femur in obese Saudi females - A hospital-based study. Saudi Pharm. J., 2019, 27(2), 200-207.
[http://dx.doi.org/10.1016/j.jsps.2018.10.004] [PMID: 30766430]
[49]
Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized trial of vitamin D supplementation to prevent sea-sonal influenza A in schoolchildren. Am. J. Clin. Nutr., 2010, 91(5), 1255-1260.
[http://dx.doi.org/10.3945/ajcn.2009.29094] [PMID: 20219962]
[50]
Manion, M.; Hullsiek, K.H.; Wilson, E.M.P.; Rhame, F.; Kojic, E.; Gibson, D.; Hammer, J.; Patel, P.; Brooks, J.T.; Baker, J.V.; Sereti, I. Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIV-infected persons. PLoS One, 2017, 12(5), e0175517.
[http://dx.doi.org/10.1371/journal.pone.0175517] [PMID: 28464004]
[51]
Labudzynskyi, D.; Shymanskyy, I.; Veliky, M. Role of vitamin D3 in regulation of interleukin-6 and osteopontin expression in liver of diabetic mice. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(13), 2916-2919.
[PMID: 27424994]
[52]
Liu, Q.; Zhou, Y.H.; Yang, Z.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol., 2016, 13(1), 3-10.
[http://dx.doi.org/10.1038/cmi.2015.74] [PMID: 26189369]
[53]
Bassatne, A.; Basbous, M.; Chakhtoura, M.; El Zein, O.; Rahme, M.; El-Hajj Fuleihan, G. The link between COVID-19 and VItamin D (VIVID): A systematic review and meta-analysis. Metabolism, 2021, 119, 154753.
[http://dx.doi.org/10.1016/j.metabol.2021.154753] [PMID: 33774074]
[54]
Zheng, S.; Yang, J.; Hu, X.; Li, M.; Wang, Q.; Dancer, R.C.A.; Parekh, D.; Gao-Smith, F.; Thickett, D.R.; Jin, S. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition. Biochem. Pharmacol., 2020, 177, 113955.
[http://dx.doi.org/10.1016/j.bcp.2020.113955] [PMID: 32251673]
[55]
Gui, B.; Chen, Q.; Hu, C.; Zhu, C.; He, G. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice. Virol. J., 2017, 14(1), 10.
[http://dx.doi.org/10.1186/s12985-017-0683-y] [PMID: 28114957]
[56]
Khare, D.; Godbole, N.M.; Pawar, S.D.; Mohan, V.; Pandey, G.; Gupta, S.; Kumar, D.; Dhole, T.N.; Godbole, M.M. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr., 2013, 52(4), 1405-1415.
[http://dx.doi.org/10.1007/s00394-012-0449-7] [PMID: 23015061]
[57]
Parlak, E.; Ertürk, A. Çağ Y.; Sebin, E.; Gümüşdere, M. The effect of inflammatory cytokines and the level of vitamin D on prognosis in Crimean-Congo hemorrhagic fever. Int. J. Clin. Exp. Med., 2015, 8(10), 18302-18310.
[PMID: 26770432]
[58]
Marik, P.E.; Kory, P.; Varon, J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov., 2020, 6, 100041.
[http://dx.doi.org/10.1016/j.medidd.2020.100041]
[59]
Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect., 2006, 134(6), 1129-1140.
[http://dx.doi.org/10.1017/S0950268806007175] [PMID: 16959053]
[60]
Grant, W.B.; Giovannucci, E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918-1919 influenza pandemic in the United States. Dermatoendocrinol, 2009, 1(4), 215-219.
[http://dx.doi.org/10.4161/derm.1.4.9063] [PMID: 20592793]
[61]
Lang, P.O.; Samaras, D. Aging adults and seasonal influenza: Does the vitamin D status harm the body? J. Aging Res., 2012, 2021, 806198.
[PMID: 22162810]
[62]
Theodoratou, E.; Tzoulaki, I.; Zgaga, L.; Ioannidis, J.P. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ, 2014, 348, g2035.
[http://dx.doi.org/10.1136/bmj.g2035] [PMID: 24690624]
[63]
Hastie, C.E.; Mackay, D.F.; Ho, F.; Celis-Morales, C.A.; Katikireddi, S.V.; Niedzwiedz, C.L.; Jani, B.D.; Welsh, P.; Mair, F.S.; Gray, S.R.; O’Donnell, C.A.; Gill, J.M.; Sattar, N.; Pell, J.P. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr., 2020, 14(4), 561-565.
[http://dx.doi.org/10.1016/j.dsx.2020.04.050] [PMID: 32413819]
[64]
Ginde, A.A.; Mansbach, J.M.; Camargo, C.A., Jr Association between serum 25-hydroxyvitamin D level and upper respiratory tract infec-tion in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med., 2009, 169(4), 384-390.
[http://dx.doi.org/10.1001/archinternmed.2008.560] [PMID: 19237723]
[65]
Berry, D.J.; Hesketh, K.; Power, C.; Hyppönen, E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br. J. Nutr., 2011, 106(9), 1433-1440.
[http://dx.doi.org/10.1017/S0007114511001991] [PMID: 21736791]
[66]
Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS One, 2013, 8(6), e65835.
[http://dx.doi.org/10.1371/journal.pone.0065835] [PMID: 23840373]
[67]
Parekh, D.; Thickett, D.R.; Turner, A.M. Vitamin D deficiency and acute lung injury. Inflamm. Allergy Drug Targets, 2013, 12(4), 253-261.
[http://dx.doi.org/10.2174/18715281113129990049] [PMID: 23782208]
[68]
Dancer, R.C.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; Sapey, E.; Wei, W.; Naidu, B.; Stewart, P.M.; Fraser, W.D.; Christopher, K.B.; Cooper, M.S.; Gao, F.; Sansom, D.M.; Martineau, A.R.; Perkins, G.D.; Thickett, D.R. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax, 2015, 70(7), 617-624.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206680] [PMID: 25903964]
[69]
Rezaei, R.; Aslani, S.; Marashi, M.; Rezaei, F.; Sharif-Paghaleh, E. Immunomodulatory effects of Vitamin D in influenza infection. Curr. Immunol. Rev., 2018, 14(1), 40-49.
[http://dx.doi.org/10.2174/1573395513666171031162100]
[70]
Juzeniene, A.; Ma, L-W.; Kwitniewski, M.; Polev, G.A.; Lagunova, Z.; Dahlback, A.; Moan, J. The seasonality of pandemic and non-pandemic influenzas: The roles of solar radiation and vitamin D. Int. J. Infect. Dis., 2010, 14(12), e1099-e1105.
[http://dx.doi.org/10.1016/j.ijid.2010.09.002] [PMID: 21036090]
[71]
Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol., 2011, 50(3), 194-200.
[http://dx.doi.org/10.1016/j.jcv.2010.12.006] [PMID: 21242105]
[72]
Shaman, J.; Jeon, C.Y.; Giovannucci, E.; Lipsitch, M. Shortcomings of vitamin D-based model simulations of seasonal influenza. PLoS One, 2011, 6(6), e20743.
[http://dx.doi.org/10.1371/journal.pone.0020743] [PMID: 21677774]
[73]
Zhou, J.; Du, J.; Huang, L.; Wang, Y.; Shi, Y.; Lin, H. Preventive effects of vitamin D on seasonal influenza A in infants: A multicenter, randomized, open, controlled clinical trial. Pediatr. Infect. Dis. J., 2018, 37(8), 749-754.
[http://dx.doi.org/10.1097/INF.0000000000001890] [PMID: 29315160]
[74]
Arboleda, J.F.; Fernandez, G.J.; Urcuqui-Inchima, S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infect. Genet. Evol., 2019, 69, 12-21.
[http://dx.doi.org/10.1016/j.meegid.2018.12.033] [PMID: 30639520]
[75]
Panarese, A.; Pesce, F.; Porcelli, P.; Riezzo, G.; Iacovazzi, P.A.; Leone, C.M.; De Carne, M.; Rinaldi, C.M.; Shahini, E. Chronic functional constipation is strongly linked to vitamin D deficiency. World J. Gastroenterol., 2019, 25(14), 1729-1740.
[http://dx.doi.org/10.3748/wjg.v25.i14.1729] [PMID: 31011257]
[76]
Panarese, A.; Shahini, E. Covid-19, and vitamin D. Aliment. Pharmacol. Ther., 2019, 00, 1-3.
[PMID: 32281109]
[77]
Silberstein, M. Correlation between premorbid IL-6 levels and COVID-19 mortality: Potential role for Vitamin D. Int. Immunopharmacol., 2020, 88, 106995.
[http://dx.doi.org/10.1016/j.intimp.2020.106995] [PMID: 33182059]
[78]
Calton, E.K.; Keane, K.N.; Raizel, R.; Rowlands, J.; Soares, M.J.; Newsholme, P. Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells. Redox Biol., 2017, 12, 814-820.
[http://dx.doi.org/10.1016/j.redox.2017.04.009] [PMID: 28441630]
[79]
Kaul, A.; Gläser, S.; Hannemann, A.; Stubbe, B.; Felix, S.B.; Nauck, M.; Ewert, R.; Friedrich, N. No mediating effects of glycemic control and inflammation on the association between vitamin D and lung function in the general population. Respir. Med., 2017, 125, 1-7.
[http://dx.doi.org/10.1016/j.rmed.2017.02.015] [PMID: 28340855]
[80]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementa-tion could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[81]
Nasiri, M.; Khodadadi, J.; Molaei, S. Does vitamin D serum level affect prognosis of COVID-19 patients? Int. J. Infect. Dis., 2021, 107, 264-267.
[http://dx.doi.org/10.1016/j.ijid.2021.04.083] [PMID: 33940189]
[82]
Petrelli, F.; Luciani, A.; Perego, G.; Dognini, G.; Colombelli, P.L.; Ghidini, A. Therapeutic and prognostic role of vitamin D for COVID-19 infection: A systematic review and meta-analysis of 43 observational studies. J. Steroid Biochem. Mol. Biol., 2021, 211, 105883.
[http://dx.doi.org/10.1016/j.jsbmb.2021.105883] [PMID: 33775818]
[83]
Jayawardena, R.; Jeyakumar, D.T.; Francis, T.V.; Misra, A. Impact of the vitamin D deficiency on COVID-19 infection and mortality in Asian countries. Diabetes Metab. Syndr., 2021, 15(3), 757-764.
[http://dx.doi.org/10.1016/j.dsx.2021.03.006] [PMID: 33823331]
[84]
Elham, A.S.; Azam, K.; Azam, J.; Mostafa, L.; Nasrin, B.; Marzieh, N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin. Nutr. ESPEN, 2021, 43, 276-282.
[http://dx.doi.org/10.1016/j.clnesp.2021.03.040] [PMID: 34024527]
[85]
Kloc, M.; Ghobrial, R.M. Lipińska-Opałka, A.; Wawrzyniak, A.; Zdanowski, R.; Kalicki, B.; Kubiak, J.Z. Effects of vitamin D on macro-phages and myeloid-derived suppressor cells (MDSCs) hyperinflammatory response in the lungs of COVID-19 patients. Cell. Immunol., 2021, 360, 104259.
[http://dx.doi.org/10.1016/j.cellimm.2020.104259] [PMID: 33359760]
[86]
Cereda, E.; Bogliolo, L.; Lobascio, F.; Barichella, M.; Zecchinelli, A.L.; Pezzoli, G.; Caccialanza, R. Vitamin D supplementation and out-comes in coronavirus disease 2019 (COVID-19) patients from the outbreak area of Lombardy, Italy. Nutrition, 2021, 82, 111055.
[http://dx.doi.org/10.1016/j.nut.2020.111055] [PMID: 33288411]
[87]
Brito, D.T.M.; Ribeiro, L.H.C.; Daltro, C.H.D.C.; Silva, R.B. The possible benefits of vitamin D in COVID-19. Nutrition, 2021, 91-92, 111356.
[http://dx.doi.org/10.1016/j.nut.2021.111356] [PMID: 34352586]
[88]
Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D and its potential benefit for the COVID-19 pandemic. Endocr. Pract., 2021, 27(5), 484-493.
[http://dx.doi.org/10.1016/j.eprac.2021.03.006] [PMID: 33744444]
[89]
Osman, W.; Al Fahdi, F.; Al Salmi, I.; Al Khalili, H.; Gokhale, A.; Khamis, F. Serum calcium and vitamin D levels: Correlation with severi-ty of COVID-19 in hospitalized patients in Royal Hospital, Oman. Int. J. Infect. Dis., 2021, 107, 153-163.
[http://dx.doi.org/10.1016/j.ijid.2021.04.050] [PMID: 33892191]
[90]
Fond, G.; Masson, M.; Richieri, R.; Korchia, T.; Etchecopar-Etchart, D.; Dunhary de Verville, P-L.; Lancon, C.; Boyer, L. The COVID-19 infection: An opportunity to develop systematic vitamin D supplementation in psychiatry. Encephale, 2022, 48(1), 102-104.
[http://dx.doi.org/10.1016/j.encep.2021.02.002]
[91]
Annweiler, C.; Cao, Z.; Sabatier, J-M. Point of view: Should COVID-19 patients be supplemented with vitamin D? Maturitas, 2020, 140, 24-26.
[http://dx.doi.org/10.1016/j.maturitas.2020.06.003] [PMID: 32972631]
[92]
Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Griffiths, C.J.; Janssens, W.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; Simpson, S., Jr; Stelmach, I.; Kumar, G.T.; Urashima, M.; Camargo, C.A., Jr Vitamin D supplementation to prevent acute res-piratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ, 2017, 356, i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[93]
Jolliffe, D.; Camargo, C.A.; Sluyter, J.; Aglipay, M.; Aloia, J.; Bergman, P. Vitamin D supplementation to prevent acute respiratory infec-tions: A Systematic review and meta-analysis of aggregate data from randomized controlled trials. Lancet Diabetes Endocrinol., 2021, 9(5), 276-292.
[http://dx.doi.org/10.1101/2020.07.14.20152728]
[94]
Goddek, S. Vitamin D3 and K2 and their potential contribution to reducing the COVID-19 mortality rate. Int. J. Infect. Dis., 2020, 99, 286-290.
[http://dx.doi.org/10.1016/j.ijid.2020.07.080] [PMID: 32768697]
[95]
Cereda, E.; Bogliolo, L.; Klersy, C.; Lobascio, F.; Masi, S.; Crotti, S.; De Stefano, L.; Bruno, R.; Corsico, A.G.; Di Sabatino, A.; Perlini, S.; Montecucco, C.; Caccialanza, R.; Belliato, M.; Ludovisi, S.; Mariani, F.; Ferrari, A.; Musella, V.; Muggia, C.; Croce, G.; Barteselli, C.; Mambella, J.; Di Terlizzi, F. Vitamin D 25OH deficiency in COVID-19 patients admitted to a tertiary referral hospital. Clin. Nutr., 2021, 40(4), 2469-2472.
[http://dx.doi.org/10.1016/j.clnu.2020.10.055] [PMID: 33187772]
[96]
Bezerra Espinola, M.S.; Bertelli, M.; Bizzarri, M.; Unfer, V.; Laganà, A.S.; Visconti, B.; Aragona, C. Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from Covid-19 risk. J. Reprod. Immunol., 2021, 144, 103271.
[http://dx.doi.org/10.1016/j.jri.2021.103271] [PMID: 33493945]
[97]
Annweiler, C.; Hanotte, B.; Grandin de l’Eprevier, C.; Sabatier, J-M.; Lafaie, L.; Célarier, T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol., 2020, 204, 105771.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105771]
[98]
Singh, S.K.; Jain, R.; Singh, S. Vitamin D deficiency in patients with diabetes and COVID- 19 infection. Diabetes Metab. Syndr., 2020, 14(5), 1033-1035.
[http://dx.doi.org/10.1016/j.dsx.2020.06.071] [PMID: 32640414]
[99]
Xiao, D.; Li, X.; Su, X.; Mu, D.; Qu, Y. Could SARS-CoV-2-induced lung injury be attenuated by vitamin D? Int. J. Infect. Dis., 2021, 102, 196-202.
[http://dx.doi.org/10.1016/j.ijid.2020.10.059] [PMID: 33129966]
[100]
Khabour, O.F.; Hassanein, S.F.M. Use of vitamin/zinc supplements, medicinal plants, and immune boosting drinks during COVID-19 pandemic: A pilot study from Benha city, Egypt. Heliyon, 2021, 7(3), e06538.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06538] [PMID: 33748511]
[101]
Damayanthi, H.D.W.T.; Prabani, K.I.P. Nutritional determinants and COVID-19 outcomes of older patients with COVID-19: A systematic review. Arch. Gerontol. Geriatr., 2021, 95, 104411.
[http://dx.doi.org/10.1016/j.archger.2021.104411] [PMID: 33836322]
[102]
Shah Alam, M.; Czajkowsky, D.M.; Aminul Islam, M.; Ataur Rahman, M. The role of vitamin D in reducing SARS-CoV-2 infection: An update. Int. Immunopharmacol., 2021, 97, 107686.
[http://dx.doi.org/10.1016/j.intimp.2021.107686] [PMID: 33930705]
[103]
Boland, R.; Skliar, M.; Curino, A.; Milanesi, L. Vitamin D compounds in plants. Plant Sci., 2003, 164(3), 357-369.
[http://dx.doi.org/10.1016/S0168-9452(02)00420-X]
[104]
Skliar, M.; Curino, A.; Milanesi, L.; Benassati, S.; Boland, R. Nicotiana glauca: Another plant species containing vitamin D(3) metabolites. Plant Sci., 2000, 156(2), 193-199.
[http://dx.doi.org/10.1016/S0168-9452(00)00254-5] [PMID: 10936526]
[105]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2021, 18, 1-26.
[106]
Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci., 2013, 4, 136.
[http://dx.doi.org/10.3389/fpls.2013.00136] [PMID: 23717318]
[107]
Keegan, R.J.H.; Lu, Z.; Bogusz, J.M.; Williams, J.E.; Holick, M.F. Photobiology of vitamin D in mushrooms and its bioavailability in hu-mans. Dermatoendocrinol, 2013, 5(1), 165-176.
[http://dx.doi.org/10.4161/derm.23321] [PMID: 24494050]
[108]
Urbain, P.; Valverde, J.; Jakobsen, J. Impact on vitamin D2, vitamin D4 and agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Foods Hum. Nutr., 2016, 71(3), 314-321.
[http://dx.doi.org/10.1007/s11130-016-0562-5] [PMID: 27323764]
[109]
Black, L.J.; Lucas, R.M.; Sherriff, J.L.; Björn, L.O.; Bornman, J.F. In pursuit of vitamin D in plants. Nutrients, 2017, 9(2), 136.
[http://dx.doi.org/10.3390/nu9020136] [PMID: 28208834]
[110]
Hughes, L.J.; Black, L.J.; Sherriff, J.L.; Dunlop, E.; Strobel, N.; Lucas, R.M.; Bornman, J.F. Vitamin D content of Australian native food plants and Australian-grown edible seaweed. Nutrients, 2018, 10(7), 876.
[http://dx.doi.org/10.3390/nu10070876] [PMID: 29986447]
[111]
Aburjai, T.; Al-Khalil, S.; Abuirjeie, M. Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry, 1998, 49(8), 2497-2499.
[http://dx.doi.org/10.1016/S0031-9422(98)00246-5]
[112]
Bjorn, L.O.; Wang, T. Is provitamin D a UV-B receptor in plants? Plant Ecol., 2001, 154(1/2), 1-8.
[http://dx.doi.org/10.1023/A:1012985924283]
[113]
Aburjai, T.; Bernasconi, S.; Manzocchi, L.; Pelizzoni, F. Isolation of 7-dehydrocholesterol from cell cultures of Solanummalacoxylon. Phytochemistry, 1996, 43(4), 773-776.
[http://dx.doi.org/10.1016/0031-9422(96)00341-X]
[114]
Prema, T.P.; Raghuramulu, N. Vitamin D3 and its metabolites in the tomato plant. Phytochemistry, 1996, 42(3), 617-620.
[http://dx.doi.org/10.1016/0031-9422(95)00883-7] [PMID: 8768317]
[115]
Horst, R.L.; Reinhardt, T.A.; Russell, J.R.; Napoli, J.L. The isolation and identification of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant). Arch. Biochem. Biophys., 1984, 231(1), 67-71.
[http://dx.doi.org/10.1016/0003-9861(84)90363-1] [PMID: 6326678]
[116]
Rambeck, W.; Oesterhelt, W.; Vecchi, M.; Zucker, H. Occurrence of cholecalciferol in the calcinogenic plant Trisetum flavescens. Biochem. Biophys. Res. Commun., 1979, 87(3), 743-749.
[http://dx.doi.org/10.1016/0006-291X(79)92021-7] [PMID: 222271]
[117]
Jäpelt, R.B.; Didion, T.; Smedsgaard, J.; Jakobsen, J. Seasonal variation of provitamin D2 and vitamin D2 in perennial ryegrass (Lolium perenne L.). J. Agric. Food Chem., 2011, 59(20), 10907-10912.
[http://dx.doi.org/10.1021/jf202503c] [PMID: 21919518]
[118]
Jäpelt, R.B.; Silvestro, D.; Smedsgaard, J.; Jensen, P.E.; Jakobsen, J. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum Desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.). Food Chem., 2013, 138(2-3), 1206-1211.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.064] [PMID: 23411232]
[119]
De Roeck-Holtzhauer, Y.; Quere, I.; Claire, C. Vitamin analysis of five planktonic microalgae and one macroalga. J. Appl. Phycol., 1991, 3(3), 259-264.
[http://dx.doi.org/10.1007/BF00003584]
[120]
Takeuchi, A.; Toshio, O.; Makoto, T.; Tadashi, K. Possible origin of extremely high contents of vitamin D3 in some kinds of fish liver. Comp. Biochem. Physiol. A Comp. Physiol., 1991, 100(2), 483-487.
[http://dx.doi.org/10.1016/0300-9629(91)90504-6]
[121]
Sunita Rao, D.; Raghuramulu, N. Food chain as origin vitamin D in fish. Comp. Biochem. Physiol. A Comp. Physiol., 1996, 114(1), 15-19.
[http://dx.doi.org/10.1016/0300-9629(95)02024-1]
[122]
Begum, A.S.; Goyal, M. Research and medicinal potential of the genus Cestrum (Solanaceae) - A review. Pharmacogn. Rev., 2007, 1(2), 320-332.
[123]
Boutté, Y.; Grebe, M. Cellular processes relying on sterol function in plants. Curr. Opin. Biol., 2009, 12(6), 705-713.
[http://dx.doi.org/10.1016/j.pbi.2009.09.013] [PMID: 19846334]
[124]
Sempos, C.T.; Vesper, H.W.; Phinney, K.W.; Thienpont, L.M.; Coates, P.M. Vitamin D standardization program (VDSP). Vitamin D status as an international issue: National surveys and the problem of standardization. Scand. J. Clin. Lab. Invest., 2021, 243, 32-40.
[125]
Jovanovich, A.J.; Chonchol, M.; Brady, C.B.; Kaufman, J.D.; Kendrick, J.; Cheung, A.K.; Jablonski, K.L. 25-vitamin D, 1,25-vitamin D, parathyroid hormone, fibroblast growth factor-23 and cognitive function in men with advanced CKD: A veteran population. Clin. Nephrol., 2014, 82(5), S1-S4.
[http://dx.doi.org/10.5414/CN108365] [PMID: 25208315]
[126]
Huang, G.; Cai, W.; Xu, B. Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and in-creased vitamin D2 content following UV-C irradiation. Int. J. Vitam. Nutr. Res., 2017, 87(5-6), 1-10.
[http://dx.doi.org/10.1024/0300-9831/a000294] [PMID: 27866467]
[127]
Nolle, N.; Argyropoulos, D.; Ambacher, S.; Muller, J.; Biesalski, H.K. Vitamin D2 enrichment in mushrooms by natural or artificial UV-light during drying. Food Sci. Technol., 2016, 85, 400-404.
[128]
Nolle, N.; Argyropoulos, D.; Muller, J.; Biesalski, H.K. Temperature stability of vitamin D2 and color changes during drying of UVB-treated mushrooms. Dry. Technol., 2018, 36(3), 307-315.
[http://dx.doi.org/10.1080/07373937.2017.1326501]
[129]
Urbain, P.; Singler, F.; Ihorst, G.; Biesalski, H.K.; Bertz, H. Bioavailability of vitamin D₂ from UV-B-irradiated button mushrooms in healthy adults deficient in serum 25-hydroxyvitamin D: A randomized controlled trial. Eur. J. Clin. Nutr., 2011, 65(8), 965-971.
[http://dx.doi.org/10.1038/ejcn.2011.53] [PMID: 21540874]
[130]
Phillips, K.M.; Horst, R.L.; Koszewski, N.J.; Simon, R.R. Vitamin D4 in mushrooms. PLoS One, 2012, 7(8), e40702.
[http://dx.doi.org/10.1371/journal.pone.0040702] [PMID: 22870201]
[131]
Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol., 2015, 2015, 376387.
[http://dx.doi.org/10.1155/2015/376387] [PMID: 25685150]
[132]
Keflie, T.S.; Nölle, N.; Lambert, C.; Nohr, D.; Biesalski, H.K. Impact of the natural resource of UVB on the content of vitamin D2 in oyster mushroom (Pleurotus ostreatus) under subtropical settings. Saudi J. Biol. Sci., 2019, 26(7), 1724-1730.
[http://dx.doi.org/10.1016/j.sjbs.2018.07.014] [PMID: 31762650]
[133]
Napoli, J.L.; Reeve, L.E.; Eisman, J.A.; Schnoes, H.K.; DeLuca, H.F. Solanum glaucophyllum as source of 1,25-dihydroxyvitamin D3. J. Biol. Chem., 1977, 252(8), 2580-2583.
[http://dx.doi.org/10.1016/S0021-9258(17)40497-2] [PMID: 856794]
[134]
Mello, J.R.B. Calcinosis--calcinogenic plants. Toxicon, 2003, 41(1), 1-12.
[http://dx.doi.org/10.1016/S0041-0101(02)00241-6] [PMID: 12467655]
[135]
Zanuzzi, C.N.; Nishida, F.; Portiansky, E.L.; Fontana, P.A.; Gimeno, E.J.; Barbeito, C.G. Effects of Solanum glaucophyllum toxicity on cell proliferation and apoptosis in the small and large intestine of rabbits. Res. Vet. Sci., 2012, 93(1), 336-342.
[http://dx.doi.org/10.1016/j.rvsc.2011.07.018] [PMID: 21862088]
[136]
Schlegel, P.; Guggisberg, D.; Gutzwiller, A. Tolerance to 1,25 dihydroxyvitamin D3 glycosides from Solanum glaucophyllum by the grow-ing pig. Res. Vet. Sci., 2017, 112, 119-124.
[http://dx.doi.org/10.1016/j.rvsc.2017.02.013] [PMID: 28237727]
[137]
Duke, J.A. Biological activity summary for cocao (Theobroma cacao L.). J. Med. Food, 2000, 3(2), 115-119.
[http://dx.doi.org/10.1089/109662000416302]
[138]
Aroyeun, S.O.; Adegoke, G.O.; Varga, J.; Teren, J. Grading of fermented and dried cocoa beans using fungal contamination, ergosterol index and ochratoxin a production. Mycobiology, 2009, 37(3), 215-217.
[http://dx.doi.org/10.4489/MYCO.2009.37.3.215] [PMID: 23983536]
[139]
Kühn, J.; Schröter, A.; Hartmann, B.M.; Stangl, G.I. Cocoa and chocolate are sources of vitamin D2. Food Chem., 2018, 269, 318-320.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.098] [PMID: 30100440]
[140]
Gallie, D.R. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients, 2013, 5(9), 3424-3446.
[http://dx.doi.org/10.3390/nu5093424] [PMID: 23999762]
[141]
Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients, 2017, 9(11), 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[142]
Cheng, R.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med. Drug. Dis-cov., 2020, 5, 100028.
[http://dx.doi.org/10.1016/j.medidd.2020.100028] [PMID: 32328576]
[143]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clini-cal characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[144]
Hemilä, H. Vitamin C intake and susceptibility to the common cold. Br. J. Nutr., 1997, 77(1), 59-72.
[http://dx.doi.org/10.1017/S0007114500002889] [PMID: 9059230]
[145]
Baladia, E.; Pizarro, A.B.; Ortiz-Muñoz, L.; Rada, G. Vitamin C for COVID-19: A living systematic review. Medwave, 2020, 20(6), e7978.
[http://dx.doi.org/10.5867/medwave.2020.06.7978] [PMID: 32759894]
[146]
Fowler Iii, A.A.; Kim, C.; Lepler, L.; Malhotra, R.; Debesa, O.; Natarajan, R.; Fisher, B.J.; Syed, A.; DeWilde, C.; Priday, A.; Kasirajan, V. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J. Crit. Care Med., 2017, 6(1), 85-90.
[http://dx.doi.org/10.5492/wjccm.v6.i1.85] [PMID: 28224112]
[147]
Boretti, A.; Banik, B.K. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition, 2020, 12, 100190.
[http://dx.doi.org/10.1016/j.phanu.2020.100190] [PMID: 32322486]
[148]
Khan, I.M. 200 mg of vitamin C reduced duration of severe pneumonia in children. Oxygen saturation was improved in less than one day. J Rawalpindi Med Coll, 2014, 18(1), 55-57.
[149]
Hemila, H.; Chalker, E. 17,000 mg/day vitamin C given intravenously shortened intensive care unit stay by 44%. Nutrients, 2019, 11(4)
[PMID: 30934660]
[150]
Kim, Y.; Kim, H.; Bae, S.; Choi, J.; Lim, S.Y.; Lee, N.; Kong, J.M.; Hwang, Y.I.; Kang, J.S.; Lee, W.J. Vitamin C is an essential factor on the anti-viral immune response through the production of interferon-alpha/beta at the initial stage of influenza A virus (H3N2) infection. Immune Netw., 2013, 13(2), 70-74.
[http://dx.doi.org/10.4110/in.2013.13.2.70] [PMID: 23700397]
[151]
May, J.M.; Harrison, F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal., 2013, 19(17), 2068-2083.
[http://dx.doi.org/10.1089/ars.2013.5205] [PMID: 23581713]
[152]
Gonzalez, M.J. High dose vitamin C and influenza: A case report. J. Orthomol. Med., 2018, 33(3), 1-3.
[153]
McNamara, R.; Deane, A.M.; Anstey, J.; Bellomo, R. Understanding the rationale for parenteral ascorbate (vitamin C) during an acute in-flammatory reaction: A biochemical perspective. Crit. Care Resusc., 2018, 20(3), 174-179.
[PMID: 30153778]
[154]
Patel, V.; Dial, K.; Wu, J.; Gauthier, A.G.; Wu, W.; Lin, M.; Espey, M.G.; Thomas, D.D.; Ashby, C.R., Jr; Mantell, L.L. Dietary antioxi-dants significantly attenuate hyperoxia-induced acute inflammatory lung injury by enhancing macrophage function via reducing the accu-mulation of airway HMGB1. Int. J. Mol. Sci., 2020, 21(3), 977.
[http://dx.doi.org/10.3390/ijms21030977] [PMID: 32024151]
[155]
Gorton, H.C.; Jarvis, K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J. Manipulative Physiol. Ther., 1999, 22(8), 530-533.
[http://dx.doi.org/10.1016/S0161-4754(99)70005-9] [PMID: 10543583]
[156]
Kim, T.K.; Lim, H.R.; Byun, J.S. Vitamin C supplementation reduces the odds of developing a common cold in Republic of Korea Army recruits: Randomized controlled trial. BMJ Mil. Health, 2020.
[http://dx.doi.org/10.1136/bmjmilitary-2019-001384]
[157]
Carr, A.C. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care, 2020, 24(1), 133.
[http://dx.doi.org/10.1186/s13054-020-02851-4] [PMID: 32264963]
[158]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epide-miological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[159]
Tibau, A.V.; Grube, B.D. From Covid to cancer, is vitamin C the answer? Global J. Otolaryngol., 2020, 22(1), 556085.
[160]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[161]
Schlueter, A.K.; Johnston, C.S.; Vitamin, C. Overview and update. J. Evid. Based Complementary Altern. Med., 2011, 16(1), 49-57.
[http://dx.doi.org/10.1177/1533210110392951]
[162]
Grant, M.M.; Mistry, N.; Lunec, J.; Griffiths, H.R. Dose-dependent modulation of the T cell proteome by ascorbic acid. Br. J. Nutr., 2007, 97(1), 19-26.
[http://dx.doi.org/10.1017/S0007114507197592] [PMID: 17217556]
[163]
Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas, 2021, 143, 1-9.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.003] [PMID: 33308613]
[164]
Hoang, B.X.; Shaw, G.; Fang, W.; Han, B. Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infec-tion. J. Glob. Antimicrob. Resist., 2020, 23, 256-262.
[http://dx.doi.org/10.1016/j.jgar.2020.09.025] [PMID: 33065330]
[165]
Feyaerts, A.F.; Luyten, W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition, 2020, 79-80, 110948.
[http://dx.doi.org/10.1016/j.nut.2020.110948] [PMID: 32911430]
[166]
Khan, S.; Faisal, S.; Jan, H.; Abdullah Usman, H.; Zainab, R.; Taj, F.; Amrani, R.; Tayyeb, M. COVID-19: A bried overview on the role of vitamins specificially vitamin C as immune modulators and in prevention and treatment of SARS-CoV-2 infections. Biomed. J. Sci. Tech. Res., 2020, 28(3), 21580-21586.
[167]
Story, M.J. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie, 2021, 187, 94-109.
[http://dx.doi.org/10.1016/j.biochi.2021.05.013] [PMID: 34082041]
[168]
Behl, T.; Kumar, S.; Sehgal, A.; Singh, S.; Sharma, N.; Chirgurupati, S.; Aldubayan, M.; Alhowail, A.; Bhatia, S.; Bungau, S. Linking COVID-19 and Parkinson’s disease: Targeting the role of Vitamin-D. Biochem. Biophys. Res. Commun., 2021, 583, 14-21.
[http://dx.doi.org/10.1016/j.bbrc.2021.10.042] [PMID: 34715496]
[169]
Rawat, D.; Roy, A.; Maitra, S.; Gulati, A.; Khanna, P.; Baidya, D.K. Vitamin C and COVID-19 treatment: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab. Syndr., 2021, 15(6), 102324.
[http://dx.doi.org/10.1016/j.dsx.2021.102324] [PMID: 34739908]
[170]
Azzam, A.Y.; Ghozy, S.; Azab, M.A. Vitamin D and its’ role in Parkinson’s disease patients with SARS-CoV-2 infection. A review article. Interdiscip. Neurosurg., 2022, 27, 101441.
[http://dx.doi.org/10.1016/j.inat.2021.101441] [PMID: 34868885]
[171]
Bhutia, S.K. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J. Nutr. Biochem., 2022, 99, 108841.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108841] [PMID: 34403722]
[172]
Schloss, J.; Lauche, R.; Harnett, J.; Hannan, N.; Brown, D.; Greenfield, T.; Steel, A. Efficacy and safety of vitamin C in the management of acute respiratory infection and disease: A rapid review. Adv. Integr. Med., 2020, 7(4), 187-191.
[http://dx.doi.org/10.1016/j.aimed.2020.07.008] [PMID: 32837893]
[173]
Taheri, S.; Asadi, S.; Nilashi, M.; Ali Abumalloh, R.; Ghabban, N.M.A.; Mohd Yusuf, S.Y.; Supriyanto, E.; Samad, S. A literature review on beneficial role of vitamins and trace elements: Evidence from published clinical studies. J. Trace Elem. Med. Biol., 2021, 67, 126789.
[http://dx.doi.org/10.1016/j.jtemb.2021.126789] [PMID: 34044222]
[174]
Udaya Kumar, V.; Pavan, G.; Murti, K.; Kumar, R.; Dhingra, S.; Haque, M.; Ravichandiran, V. Rays of immunity: Role of sunshine vita-min in management of COVID-19 infection and associated comorbidities. Clin. Nutr. ESPEN, 2021, 46, 21-32.
[http://dx.doi.org/10.1016/j.clnesp.2021.09.727] [PMID: 34857198]
[175]
Xia, G.; Fan, D.; He, Y.; Zhu, Y.; Zheng, Q. High-dose intravenous vitamin C attenuates hyperinflammation in severe coronavirus disease 2019. Nutrition, 2021, 91-92, 111405.
[http://dx.doi.org/10.1016/j.nut.2021.111405] [PMID: 34388587]
[176]
Diaz-Curiel, M.; Cabello, A.; Arboiro-Pinel, R.; Mansur, J.L.; Heili-Frades, S.; Mahillo-Fernandez, I.; Herrero-González, A.; Andrade-Poveda, M. The relationship between 25(OH) vitamin D levels and COVID-19 onset and disease course in Spanish patients. J. Steroid. Biochem. Mol., 2021, 212, 105928.
[http://dx.doi.org/10.1016/j.jsbmb.2021.105928] [PMID: 34091026]
[177]
Shahagadkar, P.; Shah, H.; Palani, A.; Munirathinam, G. Berry derived constituents in suppressing viral infection: Potential avenues for viral pandemic management. Clin. Nutr. ESPEN, 2021, 46, 14-20.
[http://dx.doi.org/10.1016/j.clnesp.2021.09.728] [PMID: 34857187]
[178]
Janjusevic, M.; Gagno, G.; Fluca, A.L.; Padoan, L.; Beltrami, A.P.; Sinagra, G.; Moretti, R.; Aleksova, A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci., 2022, 289, 120193.
[http://dx.doi.org/10.1016/j.lfs.2021.120193] [PMID: 34864062]
[179]
Pedrosa, L.F.C.; Barros, A.N.A.B.; Leite-Lais, L. Nutritional risk of vitamin D, vitamin C, zinc, and selenium deficiency on risk and clini-cal outcomes of COVID-19: A narrative review. Clin. Nutr. ESPEN, 2021.
[PMID: 35063248]
[180]
Saxena, P.; Nigam, K.; Mukherjee, S.; Chadha, S.; Sanyal, S. Relation of vitamin D to COVID-19. J. Virol. Methods, 2021, 301, 114418.
[http://dx.doi.org/10.1016/j.jviromet.2021.114418] [PMID: 34919979]
[181]
Calapkulu, M.; Sencar, M.E.; Sakiz, D.; Unsal, I.O.; Ozbek, M.; Cakal, E. The importance of vitamin D level in subacute thyroiditis dis-ease and the effect of vitamin D on disease prognosis. Endocr. Pract., 2020, 26(10), 1062-1069.
[http://dx.doi.org/10.4158/EP-2020-0046] [PMID: 33471707]
[182]
Ahluwalia, S.; Choudhary, D.; Tyagi, P.; Kumar, V.; Vivekanandan, P. Vitamin D signaling inhibits HBV activity by directly targeting the HBV core promoter. J. Biol. Chem., 2021, 297(4), 101233.
[http://dx.doi.org/10.1016/j.jbc.2021.101233] [PMID: 34562448]
[183]
Gregor, R.A.; Sebach, A.M. Nurse practitioner-led vitamin D screening and supplementation program in rural primary care. J. Nurse Pract., 2022, 18(2), 155-158.
[http://dx.doi.org/10.1016/j.nurpra.2021.10.020]
[184]
Ul Afshan, F.; Nissar, B.; Chowdri, N.A.; Ganai, B.A. Relevance of vitamin D3 in COVID-19 infection. Gene Rep., 2021, 24, 101270.
[http://dx.doi.org/10.1016/j.genrep.2021.101270] [PMID: 34250314]
[185]
Rawat, D.; Roy, A.; Maitra, S.; Shankar, V.; Khanna, P.; Baidya, D.K. Vitamin D supplementation and COVID-19 treatment: A systematic review and meta-analysis. Diabetes Metab. Syndr., 2021, 15(4), 102189.
[http://dx.doi.org/10.1016/j.dsx.2021.102189] [PMID: 34217144]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy