Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Synthesis, Characterization, and Antibacterial Properties of ZnO Nanostructures Functionalized Flexible Carbon Fibers

Author(s): Ahmet Aykaç* and Emine Özge Akkaş

Volume 17, Issue 2, 2023

Published on: 28 June, 2022

Page: [119 - 130] Pages: 12

DOI: 10.2174/1872210516666220414103629

Price: $65

conference banner
Abstract

Background: Studies on the surface functionalization of flexible carbon fibers without any substrate by using cost-effective, fast, and practical processes that may provide antibacterial properties to carbon fiber have received great importance recently.

Objective: The objective of this patent study is to obtain zinc oxide nanostructures functionalized carbon fibers by a facile, cheap, fast, and repeatable method, and to show their effective antibacterial activity.

Methods: Electroplating and electrochemical anodization were used to synthesize zinc oxide nanostructures on carbon fiber surfaces, respectively, and their antibacterial properties were studied by zone inhibition test against Staphylococcus aureus and Pseudomonas aeruginosa.

Results: The zinc oxide nanostructures on carbon fiber surfaces were successfully synthesized in minutes, and they exhibited effective antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa. The morphological properties of the nanocomposite were studied using scanning electron microscopy, which showed that ZnO on the CF surface exhibits a flake-like nanostructure. Fourier transform infrared spectrophotometer, x-ray diffraction spectroscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy were used to analyze the composite's compositional, structural, crystallographic, and spectral characteristics. The results from all analyses were in a good agreement, indicating that the wurtzite crystalline ZnO nanostructure was successfully produced on the CF surface.

Conclusion: As a consequence, a method for the surface functionalization of carbon fiber using zinc oxide nanostructures has been developed that is feasible, low-cost, rapid, and repeatable. The flexible nanocomposite structure has a significant potential to be employed as a scaffold in sensor technology, wearable devices, and particularly in medical textiles due to its antibacterial and woven-able properties.

Keywords: Carbon fiber, ZnO-nanostructures, electroplating, electro anodization, antibacterial activity.

Graphical Abstract

[1]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[2]
Hosseinkhani H, Hosseinkhani M. Biodegradable polymer-metal complexes for gene and drug delivery. Curr Drug Saf 2009; 4(1): 79-83.
[http://dx.doi.org/10.2174/157488609787354477] [PMID: 19149528]
[3]
Mahmoudi M, Hosseinkhani H, Hosseinkhani M, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nano-particles as a tool for the advancement of clinical regenerative medicine. Chem Rev 2011; 111(2): 253-80.
[http://dx.doi.org/10.1021/cr1001832] [PMID: 21077606]
[4]
Aykaç A, Gergeroglu H, Beşli B, et al. An overview on recent progress of metal oxide/graphene/cnts-based nanobiosensors. Nanoscale Res Lett 2021; 16(1): 65.
[http://dx.doi.org/10.1186/s11671-021-03519-w] [PMID: 33877478]
[5]
Sabourian P, Yazdani G, Ashraf SS, et al. Effect of physico-chemical properties of nanoparticles on their ıntracellular uptake. Int J Mol Sci 2020; 21(21): 8019.
[http://dx.doi.org/10.3390/ijms21218019] [PMID: 33126533]
[6]
Liu X-Q, Tang R-Z. Biological responses to nanomaterials: Understanding nano-bio effects on cell behaviors. Drug Deliv 2017; 24(sup1): 1-15.
[http://dx.doi.org/10.1080/10717544.2017.1375577] [PMID: 29069934]
[7]
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety evaluation of nanotechnology products. Pharmaceutics 2021; 13(10): 1615.
[http://dx.doi.org/10.3390/pharmaceutics13101615] [PMID: 34683908]
[8]
Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int 2014; 2014: 498420.
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[9]
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020; 14(10): 12341-69.
[http://dx.doi.org/10.1021/acsnano.0c05937] [PMID: 33034443]
[10]
Bignozzi CA, Dissette V, Corallini A, Carra G, Valle RD. Functional nanomaterials with antibacterial and antiviral activity. U.S. Patent 8,158,137,B2, 2012.
[11]
Yaqoob AA, Ahmad H, Parveen T, et al. Recent ddvances in metal decorated nanomaterials and their various biological applications: A Review. Front Chem 2020; 8: 341.
[http://dx.doi.org/10.3389/fchem.2020.00341] [PMID: 32509720]
[12]
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. A Mini review of antibacterial properties of ZnO nanoparticles. Front Phys (Lausanne) 2021; 9: 641481.
[http://dx.doi.org/10.3389/fphy.2021.641481]
[13]
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid Based Complement Alternat Med 2015; 2015: 246012.
[http://dx.doi.org/10.1155/2015/246012] [PMID: 25861355]
[14]
Mousa SA, Linhardt R. Silver nanoparticle as anti-microbial. U.S. Patent 2010/0317617, A1, 2010.
[15]
Bignozzi CA, Carinci F, Caramori S, Dissette V. Use of nanomaterials based on titanium dioxde and zirconum doxide as coatings for osteointegrated bomedical prostheses, and osteointegrated biomedical prostheses prepared therewith. U.S. Patent 8,178,122 B2, 2012.
[16]
Maedah R, Kosak A, Lobnik A. Process for synthesis of antimicrobial copper nanoparticles. European Patent 3329778 A1, 2018.
[17]
Borrelli NF, Petzold N, Schroeder JF, Senaratne W, Verrier F, Wei Y. Antimicrobial action of Cu, CuO and Cu2O nanoparticles on glass surfaces and durable coatings. U.S. Patent 9,028,962 B2, 2015.
[18]
Jin SE, Jin HE. Antimicrobial activity of Zinc Oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects. Nanomaterials (Basel) 2021; 11(2): 1-35.
[http://dx.doi.org/10.3390/nano11020263] [PMID: 33498491]
[19]
Haque MJ, Bellah MM, Hassan MR, Rahman S. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express 2020; 1(1): 010007.
[http://dx.doi.org/10.1088/2632-959X/ab7a43]
[20]
Drzal LT, Sugiura N, Hook D. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matri-ces. Compos Interfaces 1996; 4(5): 337-54.
[http://dx.doi.org/10.1163/156855497X00073]
[21]
Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicity. J Nanomater 2017; 2017: 1-14.
[http://dx.doi.org/10.1155/2017/8510342]
[22]
Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov Today 2017; 22(12): 1825-34.
[http://dx.doi.org/10.1016/j.drudis.2017.08.006] [PMID: 28847758]
[23]
Tirén J, Carlsson JO, Tenerz H, Hollman P. Method for controllably growing ZnO nanowires. U.S. Patent 10,319,553 B2, 2019.
[24]
Arasu MV, Madankumar A, Theerthagiri J, et al. Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for anti-oxidant and anticancer activity in MCF7 cell lines. Mater Sci Eng C 2019; 102: 536-40.
[http://dx.doi.org/10.1016/j.msec.2019.04.068] [PMID: 31147025]
[25]
Katea SN, Hajduk Š, Orel ZC, Westin G. Low Cost, Fast Solution Synthesis of 3D Framework ZnO Nanosponges. Inorg Chem 2017; 56(24): 15150-8.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02459] [PMID: 29172508]
[26]
Rajalakshmi M, Sohila S, Ramya S, Divakar R, Ghosh C, Kalavathi S. Blue green and UV emitting ZnO nanoparticles synthesized through a non-aqueous route. Opt Mater 2012; 34(8): 1241-5.
[http://dx.doi.org/10.1016/j.optmat.2012.01.021]
[27]
Calestani D, Coppede N, Culiolo M, et al. Zinc oxide-based piezoelectric device. U.S. Patent 10,741,747 B2, 2020.
[28]
Deng Z, Chen M, Gu G, Wu L. A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J Phys Chem B 2008; 112(1): 16-22.
[http://dx.doi.org/10.1021/jp077662w] [PMID: 18067281]
[29]
Aykaç A, Tunç ID, Güneş F, Erol M, Şen M. Sensitive pH measurement using EGFET pH-microsensor based on ZnO nanowire functionalized carbon-fibers. Nanotechnology 2021; 32(36): 365501.
[http://dx.doi.org/10.1088/1361-6528/ac0666] [PMID: 34049301]
[30]
Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DYC. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal 2015; 23(3): 587-94.
[http://dx.doi.org/10.1016/j.jfda.2015.02.009] [PMID: 28911719]
[31]
Abebe B, Zereffa EA, Tadesse A, Murthy HCA. A Review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation. Nanoscale Res Lett 2020; 15(1): 190.
[http://dx.doi.org/10.1186/s11671-020-03418-6] [PMID: 33001404]
[32]
Sawai J, Yamamoto O, Özkal B, Nakagawa ZE. Antibacterial activity of carbon-coated zinc oxide particles. Biocontrol Sci 2007; 12(1): 15-20.
[http://dx.doi.org/10.4265/bio.12.15] [PMID: 17408004]
[33]
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015; 7(3): 219-42.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[34]
Alexandrovic V, Schlundt CR, Werner K, Woost M. Antibacterial particles and their Synthesis. UK Patent 2473813 A, 2011.
[35]
Jiang J, Pi J, Cai J. The advancing of Zinc Oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018; 2018: 1062562.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[36]
Horikiri SA, Iseki J, Iberaki MM. Process for production of carbon fiber. U.S. Patent 4,070,446, 1978.
[37]
Yu M, Rong H, Han K, Wang Z, Zhang Y, Dong Q. Process of making pan-based carbon fiber. U.S. Patent 9,428,850 B2, 2016.
[38]
Naskar AK, Jackson CD. Method of producing carbon fibers from multipurpose commercial fibers. U.S. Patent 10,961,642, 2021.
[39]
Alshammari BA, Alsuhybani MS, Almushaikeh AM, et al. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers (Basel) 2021; 13(15): 2474.
[http://dx.doi.org/10.3390/polym13152474] [PMID: 34372077]
[40]
Laurenti M, Cauda V. ZnO Nanostructures for tissue engineering applications. Nanomaterials (Basel) 2017; 7(11): 374.
[http://dx.doi.org/10.3390/nano7110374] [PMID: 29113133]
[41]
Calestani D, Culiolo M, Villani M, et al. Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials. Nanotechnology 2018; 29(33): 335501.
[http://dx.doi.org/10.1088/1361-6528/aac850] [PMID: 29808831]
[42]
Eixenberger JE, Anders CB, Wada K, et al. Defect engineering of ZnO nanoparticles for bioimaging applications. ACS Appl Mater Interfaces 2019; 11(28): 24933-44.
[http://dx.doi.org/10.1021/acsami.9b01582] [PMID: 31173687]
[43]
Wei N, Cui H, Wang X, et al. Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: Enhanced photocatalytic and gas-sensing properties. J Colloid Interface Sci 2017; 498: 263-70.
[http://dx.doi.org/10.1016/j.jcis.2017.03.072] [PMID: 28342309]
[44]
Calestani D, Villani M, Culiolo M, Delmonte D, Coppedè N, Zappettini A. Smart composites materials: A new idea to add gas-sensing properties to commercial carbon-fibers by functionalization with ZnO nanowires. Sens Actuators B Chem 2017; 245: 166-70.
[http://dx.doi.org/10.1016/j.snb.2017.01.109]
[45]
Sodano HA. Fiber reinforced composites with ZnO nanowire interphase. WO Patent 2009/158686 A2, 2009.
[46]
Sodano HA, Ehlert GJ. Fibers coated with nanowires for reinforcing composites. U.S. Patent 2011/0224330 A1, 2011.
[47]
Basu PK, Jana SK, Mitra MK, Saha H, Basu S. Hydrogen gas sensors using anodically prepared and surface modified nanoporous ZnO thin films. Sens Lett 2008; 6(5): 699-704.
[http://dx.doi.org/10.1166/sl.2008.m106]
[48]
Basu PK, Bontempi E, Maji S, Saha H, Basu S. Variation of optical band gap in anodically grown nanocrystalline ZnO thin films at room temperature—effect of electrolyte concentrations. J Mater Sci Mater Electron 2009; 20(12): 1203-7.
[http://dx.doi.org/10.1007/s10854-009-9852-0]
[49]
Ko YH, Ramana DKV, Yu JS. Electrochemical synthesis of ZnO branched submicrorods on carbon fibers and their feasibility for environmental applications. Nanoscale Res Lett 2013; 8(1): 262.
[http://dx.doi.org/10.1186/1556-276X-8-262] [PMID: 23724865]
[50]
Gong B, Peng Q, Na JS, Parsons GN. Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats: Synthesis using atomic layer deposition and hydrothermal crystal growth. Appl Catal A Gen 2011; 407(1–2): 211-6.
[http://dx.doi.org/10.1016/j.apcata.2011.08.041]
[51]
Ma J, Fu W, Meng Y, Yu Z, Cai S, Niu B. “Electrochemical” growth of ZnO coating on carbon fiber. Mater Chem Phys 2016; 171: 22-6.
[http://dx.doi.org/10.1016/j.matchemphys.2015.12.068]
[52]
Shetty A, Nanda KK. Synthesis of zinc oxide porous structures by anodization with water as an electrolyte. Appl Phys, A Mater Sci Process 2012; 109(1): 151-7.
[http://dx.doi.org/10.1007/s00339-012-7023-2]
[53]
He S, Zheng M, Yao L, et al. Preparation and properties of ZnO nanostructures by electrochemical anodization method. Appl Surf Sci 2010; 256(8): 2557-62.
[http://dx.doi.org/10.1016/j.apsusc.2009.10.104]
[54]
Wang J, Weng B, Larson P, Liu Y. Synthesis of ZnO nanoarrays on carbon fibers using combined atomic layer deposition and hydrothermal methods. Mater Res Express 2018; 5(6): 065029.
[http://dx.doi.org/10.1088/2053-1591/aac845]
[55]
Zaraska L, Mika K, Syrek K, Sulka GD. Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. J Electroanal Chem (Lausanne) 2017; 801: 511-20.
[http://dx.doi.org/10.1016/j.jelechem.2017.08.035]
[56]
Park J, Kim K, Choi J. Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization. Curr Appl Phys 2013; 13(7): 1370-5.
[http://dx.doi.org/10.1016/j.cap.2013.04.015]
[57]
Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7(FEB): 39.
[http://dx.doi.org/10.3389/fcimb.2017.00039] [PMID: 28261568]
[58]
Harris LG, Foster SJ, Richards RG, Lambert P, Stickler D, Eley A. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: Review. Eur Cell Mater 2002; 4: 39-60.
[http://dx.doi.org/10.22203/eCM.v004a04] [PMID: 14562246]
[59]
Nordmann P, Naas T, Fortineau N, Poirel L. Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr Opin Microbiol 2007; 10(5): 436-40.
[http://dx.doi.org/10.1016/j.mib.2007.07.004] [PMID: 17765004]
[60]
Yavaş A, Güler S, Erol M. Growth of ZnO nanoflowers: Effects of anodization time and substrate roughness on structural, morphological, and wetting properties. J Aust Ceram Soc 2020; 56(3): 995-1003.
[http://dx.doi.org/10.1007/s41779-019-00440-5]
[61]
Akkaş EÖ, Aykaç A. A study on improvement of mechanical properties of bone cement with ZnO functionalized carbon fiber derivatives. Proceedings of the 3rd International Students Science Sympossium. May 03-04, 2019, Izmir, Turkey, 569-72.
[62]
Te Hsieh C, Tzou DY, Huang ZS, Hsu JP, Lee CY. Decoration of zinc oxide nanoparticles onto carbon fibers as composite filaments for infrared heaters. Surf Interfaces 2017; 6: 98-102.
[http://dx.doi.org/10.1016/j.surfin.2016.12.001]
[63]
Chauhan DS, Gopal CSA, Kumar D, Mahato N, Quraishi MA, Cho MH. Microwave induced facile synthesis and characterization of ZnO nanoparticles as efficient antibacterial agents. Mater Discov 2018; 11: 19-25.
[http://dx.doi.org/10.1016/j.md.2018.05.001]
[64]
Liao Q, Mohr M, Zhang X, Zhang Z, Zhang Y, Fecht H-J. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 2013; 5(24): 12350-5.
[http://dx.doi.org/10.1039/c3nr03536k] [PMID: 24162176]
[65]
Albiss B, Abu-Dalo M. Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers. Sustainability (Basel) 2021; 13(9): 4729.
[http://dx.doi.org/10.3390/su13094729]
[66]
Gao B, Zhang R, He M, et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos, Part A Appl Sci Manuf 2016; 90: 433-40.
[http://dx.doi.org/10.1016/j.compositesa.2016.08.012]
[67]
Raja K, Ramesh PS, Geetha D. Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim Acta A Mol Biomol Spectrosc 2014; 131: 183-8.
[http://dx.doi.org/10.1016/j.saa.2014.03.047] [PMID: 24835724]
[68]
Wang M, Peng M, Weng Y-X, Li Y-D, Zeng J-B. Toward durable and robust superhydrophobic cotton fabric through hydrothermal growth of ZnO for oil/water separation. Cellulose 2019; 26(13–14): 8121-33.
[http://dx.doi.org/10.1007/s10570-019-02635-2]
[69]
Schumm M. ZnO-based semiconductors studied by Raman spectroscopy: Semimagnetic alloying, doping, and nanostructures 2008.
[70]
Moulahi A, Sediri F. ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties. Ceram Int 2014; 40(1): 943-50.
[http://dx.doi.org/10.1016/j.ceramint.2013.06.090]
[71]
Khan A. Raman Spectroscopic Study of the ZnO Nanostructures. J Pak Mater Soc 2010; 4(1): 5-9.
[72]
Al-Gaashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 2013; 39(3): 2283-92.
[http://dx.doi.org/10.1016/j.ceramint.2012.08.075]
[73]
Guillén GG, Palma MIM, Krishnan B, et al. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence. Mater Chem Phys 2015; 162: 561-70.
[http://dx.doi.org/10.1016/j.matchemphys.2015.06.030]
[74]
Gu C, Xiong S, Zhong Z, Wang Y, Xing W. A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation. RSC Advances 2017; 7(36): 22234-42.
[http://dx.doi.org/10.1039/C7RA02583A]
[75]
Ning H, Xie H, Zhao Q, et al. Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries. J Alloys Compd 2017; 722: 716-20.
[http://dx.doi.org/10.1016/j.jallcom.2017.06.099]
[76]
Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007; 90(213902): 2139021-3.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[77]
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and in vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017; 7(APR): 106.
[http://dx.doi.org/10.3389/fcimb.2017.00106] [PMID: 28421166]
[78]
Lefatshe K, Muiva CM, Kebaabetswe LP. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym 2017; 164: 301-8.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.020] [PMID: 28325329]
[79]
Atmaca S, Gul K, Clcek R. The effect of zinc on microbial growth. Turk J Med Sci 1998; 28(6): 595-7.
[http://dx.doi.org/10.1007/BF02908726]
[80]
Lakshmi Prasanna V, Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir 2015; 31(33): 9155-62.
[http://dx.doi.org/10.1021/acs.langmuir.5b02266] [PMID: 26222950]
[81]
Espitia PJP, Soares N, Coimbra JSR, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 2012; 5(5): 1447-64.
[http://dx.doi.org/10.1007/s11947-012-0797-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy