Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Mini-Review Article

Nanomaterial Gas Sensors for Biosensing Applications: A Review

Author(s): Kurmendra*

Volume 17, Issue 2, 2023

Published on: 17 January, 2022

Page: [104 - 118] Pages: 15

DOI: 10.2174/1872210515666211129115229

Price: $65

conference banner
Abstract

Background: Nanomaterial is one of the most used materials for various gas sensing applications to detect toxic gases, human breath, and other specific gas sensing. One of the most important applications of nanomaterial based gas sensors is biosensing applications. In this review article, the gas sensors for biosensing are discussed on the basis of crystalline structure and different categories of nanomaterial.

Methods: In this paper, firstly, rigorous efforts have been made to find out research questions by going through a structured and systematic survey of available peer reviewed high quality articles in this field. The papers related to nanomaterial based biosensors are then reviewed qualitatively to provide substantive findings from the recent developments in this field.

Results: In this mini-review article, firstly, classifications of nanomaterial gas sensors have been presented on the basis of the crystalline structure of nanomaterial and different types of nanomaterial available for biosensing applications. Further, the gas sensors based on nanomaterial for biosensing applications are collected and reviewed in terms of their performance parameters such as sensing material used, target gas component, detection ranges (ppm-ppb), response time, operating temperature and method of detection, etc.

The different nanomaterials possess slightly different sensing and morphological properties due to their structure; therefore, it can be said that a nanomaterial must be selected carefully for a particular application. The 1D nanomaterials show the best selectivity and sensitivity for gases available in low concentration ranges due to their miniaturised structure compared to 2D and 3D nanomaterials. However, these 2D and 3D nanomaterials also so good sensing properties compared to bulk semiconductor materials. The polymer and nanocomposites which are also discussed in this patent article have opened the door for future research and have great potential for new generation gas sensors for detecting biomolecules.

Conclusion: These nanomaterials extend great properties towards sensing the application of different gases for a lower concentration of particular gas particles. Nano polymer and nanocomposites have great potential to be used as gas sensors for the detection of biomolecules.

Keywords: Sensors, nanomaterials, biosensing, gas sensor, analyte detection, nanotechnology.

Next »
[1]
Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: Applications in cancer imaging and therapy. Adv Mater 2011; 23(12): H18-40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[2]
Das S, Sen B, Debnath N. Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res Int 2015; 22(23): 18333-44.
[http://dx.doi.org/10.1007/s11356-015-5491-6] [PMID: 26490920]
[3]
Yang G, Zhu C, Du D, Zhu J, Lin Y. Graphene-like two-dimensional layered nanomaterials: Applications in biosensors and nanomedicine. Nanoscale 2015; 7(34): 14217-31.
[http://dx.doi.org/10.1039/C5NR03398E] [PMID: 26234249]
[4]
Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot 2012; 35: 64-70.
[http://dx.doi.org/10.1016/j.cropro.2012.01.007]
[5]
Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol 2008; 42(16): 5843-59.
[http://dx.doi.org/10.1021/es8006904] [PMID: 18767635]
[6]
Gajanan K, Tijare SN. Applications of nanomaterials. Mater Today Proc 2018; 5(1): 1093-6.
[http://dx.doi.org/10.1016/j.matpr.2017.11.187]
[7]
Guo Z, Tan L. Fundamentals and applications of nanomaterials. Massachusetts, USA: Artech House 2009.
[8]
Hosono H, Mishima Y, Takezoe H, MacKenzie KJ, Eds. Nanomaterials: Research Towards Applications. Elsevier 2006.
[9]
Mandal G, Ganguly T. Applications of nanomaterials in the different fields of photosciences. Indian J Phys 2011; 85(8): 1229-45.
[http://dx.doi.org/10.1007/s12648-011-0149-9]
[10]
Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Role of nanomaterials in water treatment applications: A review. Chem Eng J 2016; 306: 1116-37.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[11]
Kurmendra KR. MEMS based cantilever biosensors for cancer detection using potential bio-markers present in VOCs: A survey. Microsyst Technol 2019; 25: 3253-67.
[http://dx.doi.org/10.1007/s00542-019-04326-1]
[12]
Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine (Lond) 2013; 8(5): 785-806.
[http://dx.doi.org/10.2217/nnm.13.64] [PMID: 23656265]
[13]
Zhou X, Xue Z, Chen X, et al. Nanomaterial-based gas sensors used for breath diagnosis. J Mater Chem B Mater Biol Med 2020; 8(16): 3231-48.
[http://dx.doi.org/10.1039/C9TB02518A] [PMID: 32031564]
[14]
Tisch U, Schlesinger I, Ionescu R, et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond) 2013; 8(1): 43-56.
[http://dx.doi.org/10.2217/nnm.12.105] [PMID: 23067372]
[15]
Hassan HS, Elkady MF. Semiconductor nanomaterials for gas sensor applications. In: Environmental Nanotechnology. Cham: Springer 2020; Vol. 3: pp. 305-55.
[16]
Tuantranont A. Applications of nanomaterials in sensors and diagnostics Springer series on chemical sensors and biosensors. Berlin, Heidelberg: Springer 2013.
[http://dx.doi.org/10.1007/978-3-642-36025-1]
[17]
Pasinszki T, Krebsz M, Tung TT, Losic D. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors (Basel) 2017; 17(8): 1919.
[http://dx.doi.org/10.3390/s17081919] [PMID: 28825646]
[18]
Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt Chem 2017; 97: 445-57.
[http://dx.doi.org/10.1016/j.trac.2017.10.005] [PMID: 32287543]
[19]
Kwon OS, Song HS, Park TH, Jang J. Conducting nanomaterial sensor using natural receptors. Chem Rev 2019; 119(1): 36-93.
[http://dx.doi.org/10.1021/acs.chemrev.8b00159] [PMID: 30372041]
[20]
Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK. Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens Actuators B Chem 2015; 221: 1170-81.
[http://dx.doi.org/10.1016/j.snb.2015.07.070]
[21]
Guo Y, Tian X, Wang X, Sun J. Fe2O3 nanomaterials derived from Prussian blue with excellent H2S sensing properties. Sens Actuators B Chem 2019; 293: 136-43.
[http://dx.doi.org/10.1016/j.snb.2019.04.027]
[22]
Ge L, Mu X, Tian G, Huang Q, Ahmed J, Hu Z. Current applications of gas sensor based on 2-D nanomaterial: A mini review. Front Chem 2019; 7: 839.
[http://dx.doi.org/10.3389/fchem.2019.00839] [PMID: 31921765]
[23]
Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC. Strategies for enhancing the analytical performance of nanomaterial-based sensors. Trends Analyt Chem 2013; 47: 27-36.
[http://dx.doi.org/10.1016/j.trac.2013.02.004] [PMID: 32287538]
[24]
Zhang J, Liu X, Wu S, Cao B, Zheng S. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sens Actuators B Chem 2012; 169: 61-6.
[http://dx.doi.org/10.1016/j.snb.2012.02.070]
[25]
Wang B, Zhu LF, Yang YH, Xu NS, Yang GW. Fabrication of a SNO2 nanowire gas sensor and sensor performance for hydrogen. J Phys Chem C 2008; 112(17): 6643-7.
[http://dx.doi.org/10.1021/jp8003147]
[26]
Hooker SA. Nanotechnology advantages applied to gas sensor development. The nanoparticles 2002 conference proceedings. 1-7.
[27]
Dong N, He F, Xin J, Wang Q, Lei Z, Su B. Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method. Mater Lett 2015; 141: 238-41.
[http://dx.doi.org/10.1016/j.matlet.2014.11.054]
[28]
Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Lett 2015; 7(2): 97-120.
[http://dx.doi.org/10.1007/s40820-014-0023-3] [PMID: 30464961]
[29]
Li F, Guo S, Shen J, et al. Xylene gas sensor based on Au-loaded WO3· H2O nanocubes with enhanced sensing performance. Sens Actuators B Chem 2017; 238: 364-73.
[http://dx.doi.org/10.1016/j.snb.2016.07.021]
[30]
Asad M, Sheikhi MH. Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens Actuators B Chem 2016; 231: 474-83.
[http://dx.doi.org/10.1016/j.snb.2016.03.021]
[31]
Susanti D, Diputra AG, Tananta L, et al. WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor. Front Chem Sci Eng 2014; 8(2): 179-87.
[http://dx.doi.org/10.1007/s11705-014-1431-0]
[32]
Su S, Wu W, Gao J, Lu J, Fan C. Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 2012; 22(35): 18101-10.
[http://dx.doi.org/10.1039/c2jm33284a]
[33]
Suman GV, Kumar P, Jain VK. Nanomaterial-based opto-electrical oxygen sensor for detecting air leakage in packed items and storage plants. J Exp Nanosci 2012; 7(6): 608-15.
[http://dx.doi.org/10.1080/17458080.2011.551895]
[34]
Simon Q, Barreca D, Gasparotto A, et al. Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases. Nanotechnology 2012; 23(2): 025502.
[http://dx.doi.org/10.1088/0957-4484/23/2/025502] [PMID: 22166305]
[35]
Manikandan VS, Adhikari B, Chen A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst (Lond) 2018; 143(19): 4537-54.
[http://dx.doi.org/10.1039/C8AN00497H] [PMID: 30113611]
[36]
Huang Z, Zhang A, Zhang Q, Cui D. Nanomaterial-based SERS sensing technology for biomedical application. J Mater Chem B Mater Biol Med 2019; 7(24): 3755-74.
[http://dx.doi.org/10.1039/C9TB00666D]
[37]
Cabrera CR, Miranda F, Eds. Advanced nanomaterials for aerospace applications. Florida, USA: CRC Press 2014.
[http://dx.doi.org/10.1201/b15660]
[38]
Li B, Gil B, Power M, et al. Carbon-nanotube-coated 3D microspring force sensor for medical applications. ACS Appl Mater Interfaces 2019; 11(39): 35577-86.
[http://dx.doi.org/10.1021/acsami.9b12237] [PMID: 31484477]
[39]
Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103: 113-29.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[40]
Power AC, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: A review. Nanotechnol Rev 2018; 7(1): 19-41.
[http://dx.doi.org/10.1515/ntrev-2017-0160]
[41]
Falahati M, Attar F, Sharifi M, et al. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta, Gen Subj 2020; 1864(1): 129435.
[http://dx.doi.org/10.1016/j.bbagen.2019.129435] [PMID: 31526869]
[42]
Yin F, Yue W, Li Y, et al. Carbon-based nanomaterials for the detection of volatile organic compounds: A review. Carbon 2021; 180(15): 274-97.
[http://dx.doi.org/10.1016/j.carbon.2021.04.080]
[43]
Promphet N, Hinestroza JP, Rattanawaleedirojn P, et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens Actuat B Chem 2020; 321: 128549.
[http://dx.doi.org/10.1016/j.snb.2020.128549]
[44]
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 2020; 8: 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[45]
Gupta R, Raza N, Bhardwaj SK, Vikrant K, Kim KH, Bhardwaj N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J Hazard Mater 2021; 401: 123379.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123379] [PMID: 33113714]
[46]
Wang Z, Hu T, Liang R, Wei M. Application of zero-dimensional nanomaterials in biosensing. Front Chem 2020; 8: 320.
[http://dx.doi.org/10.3389/fchem.2020.00320] [PMID: 32373593]
[47]
Stagi L, Ren J, Innocenzi P. From 2-D to 0-D boron nitride materials, the next challenge. Materials (Basel) 2019; 12(23): 3905.
[http://dx.doi.org/10.3390/ma12233905] [PMID: 31779207]
[48]
Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. Trends Analyt Chem 2020; 2020: 115965.
[http://dx.doi.org/10.1016/j.trac.2020.115965]
[49]
Joshi P, Mishra R, Narayan RJ. Biosensing applications of carbon-based materials. Curr Opin Biomed Eng 2021; 2021: 100274.
[http://dx.doi.org/10.1016/j.cobme.2021.100274]
[50]
Ehtesabi H. Carbon nanomaterials for salivary-based biosensors: A review. Mater Today Chem 2020; 17: 100342.
[http://dx.doi.org/10.1016/j.mtchem.2020.100342]
[51]
Feigel IM, Vedala H, Star A. Biosensors based on one-dimensional nanostructures. J Mater Chem 2011; 21(25): 8940-54.
[http://dx.doi.org/10.1039/c1jm10521c]
[52]
Lee JW, Choi SR, Heo JH. Simultaneous stabilization and functionalization of gold nanoparticles via biomolecule conjugation: Progress and perspectives. ACS Appl Mater Interfaces 2021; 13(36): 42311-28.
[http://dx.doi.org/10.1021/acsami.1c10436] [PMID: 34464527]
[53]
Bhattacharya S, Gong X, Wang E, et al. DNA-SWCNT biosensors allow real-time monitoring of therapeutic responses in pancreatic ductal adenocarcinoma. Cancer Res 2019; 79(17): 4515-23.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3337] [PMID: 31292162]
[54]
Li D, Wang G, Cheng L, Wang C, Mei X. Engineering the self-assembly induced emission of copper nanoclusters as 3d nanomaterials with mesoporous sphere structures by the crosslinking of Ce3+. ACS Omega 2018; 3(11): 14755-65.
[http://dx.doi.org/10.1021/acsomega.8b02204] [PMID: 31458150]
[55]
Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 2019; 48(6): 1712-40.
[http://dx.doi.org/10.1039/C8CS00738A] [PMID: 30569917]
[56]
Paul R, Du F, Dai L, et al. 3D heteroatom‐doped carbon nanomaterials as multifunctional metal‐free catalysts for integrated energy devices. Adv Mater 2019; 31(13): e1805598.
[http://dx.doi.org/10.1002/adma.201805598] [PMID: 30761622]
[57]
Rahman MM, Ahammad AJ, Jin JH, Ahn SJ, Lee JJ. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors (Basel) 2010; 10(5): 4855-86.
[http://dx.doi.org/10.3390/s100504855] [PMID: 22399911]
[58]
Fulati A, Ali SM, Riaz M, Amin G, Nur O, Willander M. Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors (Basel) 2009; 9(11): 8911-23.
[http://dx.doi.org/10.3390/s91108911] [PMID: 22291545]
[59]
Lu CC, Huang YS, Huang JW, Chang CK, Wu SP. A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask. Sensors (Basel) 2010; 10(1): 670-83.
[http://dx.doi.org/10.3390/s100100670] [PMID: 22315561]
[60]
Chang HC, Kish LB, King MD, Kwan C. Binary fingerprints at fluctuation-enhanced sensing. Sensors (Basel) 2010; 10(1): 361-73.
[http://dx.doi.org/10.3390/s100100361] [PMID: 22315545]
[61]
Zhao Z, Lei W, Zhang X, Wang B, Jiang H. ZnO-based amperometric enzyme biosensors. Sensors (Basel) 2010; 10(2): 1216-31.
[http://dx.doi.org/10.3390/s100201216] [PMID: 22205864]
[62]
Lu S. Nanoporous and nanostructured materials for catalysis, sensor, and gas separation applications. J Nanomater 2006; 2006: 48548.
[http://dx.doi.org/10.1155/JNM/2006/48548]
[63]
Ayesh AI. Metal/metal-oxide nanoclusters for gas sensor applications. J Nanomater 2016; 2016: 2359019.
[http://dx.doi.org/10.1155/2016/2359019]
[64]
Viswanathan P, Patel AK, Pawar J, Patwardhan A, Henry R. Fabrication of Tin Oxide Nanoparticles for CO2 Gas Sensing Layer. J Inst Electron Telecommun Eng 2020; 66(4): 460-5.
[http://dx.doi.org/10.1080/03772063.2018.1502625]
[65]
Sayago I, Aleixandre M, Santos JP. Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors (Basel) 2019; 9(1): 21.
[http://dx.doi.org/10.3390/bios9010021] [PMID: 30764499]
[66]
Yuliarto B, Gumilar G, Septiani NL. SnO2 nanostructure as pollutant gas sensors: Synthesis, sensing performances, and mechanism. Adv Mater Sci Eng 2015; 2015: 694823.
[67]
Chen W, Zhou Q, Wan F, Gao T. Gas sensing properties and mechanism of nano-SnO2-based sensor for hydrogen and carbon monoxide. J Nanomater 2012; 2012: 612420.
[http://dx.doi.org/10.1155/2012/612420]
[68]
Borhaninia A, Nikfarjam A, Salehifar N. Gas sensing properties of SnO2 nanoparticles mixed with gold nanoparticles. Trans Nonferrous Met Soc China 2017; 27(8): 1777-84.
[http://dx.doi.org/10.1016/S1003-6326(17)60200-0]
[69]
Liu X, Chen N, Han B, et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 2015; 7(36): 14872-80.
[http://dx.doi.org/10.1039/C5NR03585F] [PMID: 26289622]
[70]
Fedorenko G, Oleksenko L, Maksymovych N, Skolyar G, Ripko O. Semiconductor gas sensors based on Pd/SnO2 nanomaterials for methane detection in air. Nanoscale Res Lett 2017; 12(1): 329.
[http://dx.doi.org/10.1186/s11671-017-2102-0] [PMID: 28476083]
[71]
Ayesh AI, Alyafei AA, Anjum RS, et al. Production of sensitive gas sensors using CuO/SnO2 nanoparticles. Appl Phys, A Mater Sci Process 2019; 125(8): 550.
[http://dx.doi.org/10.1007/s00339-019-2856-6]
[72]
Sam Jebakumar J, Juliet AV. Palladium-doped Tin Oxide nanosensor for the detection of the air pollutant Carbon Monoxide gas. Sensors (Basel) 2020; 20(20): 5889.
[http://dx.doi.org/10.3390/s20205889] [PMID: 33080895]
[73]
Bhatia S, Verma N, Bedi RK. Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys 2017; 7: 801-6.
[http://dx.doi.org/10.1016/j.rinp.2017.02.008]
[74]
Mhlongo GH, Motaung DE, Cummings FR, Swart HC, Ray SS. A highly responsive NH 3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Sci Rep 2019; 9(1): 1-8.
[http://dx.doi.org/10.1038/s41598-019-46247-z] [PMID: 30626917]
[75]
Das S, Roy S, Bhattacharya TS, Sarkar CK. Efficient Room Temperature Hydrogen Gas Sensor using ZnO Nanoparticles-Reduced Graphene Oxide Nanohybrid. IEEE Sens J 2021; 21(2): 1264-72.
[76]
Lee HJ, Van Dao D, Yu YT. Correction: Superfast and efficient hydrogen gas sensor using PdAualloy@ ZnO core–shell nanoparticles. J Mater Chem A Mater Energy Sustain 2020; 8(33): 17276.
[http://dx.doi.org/10.1039/D0TA90184A]
[77]
Zhao G, Xuan J, Liu X, et al. Low-cost and high-performance ZnO nanoclusters gas sensor based on new-type FTO electrode for the low-concentration H2S gas detection. Nanomaterials (Basel) 2019; 9(3): 435.
[http://dx.doi.org/10.3390/nano9030435]
[78]
Gawali SR, Patil VL, Deonikar VG, et al. Ce doped NiO nanoparticles as selective NO2 gas sensor. J Phys Chem Solids 2018; 114: 28-35.
[http://dx.doi.org/10.1016/j.jpcs.2017.11.005]
[79]
Zhang D, Jin Y, Cao Y. Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets hetero-structure. J Mater Sci Mater Electron 2019; 30(1): 573-81.
[http://dx.doi.org/10.1007/s10854-018-0323-3]
[80]
Carbone M, Tagliatesta P. NiO Grained-flowers and nanoparticles for ethanol sensing. Materials (Basel) 2020; 13(8): 1880.
[http://dx.doi.org/10.3390/ma13081880] [PMID: 32316359]
[81]
Arif M, Sanger A, Singh A. Highly sensitive NiO nanoparticle based chlorine gas sensor. J Electron Mater 2018; 47(7): 3451-8.
[http://dx.doi.org/10.1007/s11664-018-6176-y]
[82]
Zakrzewska K, Radecka M. TiO2-based nanomaterials for gas sensing—influence of anatase and rutile contributions. Nanoscale Res Lett 2017; 12(1): 89.
[http://dx.doi.org/10.1186/s11671-017-1875-5] [PMID: 28168614]
[83]
Chen N, Deng D, Li Y, et al. TiO2 nanoparticles functionalized by Pd nanoparticles for gas-sensing application with enhanced butane response performances. Sci Rep 2017; 7(1): 7692.
[PMID: 28127051]
[84]
Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: A review. Front Chem 2014; 2: 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[85]
Yoon H. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials (Basel) 2013; 3(3): 524-49.
[http://dx.doi.org/10.3390/nano3030524] [PMID: 28348348]
[86]
Yoon H, Jang J. Conducting‐polymer nanomaterials for high‐performance sensor applications: Issues and challenges. Adv Funct Mater 2009; 19(10): 1567-76.
[http://dx.doi.org/10.1002/adfm.200801141]
[87]
Li C, Bai H, Shi G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem Soc Rev 2009; 38(8): 2397-409.
[http://dx.doi.org/10.1039/b816681c] [PMID: 19623357]
[88]
Rozhin O, Ferrari A, Milne WI. Nanomaterial polymer compositions and uses thereof. United States patent US 8,323,789, 2012.
[89]
Hu J, Liu S. Responsive polymers for detection and sensing applications: Current status and future developments. Macromolecules 2010; 43(20): 8315-30.
[http://dx.doi.org/10.1021/ma1005815]
[90]
Bartlett PN, Birkin PR. The application of conducting polymers in biosensors. Synth Met 1993; 61(1-2): 15-21.
[http://dx.doi.org/10.1016/0379-6779(93)91194-7]
[91]
Song HS, Kwon OS, Lee SH, et al. Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 2013; 13(1): 172-8.
[http://dx.doi.org/10.1021/nl3038147] [PMID: 23176205]
[92]
Yoon H, Lee SH, Kwon OS, et al. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chem Int Ed Engl 2009; 48(15): 2755-8.
[http://dx.doi.org/10.1002/anie.200805171] [PMID: 19274689]
[93]
Wallace GG, Smyth M, Zhao H. Conducting electroactive polymer-based biosensors. Trends Analyt Chem 1999; 18(4): 245-51.
[http://dx.doi.org/10.1016/S0165-9936(98)00113-7]
[94]
Contractor AQ, Sureshkumar TN, Narayanan R, Sukeerthi S, Lal R, Srinivasa RS. Conducting polymer-based biosensors. Electrochim Acta 1994; 39(8-9): 1321-4.
[http://dx.doi.org/10.1016/0013-4686(94)E0054-4]
[95]
Maziz A, Özgür E, Bergaud C, Uzun L. Progress in conducting polymers for biointerfacing and biorecognition applications. Sens Actuat Reports 2021; 2021: 100035.
[http://dx.doi.org/10.1016/j.snr.2021.100035]
[96]
Kim TH, Song HS, Jin HJ, et al. “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 2011; 11(13): 2262-7.
[http://dx.doi.org/10.1039/c0lc00648c] [PMID: 21547310]
[97]
Ahuja T, Mir IA, Kumar D, Rajesh. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007; 28(5): 791-805.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.046] [PMID: 17055573]
[98]
Yousef Elahi M, Bathaie SZ, Kazemi SH, Mousavi MF. DNA immobilization on a polypyrrole nanofiber modified electrode and its interaction with salicylic acid/aspirin. Anal Biochem 2011; 411(2): 176-84.
[http://dx.doi.org/10.1016/j.ab.2011.01.006] [PMID: 21236237]
[99]
Wang J. Nanomaterial-based electrochemical biosensors. Analyst (Lond) 2005; 130(4): 421-6.
[http://dx.doi.org/10.1039/b414248a] [PMID: 15846872]
[100]
Zhang C, Du X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease. Front Chem 2020; 8: 651.
[http://dx.doi.org/10.3389/fchem.2020.00651] [PMID: 32850664]
[101]
Pumera M, Ed. Nanomaterials for electrochemical sensing and biosensing. Florida, USA: CRC Press 2014.
[102]
Yang C, Denno ME, Pyakurel P, Venton BJ. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal Chim Acta 2015; 887: 17-37.
[http://dx.doi.org/10.1016/j.aca.2015.05.049] [PMID: 26320782]
[103]
Ansari S. Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: Recent applications and challenges. Trends Analyt Chem 2017; 93: 134-51.
[http://dx.doi.org/10.1016/j.trac.2017.05.015]
[104]
Azzouz A, Goud KY, Raza N, et al. Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019; 110: 15-34.
[http://dx.doi.org/10.1016/j.trac.2018.08.002]
[105]
Carneiro P, Morais S, Pereira MC. Nanomaterials towards biosensing of Alzheimer’s disease biomarkers. Nanomaterials (Basel) 2019; 9(12): 1663.
[http://dx.doi.org/10.3390/nano9121663] [PMID: 31766693]
[106]
Viswanathan S, Radecki J. Nanomaterials in electrochemical biosensors for food analysis-a review. Pol J Food Nutr Sci 2008; 58(2): 157-64.
[107]
Hernandez FJ, Ozalp VC. Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors (Basel) 2012; 2(1): 1-14.
[http://dx.doi.org/10.3390/bios2010001] [PMID: 25585628]
[108]
Erdem A. Nanomaterial-based electrochemical DNA sensing strategies. Talanta 2007; 74(3): 318-25.
[http://dx.doi.org/10.1016/j.talanta.2007.10.012] [PMID: 18371645]
[109]
Dolatabadi JE, de la Guardia M. Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools. Anal Methods 2014; 6(12): 3891-900.
[http://dx.doi.org/10.1039/C3AY41749B]
[110]
Fort A, Panzardi E, Vignoli V, et al. Co3O4/Al-ZnO nano-composites: gas sensing properties. Sensors (Basel) 2019; 19(4): 760.
[http://dx.doi.org/10.3390/s19040760] [PMID: 30781799]
[111]
Mehmood A, Mubarak NM, Khalid M, et al. Graphene based nanomaterials for strain sensor application—A review. J Environ Chem Eng 2020; 8(3): 103743.
[http://dx.doi.org/10.1016/j.jece.2020.103743]
[112]
Díez-Pascual AM. Carbon-based polymer nanocomposites for high-performance applications. Polymers 2020; 12(3): 505.
[http://dx.doi.org/10.3390/polym12040872]
[113]
Parab HJ, Jung C, Lee JH, Park HG. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron 2010; 26(2): 667-73.
[http://dx.doi.org/10.1016/j.bios.2010.06.067] [PMID: 20675117]
[114]
Shams S, Bakhshi B, Tohidi Moghadam T, Behmanesh M. A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnology 2019; 17(1): 43.
[http://dx.doi.org/10.1186/s12951-019-0476-0] [PMID: 30914053]
[115]
Choi HK, Lee J, Park MK, Oh JH. Development of single-walled carbon nanotube-based biosensor for the detection of staphylococcus aureus. J Food Qual 2017; 2017.
[http://dx.doi.org/10.1155/2017/5239487]
[116]
Li W, Gao Y, Zhang J, et al. Universal DNA detection realized by peptide based carbon nanotube biosensors. Nanoscale Adv 2020; 2(2): 717-23.
[http://dx.doi.org/10.1039/C9NA00625G]
[117]
Supraja P, Singh V, Vanjari SRK, Govind Singh S. Electrospun CNT embedded ZnO nanofiber based biosensor for electrochemical detection of Atrazine: A step closure to single molecule detection. Microsyst Nanoeng 2020; 6(1): 3.
[http://dx.doi.org/10.1038/s41378-019-0115-9] [PMID: 34567618]
[118]
He B, Morrow TJ, Keating CD. Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol 2008; 12(5): 522-8.
[http://dx.doi.org/10.1016/j.cbpa.2008.08.027] [PMID: 18804551]
[119]
Choi A, Kim K, Jung HI, Lee SY. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens Actuators B Chem 2010; 148(2): 577-82.
[http://dx.doi.org/10.1016/j.snb.2010.04.049]
[120]
Janissen R, Sahoo PK, Santos CA, et al. InP nanowire biosensor with tailored bio functionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett 2017; 17(10): 5938-49.
[http://dx.doi.org/10.1021/acs.nanolett.7b01803] [PMID: 28895736]
[121]
Maxwell T, Campos MG, Smith S, Doomra M, Thwin Z, Santra S. Quantum Dots. In: Nanoparticles for Biomedical Applications. Elsevier 2020; pp. 243-65.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00015-1]
[122]
Hawrylak P, Peeters F, Ensslin K. Carbononics-integrating electronics, photonics and spintronics with graphene quantum dots. Phys Status Solidi Rapid Res Lett 2016; 10(1): 11-2.
[http://dx.doi.org/10.1002/pssr.201670707]
[123]
Heiss M, Fontana Y, Gustafsson A, et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater 2013; 12(5): 439-44.
[http://dx.doi.org/10.1038/nmat3557] [PMID: 23377293]
[124]
Yu WW, Chang E, Drezek R, Colvin VL. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 2006; 348(3): 781-6.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.160] [PMID: 16904647]
[125]
Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed Pharmacother 2017; 87: 209-22.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108] [PMID: 28061404]
[126]
Khare V, Saxena AK, Gupta PN. Toxicology considerations in nanomedicine. Nanotechnol Appl Tissue Eng 2015; 239-61.
[http://dx.doi.org/10.1016/B978-0-323-32889-0.00015-7]
[127]
Yaghini E, Seifalian AM, MacRobert AJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Future Med 2009; 4(3): 353-63.
[http://dx.doi.org/10.2217/nnm.09.9]
[128]
Norouzi M, Zarei Ghobadi M, Golmimi M, Mozhgani SH, Ghourchian H, Rezaee SA. Quantum dot-based biosensor for the detection of human T-lymphotropic virus-1. Anal Lett 2017; 50(15): 2402-11.
[http://dx.doi.org/10.1080/00032719.2017.1287714]
[129]
Parvizi R, Azad S, Dashtian K, Ghaedi M, Heidari H. Natural source-based graphene as sensitising agents for air quality monitoring. Sci Rep 2019; 9(1): 3798.
[http://dx.doi.org/10.1038/s41598-019-40433-9] [PMID: 30846771]
[130]
Raeyani D, Shojaei S, Ahmadi-Kandjani S. Optical graphene quantum dots gas sensors: experimental study. Mater Res Express 2020; 7(1): 015608.
[http://dx.doi.org/10.1088/2053-1591/ab637e]
[131]
Huang S, Wang L, Huang C, Su W, Xiao Q. Label-free and ratiometric fluorescent nanosensor based on amino-functionalized graphene quantum dots coupling catalytic G-quadruplex/hemin DNAzyme for ultrasensitive recognition of human telomere DNA. Sens Actuators B Chem 2017; 245: 648-55.
[http://dx.doi.org/10.1016/j.snb.2017.02.013]
[132]
Zhou T, Halder A, Sun Y. Fluorescent nanosensor based on molecularly imprinted polymers coated on graphene quantum dots for fast detection of antibiotics. Biosensors (Basel) 2018; 8(3): 82.
[http://dx.doi.org/10.3390/bios8030082] [PMID: 30189690]
[133]
Fan GC, Han L, Zhang JR, Zhu JJ. Enhanced photoelectrochemical strategy for ultrasensitive DNA detection based on two different sizes of CdTe quantum dots cosensitized TiO2/CdS:Mn hybrid structure. Anal Chem 2014; 86(21): 10877-84.
[http://dx.doi.org/10.1021/ac503043w] [PMID: 25294102]
[134]
Wegner KD, Jin Z, Lindén S, Jennings TL, Hildebrandt N. Quantum-dot-basedFörster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano 2013; 7(8): 7411-9.
[http://dx.doi.org/10.1021/nn403253y] [PMID: 23909574]
[135]
Tedsana W, Tuntulani T, Ngeontae W. A highly selective turn-on ATP fluorescence sensor based on unmodified cysteamine capped CdS quantum dots. Anal Chim Acta 2013; 783: 65-73.
[http://dx.doi.org/10.1016/j.aca.2013.04.037] [PMID: 23726101]
[136]
Tsuboi S, Jin T. Bioluminescence Resonance Energy Transfer (BRET)-coupled Annexin V-functionalized quantum dots for near-infrared optical detection of apoptotic cells. ChemBioChem 2017; 18(22): 2231-5.
[http://dx.doi.org/10.1002/cbic.201700486] [PMID: 28901721]
[137]
Deng S, Lei J, Huang Y, Cheng Y, Ju H. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin. Anal Chem 2013; 85(11): 5390-6.
[http://dx.doi.org/10.1021/ac3036537] [PMID: 23659573]
[138]
Zhu S, Yan X, Sun J, Zhao XE, Wang X. A novel and sensitive fluorescent assay for artemisinin with graphene quantum dots based on inner filter effect. Talanta 2019; 200: 163-8.
[http://dx.doi.org/10.1016/j.talanta.2019.03.058] [PMID: 31036169]
[139]
Wang C, Qian J, Wang K, et al. Nitrogen-doped graphene quantum dots@ SiO2 nanoparticles as electrochemiluminescence and fluorescence signal indicators for magnetically controlled aptasensor with dual detection channels. ACS Appl Mater Interfaces 2015; 7(48): 26865-73.
[http://dx.doi.org/10.1021/acsami.5b09300] [PMID: 26524349]
[140]
Dong Y, Wu H, Shang P, Zeng X, Chi Y. Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Nanoscale 2015; 7(39): 16366-71.
[http://dx.doi.org/10.1039/C5NR04328J] [PMID: 26391198]
[141]
Lou J, Liu S, Tu W, Dai Z. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing. Anal Chem 2015; 87(2): 1145-51.
[http://dx.doi.org/10.1021/ac5037318] [PMID: 25523862]
[142]
Ganganboina AB, Doong RA. Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion. Mikrochim Acta 2018; 185(11): 526.
[http://dx.doi.org/10.1007/s00604-018-3063-4] [PMID: 30377815]
[143]
Gupta S, Smith T, Banaszak A, Boeckl J. Graphene quantum dots electrochemistry and sensitive electrocatalytic glucose sensor development. Nanomaterials (Basel) 2017; 7(10): 301.
[http://dx.doi.org/10.3390/nano7100301] [PMID: 28961225]
[144]
Akyıldırım O, Kardaş F, Beytur M, Yüksek H, Atar N, Yola ML. Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin. J Mol Liq 2017; 243: 677-81.
[http://dx.doi.org/10.1016/j.molliq.2017.08.085]
[145]
Yu HW, Zhang Z, Shen T, Jiang JH, Chang D, Pan HZ. Sensitive determination of uric acid by using graphene quantum dots as a new substrate for immobilisation of uric oxidase. IET Nanobiotechnol 2017; 12(2): 191-5.
[http://dx.doi.org/10.1049/iet-nbt.2016.0221]
[146]
Kida T, Oka T, Nagano M, Ishiwata Y, Zheng XG. Synthesis and application of stable copper oxide nanoparticle suspensions for nanoparticulate film fabrication. J Am Ceram Soc 2007; 90(1): 107-10.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01402.x]
[147]
Subramanian V, Burke WW, Zhu H, Wei B. Novel microwave synthesis of nanocrystalline SNO2 and its electrochemical properties. J Phys Chem C 2008; 112(12): 4550-6.
[http://dx.doi.org/10.1021/jp711551p]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy