Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Anti-Inflammatory Effect of Ginsenoside Rg1 on LPS-Induced Septic Encephalopathy and Associated Mechanism

Author(s): Yuan Chen, Miaomiao Chi, Xinyu Qiao, Jiabing Wang* and Yong Jin*

Volume 19, Issue 1, 2022

Published on: 17 June, 2022

Page: [38 - 46] Pages: 9

DOI: 10.2174/1567202619666220414093130

Price: $65

Abstract

Background: Sepsis frequently occurs in patients after infection and is highly associated with death. Septic encephalopathy is characterized by dysfunction of the central nervous system, of which the root cause is a systemic inflammatory response. Sepsis-associated encephalopathy is a severe disease that frequently occurs in children, resulting in high morbidity and mortality.

Objectives: In the present study, we aimed to investigate the neuroprotective mechanism of ginsenoside Rg1 in response to septic encephalopathy.

Methods: Effects of ginsenoside Rg1 on septic encephalopathy were determined by cell viability, cytotoxicity, ROS responses, apoptosis assays, and histological examination of the brain. Inflammatory activities were evaluated by expression levels of IL-1β, IL-6, IL-10, TNF-α, and MCP-1 using qPCR and ELISA. Activities of signaling pathways in inflammation were estimated by the production of p-Erk1/2/Erk1/2, p-JNK/JNK, p-p38/p38, p-p65/p65, and p-IkBα/IkBα using western blot.

Results: LPS simulation resulted in a significant increase in cytotoxicity, ROS responses, and apoptosis and a significant decrease in cell viability in CTX TNA2 cells, as well as brain damage in rats. Moreover, the production of IL-1β, IL-6, IL-10, TNF-α, and MCP-1 was reported to be significantly stimulated in CTX TNA2 cells and the brain, confirming the establishment of in vitro and in vivo models of septic encephalopathy. The damage and inflammatory responses induced by LPS were significantly decreased by treatment with Rg1. Western blot analyses indicated that Rg1 significantly decreased the production of p-Erk1/2/Erk1/2, p-JNK/JNK, p-p38/p38, p-p65/p65, and p- IkBα/IkBα in LPS-induced CTX TNA2 cells and brain.

Conclusion: These findings suggested that Rg1 inhibited the activation of NF-κB and MAPK signaling pathways, which activate the production of proinflammatory cytokines and chemokines. The findings of this study suggested that ginsenoside Rg1 is a candidate treatment for septic encephalopathy.

Keywords: Sepsis, encephalopathy, anti-inflammatory, ginsenoside Rg1, NF-κB, MAPK.

[1]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020; 395(10219): 200-11.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[2]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315(8): 801-10.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[3]
Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101(6): 1644-55.
[http://dx.doi.org/10.1378/chest.101.6.1644] [PMID: 1303622]
[4]
Cossart YE. The rise and fall of infectious diseases: Australian perspectives, 1914-2014. Med J Aust 2014; 201(1)(Suppl.): S11-4.
[http://dx.doi.org/10.5694/mja14.00112] [PMID: 25047768]
[5]
Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Med 2007; 33(6): 941-50.
[http://dx.doi.org/10.1007/s00134-007-0622-2] [PMID: 17410344]
[6]
Barbosa-Silva MC, Lima MN, Battaglini D, et al. Infectious disease-associated encephalopathies. Crit Care 2021; 25(1): 236.
[http://dx.doi.org/10.1186/s13054-021-03659-6] [PMID: 34229735]
[7]
Shapiro L, Gelfand JA. Cytokines and sepsis: Pathophysiology and therapy. New Horiz 1993; 1(1): 13-22.
[PMID: 7922386]
[8]
Wang H, Vishnubhakat JM, Bloom O, et al. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999; 126(2): 389-92.
[http://dx.doi.org/10.1016/S0039-6060(99)70182-0] [PMID: 10455911]
[9]
Tracey KJ. The inflammatory reflex. Nature 2002; 420(6917): 853-9.
[http://dx.doi.org/10.1038/nature01321] [PMID: 12490958]
[10]
Sharshar T, Annane D. Endocrine effects of vasopressin in critically ill patients. Baillieres Best Pract Res Clin Anaesthesiol 2008; 22(2): 265-73.
[http://dx.doi.org/10.1016/j.bpa.2008.02.005] [PMID: 18683473]
[11]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805-20.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[12]
Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol 2019; 19(8): 503-16.
[http://dx.doi.org/10.1038/s41577-019-0168-x] [PMID: 31048789]
[13]
Sonneville R, Verdonk F, Rauturier C, et al. Understanding brain dysfunction in sepsis. Ann Intensive Care 2013; 3(1): 15.
[http://dx.doi.org/10.1186/2110-5820-3-15] [PMID: 23718252]
[14]
Handa O, Stephen J, Cepinskas G. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebro-vascular endothelial cells during early onsets of sepsis. Am J Physiol Heart Circ Physiol 2008; 295(4): H1712-9.
[http://dx.doi.org/10.1152/ajpheart.00476.2008] [PMID: 18723768]
[15]
Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med 2019; 25(2): 112-23.
[http://dx.doi.org/10.1016/j.molmed.2018.11.005] [PMID: 30578090]
[16]
Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron 2020; 108(4): 608-22.
[http://dx.doi.org/10.1016/j.neuron.2020.08.012] [PMID: 32898475]
[17]
Weberpals M, Hermes M, Hermann S, et al. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci 2009; 29(45): 14177-84.
[http://dx.doi.org/10.1523/JNEUROSCI.3238-09.2009] [PMID: 19906966]
[18]
Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015; 7: 129.
[http://dx.doi.org/10.3389/fnagi.2015.00129] [PMID: 26236231]
[19]
Gui QF, Xu ZR, Xu KY, Yang YM. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: An updated systematic review and meta-analysis. Medicine (Baltimore) 2016; 95(6), e2584.
[http://dx.doi.org/10.1097/MD.0000000000002584] [PMID: 26871778]
[20]
Majeed F, Malik FZ, Ahmed Z, Afreen A, Afzal MN, Khalid N. Ginseng phytochemicals as therapeutics in oncology: Recent perspectives. Biomed Pharmacother 2018; 100: 52-63.
[http://dx.doi.org/10.1016/j.biopha.2018.01.155] [PMID: 29421582]
[21]
Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J Ginseng Res 2018; 42(3): 264-9.
[http://dx.doi.org/10.1016/j.jgr.2017.10.004] [PMID: 29983607]
[22]
Liu J, Nile SH, Xu G, Wang Y, Kai G. Systematic exploration of Astragalus membranaceus and Panax ginseng as immune regulators: In-sights from the comparative biological and computational analysis. Phytomedicine 2021; 86, 153077.
[http://dx.doi.org/10.1016/j.phymed.2019.153077] [PMID: 31477352]
[23]
Im DS, Nah SY. Yin and Yang of ginseng pharmacology: Ginsenosides vs gintonin. Acta Pharmacol Sin 2013; 34(11): 1367-73.
[http://dx.doi.org/10.1038/aps.2013.100] [PMID: 24122014]
[24]
Wang T, Guo R, Zhou G, et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J Ethnopharmacol 2016; 188: 234-58.
[http://dx.doi.org/10.1016/j.jep.2016.05.005] [PMID: 27154405]
[25]
Leung KW, Wong AST. Pharmacology of ginsenosides: A literature review. Chin Med 2010; 5: 20.
[http://dx.doi.org/10.1186/1749-8546-5-20] [PMID: 20537195]
[26]
Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese Crude Drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963; 11: 759-61.
[http://dx.doi.org/10.1248/cpb.11.759] [PMID: 14068710]
[27]
Yoon SJ, Park JY, Choi S, et al. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem Biophys Res Commun 2015; 463(4): 1184-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.080] [PMID: 26086107]
[28]
Chen W, Wang J, Luo Y, et al. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 in-flammasome activation in adipose tissue. J Ginseng Res 2016; 40(4): 351-8.
[http://dx.doi.org/10.1016/j.jgr.2015.11.002] [PMID: 27746687]
[29]
Yang Y, Li X, Zhang L, Liu L, Jing G, Cai H. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARγ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 2015; 8(3): 2484-94.
[PMID: 26045754]
[30]
Wang Y, Liu Q, Xu Y, et al. Ginsenoside Rg1 protects against oxidative stress-induced neuronal apoptosis through Myosin IIA-actin re-lated cytoskeletal reorganization. Int J Biol Sci 2016; 12(11): 1341-56.
[http://dx.doi.org/10.7150/ijbs.15992] [PMID: 27877086]
[31]
Cheng Z, Zhang M, Ling C, et al. Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules 2019; 24(6): 1102.
[http://dx.doi.org/10.3390/molecules24061102] [PMID: 30897756]
[32]
Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: The revolution continues. Nat Rev Neurosci 2005; 6(8): 626-40.
[http://dx.doi.org/10.1038/nrn1722] [PMID: 16025096]
[33]
Allen NJ, Barres BA. Neuroscience: Glia - more than just brain glue. Nature 2009; 457(7230): 675-7.
[http://dx.doi.org/10.1038/457675a] [PMID: 19194443]
[34]
Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology. Brain Res Brain Res Rev 2010; 63(1-2): 2-10.
[http://dx.doi.org/10.1016/j.brainresrev.2009.12.001] [PMID: 20005253]
[35]
Shulyatnikova T, Verkhratsky A. Astroglia in sepsis associated encephalopathy. Neurochem Res 2020; 45(1): 83-99.
[http://dx.doi.org/10.1007/s11064-019-02743-2] [PMID: 30778837]
[36]
Connolly MK, Bedrosian AS, Mallen-St Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 2009; 119(11): 3213-25.
[PMID: 19855130]
[37]
Maskrey BH, Megson IL, Whitfield PD, Rossi AG. Mechanisms of resolution of inflammation: A focus on cardiovascular disease. Arterioscler Thromb Vasc Biol 2011; 31(5): 1001-6.
[http://dx.doi.org/10.1161/ATVBAHA.110.213850] [PMID: 21508346]
[38]
Christman JW, Sadikot RT, Blackwell TS. The role of nuclear factor-kappa B in pulmonary diseases. Chest 2000; 117(5): 1482-7.
[http://dx.doi.org/10.1378/chest.117.5.1482] [PMID: 10807839]
[39]
McCoy MK, Ruhn KA, Blesch A, Tansey MG. TNF: A key neuroinflammatory mediator of neurotoxicity and neurodegeneration in mod-els of Parkinson’s disease. Adv Exp Med Biol 2011; 691: 539-40.
[http://dx.doi.org/10.1007/978-1-4419-6612-4_56] [PMID: 21153359]
[40]
Kishimoto T, Taga T, Yamasaki K, et al. Normal and abnormal regulation of human B cell differentiation by a new cytokine, BSF2/IL-6. Adv Exp Med Biol 1989; 254: 135-43.
[http://dx.doi.org/10.1007/978-1-4757-5803-0_16] [PMID: 2683604]
[41]
Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997; 6(3): 315-25.
[http://dx.doi.org/10.1016/S1074-7613(00)80334-9] [PMID: 9075932]
[42]
Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 2001; 22(3): 147-84.
[http://dx.doi.org/10.1006/frne.2001.0214] [PMID: 11456467]
[43]
Oberholzer A, Oberholzer C, Moldawer LL. Interleukin-10: A complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Critical Care Med 2002; 30(1): S58-63.
[44]
Semmler A, Hermann S, Mormann F, et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 2008; 5: 38.
[http://dx.doi.org/10.1186/1742-2094-5-38] [PMID: 18793399]
[45]
Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: A step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11(2): 87-99.
[http://dx.doi.org/10.1038/nrn2757] [PMID: 20087359]
[46]
Zou Y, Tao T, Tian Y, et al. Ginsenoside Rg1 improves survival in a murine model of polymicrobial sepsis by suppressing the inflamma-tory response and apoptosis of lymphocytes. J Surg Res 2013; 183(2): 760-6.
[http://dx.doi.org/10.1016/j.jss.2013.01.068] [PMID: 23478085]
[47]
Li Y, Wang F, Luo Y. Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1–independent autophagy in rats. J Surg Res 2017; 207: 181-9.
[48]
Ha YM, Chung SW, Kim JM, et al. Molecular activation of NF-kappaB, pro-inflammatory mediators, and signal pathways in gamma-irradiated mice. Biotechnol Lett 2010; 32(3): 373-8.
[http://dx.doi.org/10.1007/s10529-009-0165-4] [PMID: 19915799]
[49]
Lee SM, Kim EJ, Suk K, Lee WH. Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-κB in THP-1 cells. Cell Immunol 2011; 271(1): 157-62.
[http://dx.doi.org/10.1016/j.cellimm.2011.06.019] [PMID: 21752354]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy