Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Cerebral Ischemia Induces Iron Deposit, Ferritin Accumulation, Nuclear Receptor Coactivator 4-depletion, and Ferroptosis

Author(s): Nora Hanke and Abdelhaq Rami*

Volume 19, Issue 1, 2022

Published on: 19 April, 2022

Page: [47 - 60] Pages: 14

DOI: 10.2174/1567202619666220321120954

Price: $65

Abstract

Background: The neuronal death upon cerebral ischemia shares not only characteristics of necrosis, apoptosis, and autophagy but also exhibits biochemical and morphological characteristics of ferroptosis. Ferroptosis is a regulated form of cell death that is considered to be an oxidative iron-dependent process. It is now commonly accepted that iron and free radicals are considered to cause lipid peroxidation as well as the oxidation of proteins and nucleic acids, leading to increased membrane and enzymatic dysfunction and finally contributing to cell death. Although ferroptosis was first described in cancer cells, emerging evidence now links mechanisms of ferroptosis to many different diseases, including cerebral ischemia.

Methods: The objective of this study was to identify the key players and underlying biochemical pathways of ferroptosis, leading to cell death upon focal cerebral ischemia in mice by using immunofluorescence, Western blotting, histochemistry, and densitometry.

Results: In this study, we demonstrated that cerebral ischemia induced iron-deposition, downregulated dramatically the expression of the glutathione peroxidase 4 (GPX4), decreased the expression of the nuclear receptor coactivator 4 (NCOA4), and induced inappropriate accumulation of ferritin in the ischemic brain. This supports the hypothesis that an ischemic insult may induce ferroptosis through inhibition of GPX4.

Conclusion: We conclude that iron excess following cerebral ischemia leads to cell death despite activating compensatory mechanisms for iron homeostasis, as illustrated by the accumulation of ferritins. These data emphasized the presence of a cellular mechanism that allows neuronal cells to buffer iron levels.

Keywords: Cerebral ischemia, ferroptosis, ferritin, ferritinophagy, GPX-4, NCOA4.

[1]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[2]
Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014; 10(1): 9-17.
[http://dx.doi.org/10.1038/nchembio.1416] [PMID: 24346035]
[3]
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci 2016; 73(11-12): 2195-209.
[http://dx.doi.org/10.1007/s00018-016-2194-1] [PMID: 27048822]
[4]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and dis-ease. Cell 2017; 171(2): 273-85.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[5]
Angeli JPF, Shah R, Pratt DA, Conrad M. Ferroptosis inhibition: Mechanisms and opportunities. Trends Pharmacol Sci 2017; 38(5): 489-98.
[http://dx.doi.org/10.1016/j.tips.2017.02.005] [PMID: 28363764]
[6]
Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2016; 15(5): 348-66.
[http://dx.doi.org/10.1038/nrd.2015.6] [PMID: 26775689]
[7]
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 2016; 113(34): E4966-75.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[8]
MacKenzie EL, Ray PD, Tsuji Y. Role and regulation of ferritin H in rotenone-mediated mitochondrial oxidative stress. Free Radic Biol Med 2008; 44(9): 1762-71.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.031] [PMID: 18325346]
[9]
Zille M, Karuppagounder SS, Chen Y, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 2017; 48(4): 1033-43.
[http://dx.doi.org/10.1161/STROKEAHA.116.015609] [PMID: 28250197]
[10]
Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015; 24(4): 325-40.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[11]
Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017; 22(11): 1520-30.
[http://dx.doi.org/10.1038/mp.2017.171] [PMID: 28886009]
[12]
Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res 2016; 26(9): 1021-32.
[http://dx.doi.org/10.1038/cr.2016.95] [PMID: 27514700]
[13]
Shi ZH, Nie G, Duan XL, et al. Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: Implication for neuroprotection in Parkinson’s disease. Antioxid Redox Signal 2010; 13(6): 783-96.
[http://dx.doi.org/10.1089/ars.2009.3018] [PMID: 20121342]
[14]
Gao G, Chang YZ. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 2014; 5: 19.
[http://dx.doi.org/10.3389/fphar.2014.00019] [PMID: 24596558]
[15]
Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 2018; 128(8): 3341-55.
[http://dx.doi.org/10.1172/JCI99032] [PMID: 29939160]
[16]
Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014; 509(7498): 105-9.
[http://dx.doi.org/10.1038/nature13148] [PMID: 24695223]
[17]
Del Rey MQ, Mancias JD. NCOA4-mediated ferritinophagy: A potential link to neurodegeneration. Front Neurosci 2019; 14: 238.
[18]
Rami A. Upregulation of Beclin 1 in the ischemic penumbra. Autophagy 2008; 4(2): 227-9.
[http://dx.doi.org/10.4161/auto.5339] [PMID: 18075295]
[19]
Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 2008; 29(1): 132-41.
[http://dx.doi.org/10.1016/j.nbd.2007.08.005] [PMID: 17936001]
[20]
Rami A, Kögel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy 2008; 4(4): 422-6.
[http://dx.doi.org/10.4161/auto.5778] [PMID: 18319639]
[21]
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164: 98-117.
[http://dx.doi.org/10.1016/j.pneurobio.2018.01.001] [PMID: 29331396]
[22]
Hou K, Xu D, Li F, Chen S, Li Y. The progress of neuronal autophagy in cerebral ischemia stroke: Mechanisms, roles and research meth-ods. J Neurol Sci 2019; 400: 72-82.
[http://dx.doi.org/10.1016/j.jns.2019.03.015] [PMID: 30904689]
[23]
Zhang Y, Cao Y, Liu C. Autophagy and ischemic stroke. Adv Exp Med Biol 2020; 1207: 111-34.
[http://dx.doi.org/10.1007/978-981-15-4272-5_7] [PMID: 32671742]
[24]
Hata R, Mies G, Wiessner C, et al. A reproducible model of middle cerebral artery occlusion in mice: Hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 1998; 18(4): 367-75.
[http://dx.doi.org/10.1097/00004647-199804000-00004] [PMID: 9538901]
[25]
Spahn A, Blondeau N, Heurteaux C, Dehghani F, Rami A. Concomitant transitory up-regulation of X-linked inhibitor of apoptosis protein (XIAP) and the heterogeneous nuclear ribonucleoprotein C1-C2 in surviving cells during neuronal apoptosis. Neurochem Res 2008; 33(9): 1859-68.
[http://dx.doi.org/10.1007/s11064-008-9658-0] [PMID: 18363099]
[26]
Rami A, Agarwal R, Spahn A. Synergetic effects of caspase 3 and mu-calpain in XIAP-breakdown upon focal cerebral ischemia. Neurochem Res 2007; 32(12): 2072-9.
[http://dx.doi.org/10.1007/s11064-007-9361-6] [PMID: 17514421]
[27]
Wu H, Wu T, Xu X, Wang J, Wang J. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab 2011; 31(5): 1243-50.
[http://dx.doi.org/10.1038/jcbfm.2010.209] [PMID: 21102602]
[28]
Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem Sci 2016; 41(3): 274-86.
[http://dx.doi.org/10.1016/j.tibs.2015.11.012] [PMID: 26725301]
[29]
Kruer MC. The neuropathology of neurodegeneration with brain iron accumulation. Int Rev Neurobiol 2013; 110: 165-94.
[http://dx.doi.org/10.1016/B978-0-12-410502-7.00009-0] [PMID: 24209439]
[30]
Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 2002; 33(4): 457-63.
[http://dx.doi.org/10.1016/S0891-5849(02)00842-0] [PMID: 12160928]
[31]
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017; 69(6): 414-22.
[http://dx.doi.org/10.1002/iub.1621] [PMID: 28349628]
[32]
Chen L, Hambright WS, Na R, Ran Q. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neu-ron degeneration and paralysis. J Biol Chem 2015; 290(47): 28097-106.
[http://dx.doi.org/10.1074/jbc.M115.680090] [PMID: 26400084]
[33]
Seiler A, Schneider M, Förster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase depend-ent- and AIF-mediated cell death. Cell Metab 2008; 8(3): 237-48.
[http://dx.doi.org/10.1016/j.cmet.2008.07.005] [PMID: 18762024]
[34]
Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018; 172(3): 409-422.e21.
[http://dx.doi.org/10.1016/j.cell.2017.11.048] [PMID: 29290465]
[35]
Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons pro-motes cognitive impairment and neurodegeneration. Redox Biol 2017; 12: 8-17.
[http://dx.doi.org/10.1016/j.redox.2017.01.021] [PMID: 28212525]
[36]
Yoo SE, Chen L, Na R, et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic Biol Med 2012; 52(9): 1820-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.043] [PMID: 22401858]
[37]
Li C, Sun G, Chen B, et al. Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res 2021; 174: 105933.
[http://dx.doi.org/10.1016/j.phrs.2021.105933] [PMID: 34634471]
[38]
Kuang H, Wang T, Liu L, et al. Treatment of early brain injury after subarachnoid hemorrhage in the rat model by inhibiting p53-induced ferroptosis. Neurosci Lett 2021; 762: 136134.
[http://dx.doi.org/10.1016/j.neulet.2021.136134] [PMID: 34311053]
[39]
Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflamma-tion. Brain Behav Immun 2021; 93: 312-21.
[http://dx.doi.org/10.1016/j.bbi.2021.01.003] [PMID: 33444733]
[40]
Ren JX, Li C, Yan XL, Qu Y, Yang Y, Guo ZN. Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxid Med Cell Longev 2021; 2021: 6643382.
[http://dx.doi.org/10.1155/2021/6643382] [PMID: 34055196]
[41]
Jin Y, Zhuang Y, Liu M, Che J, Dong X. Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discov Today 2021; 26(4): 916-30.
[http://dx.doi.org/10.1016/j.drudis.2020.12.020] [PMID: 33412287]
[42]
Gryzik M, Srivastava A, Longhi G, et al. Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochim Biophys Acta, Gen Subj 2017; 1861(11 Pt A): 2710-6.
[http://dx.doi.org/10.1016/j.bbagen.2017.07.015] [PMID: 28754384]
[43]
Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016; 12(8): 1425-8.
[http://dx.doi.org/10.1080/15548627.2016.1187366] [PMID: 27245739]
[44]
Chevion M, Leibowitz S, Aye NN, et al. Heart protection by ischemic preconditioning: A novel pathway initiated by iron and mediated by ferritin. J Mol Cell Cardiol 2008; 45(6): 839-45.
[http://dx.doi.org/10.1016/j.yjmcc.2008.08.011] [PMID: 18817783]
[45]
Obolensky A, Berenshtein E, Konijn AM, Banin E, Chevion M. Ischemic preconditioning of the rat retina: Protective role of ferritin. Free Radic Biol Med 2008; 44(7): 1286-94.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.060] [PMID: 18082149]
[46]
Zhu W, Xie W, Pan T, et al. Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 2007; 21(14): 3835-44.
[http://dx.doi.org/10.1096/fj.07-8386com] [PMID: 17690154]
[47]
Shereen A, Nemkul N, Yang D, et al. Ex vivo diffusion tensor imaging and neuropathological correlation in a murine model of hypoxia-ischemia-induced thrombotic stroke. J Cereb Blood Flow Metab 2011; 31(4): 1155-69.
[http://dx.doi.org/10.1038/jcbfm.2010.212] [PMID: 21139628]
[48]
Chen J, Wang J, Li C, Ding H, Ye J, Xia Z. Dexmedetomidine reverses MTX-induced neurotoxicity and inflammation in hippocampal HT22 cell lines via NCOA4-mediated ferritinophagy. Aging (Albany NY) 2021; 13(4): 6182-93.
[http://dx.doi.org/10.18632/aging.202626] [PMID: 33632938]
[49]
Zuo Y, Xie J, Li X, et al. Ferritinophagy-mediated ferroptosis involved in paraquat-induced neurotoxicity of dopaminergic neurons: Im-plication for neurotoxicity in PD. Oxid Med Cell Longev 2021; 2021: 9961628.
[http://dx.doi.org/10.1155/2021/9961628] [PMID: 34394837]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy