Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms

Author(s): Leonid N. Maslov*, Sergey V. Popov, Alexandr V. Mukhomedzyanov, Natalia V. Naryzhnaya, Nikita S. Voronkov, Vyacheslav V. Ryabov, Alla A. Boshchenko, Igor Khaliulin, N. Rajendra Prasad, Feng Fu, Jian-Ming Pei, Sergey V. Logvinov and Peter R. Oeltgen

Volume 18, Issue 5, 2022

Published on: 14 June, 2022

Article ID: e130422203525 Pages: 17

DOI: 10.2174/1573403X18666220413121730

Price: $65

Abstract

It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.

Keywords: Heart, reperfusion injury, Ca2+ overload, oxidative stress, inflammation, apoptosis.

Graphical Abstract

[1]
Olier I, Sirker A, Hildick-Smith DJR, et al. British cardiovascular intervention society and the national institute for cardiovascular out-comes research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart 2018; 104(20): 1683-90.
[http://dx.doi.org/10.1136/heartjnl-2017-312366] [PMID: 29437885]
[2]
Maslov LN, Barbarash OL. Pharmacological approaches to limiting the infarct zone size in patients with acute myocardial infarction: Anal-ysis of clinical data. Eksp Klin Farmakol 2018; 81: 34-41.
[3]
Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: Staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 2007; 115(14): 1895-903.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675710] [PMID: 17389262]
[4]
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2015; 78: 23-34.
[http://dx.doi.org/10.1016/j.yjmcc.2014.11.005] [PMID: 25446182]
[5]
Zhao ZQ, Nakamura M, Wang NP, et al. Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res 2000; 94(2): 133-44.
[http://dx.doi.org/10.1006/jsre.2000.6029] [PMID: 11104653]
[6]
Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56(5): 786-94.
[http://dx.doi.org/10.1161/01.CIR.56.5.786] [PMID: 912839]
[7]
Eleawa SM, Alkhateeb M, Ghosh S, et al. Coenzyme Q10 protects against acute consequences of experimental myocardial infarction in rats. Int J Physiol Pathophysiol Pharmacol 2015; 7(1): 1-13.
[PMID: 26069524]
[8]
Yang XM, Liu Y, Cui L, et al. Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther 2013; 18(3): 251-62.
[http://dx.doi.org/10.1177/1074248412467692] [PMID: 23233653]
[9]
Peart JN, Gross ER, Reichelt ME, Hsu A, Headrick JP, Gross GJ. Activation of kappa-opioid receptors at reperfusion affords cardioprotec-tion in both rat and mouse hearts. Basic Res Cardiol 2008; 103(5): 454-63.
[http://dx.doi.org/10.1007/s00395-008-0726-z] [PMID: 18500486]
[10]
Toldo S, Marchetti C, Mauro AG, et al. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial is-chemia-reperfusion in the mouse. Int J Cardiol 2016; 209: 215-20.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.043] [PMID: 26896627]
[11]
Toldo S, Mauro AG, Cutter Z, et al. The NLRP3 inflammasome inhibitor, OLT1177 (dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. J Cardiovasc Pharmacol 2019; 73(4): 215-22.
[http://dx.doi.org/10.1097/FJC.0000000000000658] [PMID: 30747785]
[12]
Piper HM, García-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 1999; 68(5): 1913-9.
[http://dx.doi.org/10.1016/S0003-4975(99)01025-5] [PMID: 10585103]
[13]
Rodríguez-Sinovas A, Cabestrero A, García del Blanco B, Inserte J, García A, García-Dorado D. Intracoronary acid infusion as an alterna-tive to ischemic postconditioning in pigs. Basic Res Cardiol 2009; 104(6): 761-71.
[http://dx.doi.org/10.1007/s00395-009-0032-4] [PMID: 19444371]
[14]
Herzog WR, Vogel RA, Schlossberg ML, Edenbaum LR, Scott HJ, Serebruany VL. Short-term low dose intracoronary diltiazem adminis-tered at the onset of reperfusion reduces myocardial infarct size. Int J Cardiol 1997; 59(1): 21-7.
[http://dx.doi.org/10.1016/S0167-5273(96)02883-5] [PMID: 9080022]
[15]
Lishmanov YB, Maslov LN, Mukhomedzyanov AV. Role of β-adrenoceptors and L-type Ca2+-channels in the mechanism of reperfusion-Induced heart injury. Bull Exp Biol Med 2016; 161(1): 20-3.
[http://dx.doi.org/10.1007/s10517-016-3335-0] [PMID: 27270942]
[16]
Zhang H, Shang W, Zhang X, et al. B-adrenergic-stimulated L-type channel Ca2+ entry mediates hypoxic Ca2+ overload in intact heart. J Mol Cell Cardiol 2013; 65: 51-8.
[http://dx.doi.org/10.1016/j.yjmcc.2013.09.002] [PMID: 24041537]
[17]
Gorbunov AS, Maslov LN, Jaggi AS, et al. Physiological and pathological role of TRPV1, TRPV2 and TRPV4 channels in heart. Curr Cardiol Rev 2019; 15(4): 244-51.
[http://dx.doi.org/10.2174/1573403X15666190307112326] [PMID: 30848206]
[18]
Dong Q, Li J, Wu QF, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep 2017; 7(1): 42678.
[http://dx.doi.org/10.1038/srep42678] [PMID: 28205608]
[19]
Wu QF, Qian C, Zhao N, et al. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomy-ocytes. Cell Death Dis 2017; 8(5)e2828
[http://dx.doi.org/10.1038/cddis.2017.227] [PMID: 28542130]
[20]
Camara AK, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2011; 2: 13.
[http://dx.doi.org/10.3389/fphys.2011.00013] [PMID: 21559063]
[21]
Zhang SZ, Gao Q, Cao CM, Bruce IC, Xia Q. Involvement of the mitochondrial calcium uniporter in cardioprotection by ischemic precon-ditioning. Life Sci 2006; 78(7): 738-45.
[http://dx.doi.org/10.1016/j.lfs.2005.05.076] [PMID: 16150463]
[22]
Cao CM, Yan WY, Liu J, et al. Attenuation of mitochondrial, but not cytosolic, Ca2+ overload reduces myocardial injury induced by is-chemia and reperfusion. Acta Pharmacol Sin 2006; 27(7): 911-8.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00391.x] [PMID: 16787576]
[23]
Salas MA, Valverde CA, Sánchez G, et al. The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol 2010; 48(6): 1298-306.
[http://dx.doi.org/10.1016/j.yjmcc.2009.12.015] [PMID: 20060004]
[24]
Luongo TS, Lambert JP, Yuan A, et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep 2015; 12(1): 23-34.
[http://dx.doi.org/10.1016/j.celrep.2015.06.017] [PMID: 26119731]
[25]
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49(1): 27-47.
[http://dx.doi.org/10.1007/s10863-016-9672-x] [PMID: 27497945]
[26]
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem J 2001; 357(Pt 3): 593-615.
[http://dx.doi.org/10.1042/bj3570593] [PMID: 11463332]
[27]
Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 2015; 6: 20.
[http://dx.doi.org/10.3389/fphys.2015.00020] [PMID: 25741283]
[28]
Brookes P, Darley-Usmar VM. Hypothesis: The mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: An alternative function for cytochrome C oxidase. Free Radic Biol Med 2002; 32(4): 370-4.
[http://dx.doi.org/10.1016/S0891-5849(01)00805-X] [PMID: 11841927]
[29]
Brookes PS. Mitochondrial nitric oxide synthase. Mitochondrion 2004; 3(4): 187-204.
[http://dx.doi.org/10.1016/j.mito.2003.10.001] [PMID: 16120354]
[30]
Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: A review of the evidence. Am J Physiol Heart Circ Physiol 2012; 303(11): H1283-93.
[http://dx.doi.org/10.1152/ajpheart.00674.2011] [PMID: 23023869]
[31]
Jekabsone A, Ivanoviene L, Brown GC, Borutaite V. Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol 2003; 35(7): 803-9.
[http://dx.doi.org/10.1016/S0022-2828(03)00137-8] [PMID: 12818571]
[32]
Radi R, Rodriguez M, Castro L, Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 1994; 308(1): 89-95.
[http://dx.doi.org/10.1006/abbi.1994.1013] [PMID: 8311480]
[33]
Packer MA, Scarlett JL, Martin SW, Murphy MP. Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans 1997; 25(3): 909-14.
[http://dx.doi.org/10.1042/bst0250909] [PMID: 9388571]
[34]
Cohen MV, Downey JM. Cardioprotection: Spotlight on PKG. Br J Pharmacol 2007; 152(6): 833-4.
[http://dx.doi.org/10.1038/sj.bjp.0707453] [PMID: 17876305]
[35]
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117: 76-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.024] [PMID: 29373843]
[36]
Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev 2018; 14(4): 290-300.
[http://dx.doi.org/10.2174/1573403X14666180702152436] [PMID: 29962348]
[37]
Moris D, Spartalis M, Tzatzaki E, et al. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med 2017; 5(16): 324.
[http://dx.doi.org/10.21037/atm.2017.06.17] [PMID: 28861421]
[38]
Hayasaki T, Kaikita K, Okuma T, et al. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myo-cardial ischemia-reperfusion in mice. Circ J 2006; 70(3): 342-51.
[http://dx.doi.org/10.1253/circj.70.342] [PMID: 16501303]
[39]
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies. Annu Rev Pharmacol Toxicol 2017; 57(1): 535-65.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103335] [PMID: 27860548]
[40]
Alkaitis MS, Crabtree MJ. Recoupling the cardiac nitric oxide synthases: Tetrahydrobiopterin synthesis and recycling. Curr Heart Fail Rep 2012; 9(3): 200-10.
[http://dx.doi.org/10.1007/s11897-012-0097-5] [PMID: 22711313]
[41]
Monassier JP. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: Basic considerations. Arch Cardiovasc Dis 2008; 101(7-8): 491-500.
[http://dx.doi.org/10.1016/j.acvd.2008.06.014] [PMID: 18848692]
[42]
Halestrap AP, Richardson AP. The mitochondrial permeability transition: A current perspective on its identity and role in ischae-mia/reperfusion injury. J Mol Cell Cardiol 2015; 78: 129-41.
[http://dx.doi.org/10.1016/j.yjmcc.2014.08.018] [PMID: 25179911]
[43]
Halestrap AP. A pore way to die: The role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 2010; 38(4): 841-60.
[http://dx.doi.org/10.1042/BST0380841] [PMID: 20658967]
[44]
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87(1): 99-163.
[http://dx.doi.org/10.1152/physrev.00013.2006] [PMID: 17237344]
[45]
Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against is-chaemia-reperfusion injury. Cardiovasc Res 2003; 60(3): 617-25.
[http://dx.doi.org/10.1016/j.cardiores.2003.09.025] [PMID: 14659807]
[46]
Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ische-mia/reperfusion injury. Circulation 2010; 121(18): 2012-22.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.906610] [PMID: 20421521]
[47]
Sorimachi H, Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 2012; 96(1): 11-22.
[http://dx.doi.org/10.1093/cvr/cvs157] [PMID: 22542715]
[48]
Khalil PN, Neuhof C, Huss R, et al. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular con-tractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 2005; 528(1-3): 124-31.
[http://dx.doi.org/10.1016/j.ejphar.2005.10.032] [PMID: 16324693]
[49]
Neuhof C, Fabiunk V, Speth M, et al. Reduction of myocardial infarction by postischemic administration of the calpain inhibitor A-705253 in comparison to the Na(+)/H(+) exchange inhibitor Cariporide in isolated perfused rabbit hearts. Biol Chem 2008; 389(12): 1505-12.
[http://dx.doi.org/10.1515/BC.2008.172] [PMID: 18844452]
[50]
Giricz Z, Lalu MM, Csonka C, Bencsik P, Schulz R, Ferdinandy P. Hyperlipidemia attenuates the infarct size-limiting effect of ischemic preconditioning: Role of matrix metalloproteinase-2 inhibition. J Pharmacol Exp Ther 2006; 316(1): 154-61.
[http://dx.doi.org/10.1124/jpet.105.091140] [PMID: 16166272]
[51]
Spániková A, Ivanová M, Matejíková J, Ravingerová T, Barancík M. Influence of ischemia/reperfusion and modulation of PI3K/Akt ki-nase pathway on matrix metalloproteinase-2 in rat hearts. Gen Physiol Biophys 2010; 29(1): 31-40.
[http://dx.doi.org/10.4149/gpb_2010_01_31] [PMID: 20371878]
[52]
Lalu MM, Pasini E, Schulze CJ, et al. Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 2005; 26(1): 27-35.
[http://dx.doi.org/10.1093/eurheartj/ehi007] [PMID: 15615796]
[53]
Li SJ, Wu YN, Kang Y, et al. Noninvasive limb ischemic preconditioning protects against myocardial I/R injury in rats. J Surg Res 2010; 164(1): 162-8.
[http://dx.doi.org/10.1016/j.jss.2009.03.017] [PMID: 19726056]
[54]
Bencsik P, Pálóczi J, Kocsis GF, et al. Moderate inhibition of myocardial matrix metalloproteinase-2 by ilomastat is cardioprotective. Pharmacol Res 2014; 80: 36-42.
[http://dx.doi.org/10.1016/j.phrs.2013.12.007] [PMID: 24380772]
[55]
Bell RM, Kunuthur SP, Hendry C, Bruce-Hickman D, Davidson S, Yellon DM. Matrix metalloproteinase inhibition protects CyPD knock-out mice independently of RISK/mPTP signalling: A parallel pathway to protection. Basic Res Cardiol 2013; 108(2): 331.
[http://dx.doi.org/10.1007/s00395-013-0331-7] [PMID: 23361433]
[56]
Methner C, Donat U, Felix SB, Krieg T. Cardioprotection of bradykinin at reperfusion involves transactivation of the epidermal growth factor receptor via matrix metalloproteinase-8. Acta Physiol (Oxf) 2009; 197(4): 265-71.
[http://dx.doi.org/10.1111/j.1748-1716.2009.02018.x] [PMID: 19583703]
[57]
Griffin MO, Jinno M, Miles LA, Villarreal FJ. Reduction of myocardial infarct size by doxycycline: A role for plasmin inhibition. Mol Cell Biochem 2005; 270(1-2): 1-11.
[http://dx.doi.org/10.1007/s11010-005-2540-3] [PMID: 15792348]
[58]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature committee on cell death 2018. Cell Death Differ 2018; 25(3): 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[59]
Arslan F, Smeets MB, O’Neill LA, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 2010; 121(1): 80-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.880187] [PMID: 20026776]
[60]
Volz HC, Buss SJ, Li J, et al. Autoimmunity against cardiac troponin I in ischaemia reperfusion injury. Eur J Heart Fail 2011; 13(10): 1052-9.
[http://dx.doi.org/10.1093/eurjhf/hfr098] [PMID: 21816762]
[61]
Parameswaran S, Sharma RK. Ischemia and reperfusion induce differential expression of calpastatin and its homologue high molecular weight calmodulin-binding protein in murine cardiomyocytes. PLoS One 2014; 9(12)e114653
[http://dx.doi.org/10.1371/journal.pone.0114653] [PMID: 25486053]
[62]
Ruiz-Meana M, García-Dorado D. Translational cardiovascular medicine (II). Pathophysiology of ischemia-reperfusion injury: New thera-peutic options for acute myocardial infarction. Rev Esp Cardiol 2009; 62(2): 199-209.
[http://dx.doi.org/10.1016/S0300-8932(09)70162-9] [PMID: 19232193]
[63]
Okada T, Otani H, Wu Y, et al. Role of F-actin organization in p38 MAP kinase-mediated apoptosis and necrosis in neonatal rat cardio-myocytes subjected to simulated ischemia and reoxygenation. Am J Physiol Heart Circ Physiol 2005; 289(6): H2310-8.
[http://dx.doi.org/10.1152/ajpheart.00462.2005] [PMID: 16040713]
[64]
Li M, Beg AA. Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: Novel mechanism for killing virus-infected cells. J Virol 2000; 74(16): 7470-7.
[http://dx.doi.org/10.1128/JVI.74.16.7470-7477.2000] [PMID: 10906200]
[65]
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005; 1(2): 112-9.
[http://dx.doi.org/10.1038/nchembio711] [PMID: 16408008]
[66]
Chen D, Yu J, Zhang L. Necroptosis: An alternative cell death program defending against cancer. Biochim Biophys Acta 2016; 1865(2): 228-36.
[http://dx.doi.org/10.1016/j.bbcan.2016.03.003] [PMID: 26968619]
[67]
Zhang J, Zhang H, Li J, et al. RIP1-mediated regulation of lymphocyte survival and death responses. Immunol Res 2011; 51(2-3): 227-36.
[http://dx.doi.org/10.1007/s12026-011-8249-3] [PMID: 22038529]
[68]
Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ 2017; 24(7): 1184-95.
[http://dx.doi.org/10.1038/cdd.2017.65] [PMID: 28498367]
[69]
Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC. The cardioprotective effect of necrostatin requires the cyclophilin-D compo-nent of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 2007; 21(6): 467-9.
[http://dx.doi.org/10.1007/s10557-007-6067-6] [PMID: 17965927]
[70]
Koudstaal S, Oerlemans MI, Van der Spoel TI, et al. Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur J Clin Invest 2015; 45(2): 150-9.
[http://dx.doi.org/10.1111/eci.12391] [PMID: 25496079]
[71]
Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26(4): 239-57.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[72]
Vinten-Johansen J, Lefer DJ, Nakanishi K, Johnston WE, Brian CA, Cordell AR. Controlled coronary hydrodynamics at the time of reper-fusion reduces post ischemic injury. Coron Artery Dis 1992; 3(11): 1081-93.
[http://dx.doi.org/10.1097/00019501-199211000-00012]
[73]
Koshinuma S, Miyamae M, Kaneda K, Kotani J, Figueredo VM. Combination of necroptosis and apoptosis inhibition enhances cardiopro-tection against myocardial ischemia-reperfusion injury. J Anesth 2014; 28(2): 235-41.
[http://dx.doi.org/10.1007/s00540-013-1716-3] [PMID: 24113863]
[74]
Sciarretta S, Maejima Y, Zablocki D, Sadoshima J. The role of autophagy in the heart. Annu Rev Physiol 2018; 80(1): 1-26.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121427] [PMID: 29068766]
[75]
Shintani T, Klionsky DJ. Autophagy in health and disease: A double-edged sword. Science 2004; 306(5698): 990-5.
[http://dx.doi.org/10.1126/science.1099993] [PMID: 15528435]
[76]
Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90(4): 1383-435.
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
[77]
Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 2011; 6(6)e20975
[http://dx.doi.org/10.1371/journal.pone.0020975] [PMID: 21687634]
[78]
Sala-Mercado JA, Wider J, Undyala VV, et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardi-al ischemia-reperfusion injury. Circulation 2010; 122(11)(Suppl.): S179-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.928242] [PMID: 20837911]
[79]
Singh KK, Yanagawa B, Quan A, et al. Autophagy gene fingerprint in human ischemia and reperfusion. J Thorac Cardiovasc Surg 2014; 147(3): 1065-1072.e1.
[http://dx.doi.org/10.1016/j.jtcvs.2013.04.042] [PMID: 23778083]
[80]
Gedik N, Thielmann M, Kottenberg E, et al. No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS One 2014; 9(5)e96567
[http://dx.doi.org/10.1371/journal.pone.0096567] [PMID: 24797938]
[81]
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 2015; 265(1): 130-42.
[http://dx.doi.org/10.1111/imr.12287] [PMID: 25879289]
[82]
Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol 2001; 9(3): 113-4.
[http://dx.doi.org/10.1016/S0966-842X(00)01936-3] [PMID: 11303500]
[83]
Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 2006; 8(11): 1812-25.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00751.x] [PMID: 16824040]
[84]
Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018; 315(6): H1553-68.
[http://dx.doi.org/10.1152/ajpheart.00158.2018] [PMID: 30168729]
[85]
Zuurbier CJ, Abbate A, Cabrera-Fuentes HA, et al. Innate immunity as a target for acute cardioprotection. Cardiovasc Res 2019; 115(7): 1131-42.
[http://dx.doi.org/10.1093/cvr/cvy304] [PMID: 30576455]
[86]
Bracey NA, Beck PL, Muruve DA, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β. Exp Physiol 2013; 98(2): 462-72.
[http://dx.doi.org/10.1113/expphysiol.2012.068338] [PMID: 22848083]
[87]
Sandanger Ø, Gao E, Ranheim T, et al. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem Biophys Res Commun 2016; 469(4): 1012-20.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.051] [PMID: 26706279]
[88]
Yang XM, Downey JM, Cohen MV, Housley NA, Alvarez DF, Audia JP. The highly selective caspase-1 inhibitor VX-765 provides addi-tive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor. J Cardiovasc Pharmacol Ther 2017; 22(6): 574-8.
[http://dx.doi.org/10.1177/1074248417702890] [PMID: 28399648]
[89]
Audia JP, Yang XM, Crockett ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 2018; 113(5): 32.
[http://dx.doi.org/10.1007/s00395-018-0692-z] [PMID: 29992382]
[90]
Xie Y, Hou W, Song X, et al. Ferroptosis: Process and function. Cell Death Differ 2016; 23(3): 369-79.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[91]
Dobsák P, Siegelova J, Wolf JE, et al. Prevention of apoptosis by deferoxamine during 4 hours of cold cardioplegia and reperfusion: In vitro study of isolated working rat heart model. Pathophysiology 2002; 9(1): 27-32.
[http://dx.doi.org/10.1016/S0928-4680(02)00054-8] [PMID: 12385962]
[92]
Paraskevaidis IA, Iliodromitis EK, Vlahakos D, et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: Immediate and long-term significance. Eur Heart J 2005; 26(3): 263-70.
[http://dx.doi.org/10.1093/eurheartj/ehi028] [PMID: 15618054]
[93]
Chatziathanasiou GN, Nikas DN, Katsouras CS, et al. Combined intravenous treatment with ascorbic acid and desferrioxamine to reduce myocardial reperfusion injury in an experimental model resembling the clinical setting of primary PCI. Hellenic J Cardiol 2012; 53(3): 195-204.
[PMID: 22653244]
[94]
Kawada T, Akiyama T, Li M, et al. Acute arterial baroreflex-mediated changes in plasma catecholamine concentrations in a chronic rat model of myocardial infarction. Physiol Rep 2016; 4(15)e12880
[http://dx.doi.org/10.14814/phy2.12880] [PMID: 27495297]
[95]
Luo D, Hu H, Qin Z, et al. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a ca-nine model of acute heart failure post-myocardial infarction. Auton Neurosci 2017; 208: 73-9.
[http://dx.doi.org/10.1016/j.autneu.2017.09.013] [PMID: 28941985]
[96]
Fukui Y, Nozawa T, Ihori H, et al. Nicorandil attenuates ischemia-reperfusion injury via inhibition of norepinephrine release from cardiac sympathetic nerve terminals. Int Heart J 2017; 58(5): 787-93.
[http://dx.doi.org/10.1536/ihj.16-391] [PMID: 28966311]
[97]
Minatoguchi S, Uno Y, Kariya T, et al. Cross-talk among noradrenaline, adenosine and protein kinase C in the mechanisms of ischemic preconditioning in rabbits. J Cardiovasc Pharmacol 2003; 41(Suppl. 1): S39-47.
[PMID: 12688395]
[98]
Schäfer U, Kurz T, Jain D, et al. Impaired coronary flow and left ventricular dysfunction after mechanical recanalization in acute myocar-dial infarction: Role of neurohumoral activation? Basic Res Cardiol 2002; 97(5): 399-408.
[http://dx.doi.org/10.1007/s003950200049] [PMID: 12200640]
[99]
Stubbs PJ, Laycock J, Alaghband-Zadeh J, Carter G, Noble MI. Circulating stress hormone and insulin concentrations in acute coronary syndromes: Identification of insulin resistance on admission. Clin Sci (Lond) 1999; 96(6): 589-95.
[http://dx.doi.org/10.1042/CS19980350] [PMID: 10334964]
[100]
Johansson PI, Bro-Jeppesen J, Kjaergaard J, Wanscher M, Hassager C, Ostrowski SR. Sympathoadrenal activation and endothelial damage are inter correlated and predict increased mortality in patients resuscitated after out-of-hospital cardiac arrest. a post Hoc sub-study of pa-tients from the TTM-trial. PLoS One 2015; 10(3)e0120914
[http://dx.doi.org/10.1371/journal.pone.0120914] [PMID: 25789868]
[101]
Reimer KA, Rasmussen MM, Jennings RB. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlu-sion in dogs. Circ Res 1973; 33(3): 353-63.
[http://dx.doi.org/10.1161/01.RES.33.3.353] [PMID: 4746723]
[102]
Ishikawa I, Hollenberg NK. Blockade of the systemic and renal vascular actions of angiotensisn II with the 1-sar, 8-ala analogue in the rat. Life Sci 1975; 17(1): 121-9.
[http://dx.doi.org/10.1016/0024-3205(75)90247-7] [PMID: 1143005]
[103]
MacLean MR, Randall MD, Hiley CR. Effects of moderate hypoxia, hypercapnia and acidosis on haemodynamic changes induced by endothelin-1 in the pithed rat. Br J Pharmacol 1989; 98(3): 1055-65.
[http://dx.doi.org/10.1111/j.1476-5381.1989.tb14638.x] [PMID: 2511990]
[104]
Yang XP, Madeddu P, Micheletti R, et al. Effects of intravenous endothelin on hemodynamics and cardiac contractility in conscious Milan normotensive rats. J Cardiovasc Pharmacol 1991; 17(4): 662-9.
[http://dx.doi.org/10.1097/00005344-199104000-00021] [PMID: 1711636]
[105]
Ibarra-Lara L, Sánchez-Aguilar M, Sánchez-Mendoza A, et al. Fenofibrate therapy restores antioxidant protection and improves myocar-dial insulin resistance in a rat model of metabolic syndrome and myocardial ischemia: The role of angiotensin II. Molecules 2016; 22(1)E31
[http://dx.doi.org/10.3390/molecules22010031] [PMID: 28036029]
[106]
Hadi NR, Al-Amran FG, Hussien YA, Al-Yasiri IK, Al-Turfy M. The cardioprotective potential of valsartan in myocardial ischaemia reperfusion injury. Cent Eur J Immunol 2015; 40(2): 159-66.
[http://dx.doi.org/10.5114/ceji.2015.52829] [PMID: 26557029]
[107]
Di Pasquale P, Paterna S, Parrinello G, et al. Captopril does not affect plasma endothelin-1 during thrombolysis and reperfusion. Int J Cardiol 1995; 51(2): 131-5.
[http://dx.doi.org/10.1016/0167-5273(95)02418-V] [PMID: 8522408]
[108]
Homma S, Kimura T, Sakai S, et al. Calcitonin gene-related peptide protects the myocardium from ischemia induced by endothelin-1: Intravital microscopic observation and (31)P-MR spectroscopic studies. Life Sci 2014; 118(2): 248-54.
[http://dx.doi.org/10.1016/j.lfs.2014.02.024] [PMID: 24607775]
[109]
Singh AD, Amit S, Kumar OS, Rajan M, Mukesh N. Cardioprotective effects of bosentan, a mixed endothelin type A and B receptor antag-onist, during myocardial ischaemia and reperfusion in rats. Basic Clin Pharmacol Toxicol 2006; 98(6): 604-10.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_405.x] [PMID: 16700825]
[110]
Matzinger P. The danger model: A renewed sense of self. Science 2002; 296(5566): 301-5.
[http://dx.doi.org/10.1126/science.1071059] [PMID: 11951032]
[111]
Vilahur G, Badimon L. Ischemia/reperfusion activates myocardial innate immune response: The key role of the toll-like receptor. Front Physiol 2014; 5: 496.
[http://dx.doi.org/10.3389/fphys.2014.00496] [PMID: 25566092]
[112]
Faure E, Equils O, Sieling PA, et al. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 2000; 275(15): 11058-63.
[http://dx.doi.org/10.1074/jbc.275.15.11058] [PMID: 10753909]
[113]
Frantz S, Kobzik L, Kim YD, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 1999; 104(3): 271-80.
[http://dx.doi.org/10.1172/JCI6709] [PMID: 10430608]
[114]
Brikos C, O’Neill LA. Signalling of toll-like receptors. Handb Exp Pharmacol 2008; 183(183): 21-50.
[http://dx.doi.org/10.1007/978-3-540-72167-3_2] [PMID: 18071653]
[115]
Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm 2010; 2010704202
[http://dx.doi.org/10.1155/2010/704202] [PMID: 20628516]
[116]
Lin L, Knowlton AA. Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci 2014; 100(1): 1-8.
[http://dx.doi.org/10.1016/j.lfs.2014.01.062] [PMID: 24486305]
[117]
Sakata Y, Dong JW, Vallejo JG, et al. Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2007; 292(1): H503-9.
[http://dx.doi.org/10.1152/ajpheart.00642.2006] [PMID: 16980352]
[118]
Favre J, Musette P, Douin-Echinard V, et al. Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol 2007; 27(5): 1064-71.
[http://dx.doi.org/10.1161/ATVBAHA.107.140723] [PMID: 17332486]
[119]
Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 2006; 72(3): 384-93.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.011] [PMID: 17054926]
[120]
Timmers L, Sluijter JP, van Keulen JK, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 2008; 102(2): 257-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158220] [PMID: 18007026]
[121]
Vilahur G, Juan-Babot O, Peña E, Oñate B, Casaní L, Badimon L. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol 2011; 50(3): 522-33.
[http://dx.doi.org/10.1016/j.yjmcc.2010.12.021] [PMID: 21219908]
[122]
Ferrari JP, Lueneberg ME, da Silva RL, Fattah T, Gottschall CAM, Moreira DM. Correlation between leukocyte count and infarct size in ST segment elevation myocardial infarction. Arch Med Sci Atheroscler Dis 2016; 1(1): e44-8.
[http://dx.doi.org/10.5114/amsad.2016.60759] [PMID: 28905018]
[123]
Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR. Reduction of the extent of ischemic myocardial injury by neu-trophil depletion in the dog. Circulation 1983; 67(5): 1016-23.
[http://dx.doi.org/10.1161/01.CIR.67.5.1016] [PMID: 6831665]
[124]
Todd RF III, Nadler LM, Schlossman SF. Antigens on human monocytes identified by monoclonal antibodies. J Immunol 1981; 126(4): 1435-42.
[PMID: 6937561]
[125]
Simpson PJ, Todd RF III, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 1988; 81(2): 624-9.
[http://dx.doi.org/10.1172/JCI113364] [PMID: 3339135]
[126]
Simpson PJ, Todd RF III, Mickelson JK, et al. Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function. Circulation 1990; 81(1): 226-37.
[http://dx.doi.org/10.1161/01.CIR.81.1.226] [PMID: 2153476]
[127]
Jordan JE, Zhao ZQ, Sato H, Taft S, Vinten-Johansen J. Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neu-trophil accumulation, superoxide generation and coronary endothelial adherence. J Pharmacol Exp Ther 1997; 280(1): 301-9.
[PMID: 8996210]
[128]
Xu X, Zheng S, Xiong Y, et al. Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 re-ceptor-p38 pathway. Inflamm Res 2017; 66(4): 353-64.
[http://dx.doi.org/10.1007/s00011-016-1021-3] [PMID: 28074216]
[129]
Vasilyev N, Williams T, Brennan ML, et al. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 2005; 112(18): 2812-20.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.542340] [PMID: 16267254]
[130]
Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285(2): H579-88.
[http://dx.doi.org/10.1152/ajpheart.01064.2002] [PMID: 12860564]
[131]
Ali M, Pulli B, Courties G, et al. Myeloperoxidase inhibition improves ventricular function and remodeling afterexperimental myocardial infarction. JACC Basic Transl Sci 2016; 1(7): 633-43.
[http://dx.doi.org/10.1016/j.jacbts.2016.09.004] [PMID: 30167547]
[132]
van Hout GP, van Solinge WW, Gijsberts CM, et al. Elevated mean neutrophil volume represents altered neutrophil composition and re-flects damage after myocardial infarction. Basic Res Cardiol 2015; 110(6): 58.
[http://dx.doi.org/10.1007/s00395-015-0513-6] [PMID: 26467178]
[133]
Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F. HALT-MI Investigators The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: The results of the HALT-MI study. J Am Coll Cardiol 2002; 40(7): 1199-204.
[http://dx.doi.org/10.1016/S0735-1097(02)02136-8] [PMID: 12383565]
[134]
Luedike P, Hendgen-Cotta UB, Sobierajski J, et al. Cardioprotection through S-nitros(yl)ation of macrophage migration inhibitory factor. Circulation 2012; 125(15): 1880-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.069104] [PMID: 22415145]
[135]
Koga K, Kenessey A, Powell SR, Sison CP, Miller EJ, Ojamaa K. Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress. Antioxid Redox Signal 2011; 14(7): 1191-202.
[http://dx.doi.org/10.1089/ars.2010.3163] [PMID: 20831446]
[136]
Qi D, Hu X, Wu X, et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ische-mia/reperfusion. J Clin Invest 2009; 119(12): 3807-16.
[http://dx.doi.org/10.1172/JCI39738] [PMID: 19920350]
[137]
Dai Y, Wang S, Chang S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol 2020; 142: 65-79.
[http://dx.doi.org/10.1016/j.yjmcc.2020.02.007] [PMID: 32087217]
[138]
Yang Z, Day YJ, Toufektsian MC, et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 2006; 114(19): 2056-64.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.649244] [PMID: 17060376]
[139]
Boag SE, Andreano E, Spyridopoulos I. Lymphocyte communication in myocardial ischemia/reperfusion injury. Antioxid Redox Signal 2017; 26(12): 660-75.
[http://dx.doi.org/10.1089/ars.2016.6940] [PMID: 28006953]
[140]
Ault KA, Cannon CP, Mitchell J, et al. Platelet activation in patients after an acute coronary syndrome: Results from the TIMI-12 trial. Thrombolysis in myocardial infarction. J Am Coll Cardiol 1999; 33(3): 634-9.
[http://dx.doi.org/10.1016/S0735-1097(98)00635-4] [PMID: 10080462]
[141]
Langford EJ, Wainwright RJ, Martin JF. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler Thromb Vasc Biol 1996; 16(1): 51-5.
[http://dx.doi.org/10.1161/01.ATV.16.1.51] [PMID: 8548426]
[142]
Mirabet M, Garcia-Dorado D, Inserte J, et al. Platelets activated by transient coronary occlusion exacerbate ischemia-reperfusion injury in rat hearts. Am J Physiol Heart Circ Physiol 2002; 283(3): H1134-41.
[http://dx.doi.org/10.1152/ajpheart.00065.2002] [PMID: 12181144]
[143]
Kingma JG Jr, Plante S, Bogaty P. Platelet GPIIb/IIIa receptor blockade reduces infarct size in a canine model of ischemia-reperfusion. J Am Coll Cardiol 2000; 36(7): 2317-24.
[http://dx.doi.org/10.1016/S0735-1097(00)01016-0] [PMID: 11127479]
[144]
Kunichika H, Ben-Yehuda O, Lafitte S, Kunichika N, Peters B, DeMaria AN. Effects of glycoprotein IIb/IIIa inhibition on microvascular flow after coronary reperfusion. A quantitative myocardial contrast echocardiography study. J Am Coll Cardiol 2004; 43(2): 276-83.
[http://dx.doi.org/10.1016/j.jacc.2003.08.040] [PMID: 14736449]
[145]
Cohen MV, Downey JM. Combined cardioprotectant and antithrombotic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: Just what the doctor ordered. J Cardiovasc Pharmacol Ther 2014; 19(2): 179-90.
[http://dx.doi.org/10.1177/1074248413508465] [PMID: 24298192]
[146]
Cohen MV, Downey JM. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardiopro-tective interventions. Basic Res Cardiol 2017; 112(6): 64.
[http://dx.doi.org/10.1007/s00395-017-0653-y] [PMID: 28952016]
[147]
Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol 2015; 35(8): 1805-14.
[http://dx.doi.org/10.1161/ATVBAHA.115.305655] [PMID: 26044583]
[148]
Cohen MV, Yang X-M, White J, Yellon DM, Bell RM, Downey JM. Cangrelor-mediated cardioprotection requires platelets and sphingo-sine phosphorylation. Cardiovasc Drugs Ther 2016; 30(2): 229-32.
[http://dx.doi.org/10.1007/s10557-015-6633-2] [PMID: 26780906]
[149]
Knapp M. Cardioprotective role of sphingosine-1-phosphate. J Physiol Pharmacol 2011; 62(6): 601-7.
[PMID: 22314562]
[150]
Kelly-Laubscher RF, King JC, Hacking D, et al. Cardiac preconditioning with sphingosine-1-phosphate requires activation of signal trans-ducer and activator of transcription-3. Cardiovasc J S Afr 2014; 25(3): 118-23.
[http://dx.doi.org/10.5830/CVJA-2014-016] [PMID: 25000441]
[151]
Fang R, Zhang LL, Zhang LZ, Li W, Li M, Wen K. Sphingosine 1-phosphate postconditioning protects against myocardial ische-mia/reperfusion injury in rats via mitochondrial signaling and Akt-Gsk3β phosphorylation. Arch Med Res 2017; 48(2): 147-55.
[http://dx.doi.org/10.1016/j.arcmed.2017.03.013] [PMID: 28625317]
[152]
Ferrari R, Balla C, Malagù M, et al. Reperfusion damage - a story of success, failure, and hope. Circ J 2017; 81(2): 131-41.
[http://dx.doi.org/10.1253/circj.CJ-16-1124] [PMID: 27941300]
[153]
Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E. Ischemia/reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists. Mediators Inflamm 2017; 20177018393
[http://dx.doi.org/10.1155/2017/7018393] [PMID: 28286377]
[154]
Kaljusto ML, Stensløkken KO, Mori T, et al. Preconditioning effects of steroids and hyperoxia on cardiac ischemia-reperfusion injury and vascular reactivity. Eur J Cardiothorac Surg 2008; 33(3): 355-63.
[http://dx.doi.org/10.1016/j.ejcts.2007.12.017] [PMID: 18221880]
[155]
Sun W, Lu H, Lyu L, et al. Gastrodin ameliorates microvascular reperfusion injury-induced pyroptosis by regulating the NLRP3/caspase-1 pathway. J Physiol Biochem 2019; 75(4): 531-47.
[http://dx.doi.org/10.1007/s13105-019-00702-7] [PMID: 31440987]
[156]
Gollmann-Tepeköylü C, Graber M, Pölzl L, et al. Toll-like receptor 3 mediates ischaemia/reperfusion injury after cardiac transplantation. Eur J Cardiothorac Surg 2020; 57(5): 826-35.
[http://dx.doi.org/10.1093/ejcts/ezz383] [PMID: 32040169]
[157]
Zhen W, Hui D, Wenying S, Yulong S. MicroRNA-20b-5p regulates propofol-preconditioning-induced inhibition of autophagy in hypoxia-and-reoxygenation-stimulated endothelial cells. J Biosci 2020; 45(1): 35.
[http://dx.doi.org/10.1007/s12038-020-9998-8] [PMID: 32098914]
[158]
Araibi H, van der Merwe E, Gwanyanya A, Kelly-Laubscher R. The effect of sphingosine-1-phosphate on the endothelial glycocalyx dur-ing ischemia-reperfusion injury in the isolated rat heart. Microcirculation 2020; 27(5)e12612
[http://dx.doi.org/10.1111/micc.12612] [PMID: 32017300]
[159]
Wit AL, Janse MJ. Reperfusion arrhythmias and sudden cardiac death: A century of progress toward an understanding of the mechanisms. Circ Res 2001; 89(9): 741-3.
[http://dx.doi.org/10.1161/res.89.9.741] [PMID: 11679400]
[160]
Schwartz PJ, Stone HL. Left stellectomy in the prevention of ventricular fibrillation caused by acute myocardial ischemia in conscious dogs with anterior myocardial infarction Circulation 1980; 62(61): 1256-65.
[http://dx.doi.org/10.1161/01.CIR.62.6.1256]
[161]
Bernier M, Hearse DJ, Manning AS. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free radical” interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 1986; 58(3): 331-40.
[http://dx.doi.org/10.1161/01.RES.58.3.331] [PMID: 3087653]
[162]
Lubbe WF, Podzuweit T, Opie LH. Potential arrhythmogenic role of cyclic adenosine monophosphate (AMP) and cytosolic calcium over-load: Implications for prophylactic effects of beta-blockers in myocardial infarction and proarrhythmic effects of phosphodiesterase in-hibitors. J Am Coll Cardiol 1992; 19(7): 1622-33.
[http://dx.doi.org/10.1016/0735-1097(92)90629-2] [PMID: 1350597]
[163]
Rosen MR. Cardiac arrhythmias and antiarrhythmic drugs: Recent advances in our understanding of mechanism. J Cardiovasc Electrophysiol 1995; 6(10 Pt 2): 868-79.
[http://dx.doi.org/10.1111/j.1540-8167.1995.tb00363.x] [PMID: 8548108]
[164]
Dhein S, Schott M, Gottwald E, Müller A, Klaus W. The contribution of neutrophils to reperfusion arrhythmias and a possible role for antiadhesive pharmacological substances. Cardiovasc Res 1995; 30(6): 881-8.
[http://dx.doi.org/10.1016/S0008-6363(95)00131-X] [PMID: 8746202]
[165]
Antoons G, Willems R, Sipido KR. Alternative strategies in arrhythmia therapy: Evaluation of Na/Ca exchange as an anti-arrhythmic target. Pharmacol Ther 2012; 134(1): 26-42.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.001] [PMID: 22197992]
[166]
van der Weg K, Prinzen FW, Gorgels AP. Editor’s choice- reperfusion cardiac arrhythmias and their relation to reperfusion-induced cell death. Eur Heart J Acute Cardiovasc Care 2019; 8(2): 142-52.
[http://dx.doi.org/10.1177/2048872618812148] [PMID: 30421619]
[167]
Dohi T, Maehara A, Brener SJ, et al. Utility of peak creatine kinase-MB measurements in predicting myocardial infarct size, left ventricular dysfunction, and outcome after first anterior wall acute myocardial infarction (from the INFUSE-AMI trial). Am J Cardiol 2015; 115(5): 563-70.
[http://dx.doi.org/10.1016/j.amjcard.2014.12.008] [PMID: 25586335]
[168]
Heusch G. Coronary microvascular obstruction: The new frontier in cardioprotection. Basic Res Cardiol 2019; 114(6): 45.
[http://dx.doi.org/10.1007/s00395-019-0756-8] [PMID: 31617010]
[169]
Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 1974; 54(6): 1496-508.
[http://dx.doi.org/10.1172/JCI107898] [PMID: 4140198]
[170]
Loke KE, Woodman OL. Preconditioning improves myocardial function and reflow, but not vasodilator reactivity, after ischaemia and reperfusion in anaesthetized dogs. Clin Exp Pharmacol Physiol 1998; 25(7-8): 552-8.
[http://dx.doi.org/10.1111/j.1440-1681.1998.tb02250.x] [PMID: 9673427]
[171]
Haiyun L, Yijia L, Honggang L, Honghai W. Protective effect of total flavones from Elsholtzia blanda (TFEB) on myocardial ischemia induced by coronary occlusion in canines. J Ethnopharmacol 2004; 94(1): 101-7.
[http://dx.doi.org/10.1016/j.jep.2004.04.016] [PMID: 15261969]
[172]
Cecchi E, Liotta AA, Gori AM, et al. Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocar-dial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol 2009; 134(2): 189-94.
[http://dx.doi.org/10.1016/j.ijcard.2008.01.039] [PMID: 18495262]
[173]
Ming X, Tongshen W, Delin W, Ronghua Z. Cardioprotective effect of the compound yangshen granule in rat models with acute myocardi-al infarction. Evid Based Complement Alternat Med 2012; 2012717123
[http://dx.doi.org/10.1155/2012/717123] [PMID: 22474518]
[174]
Sundaram V, Rothnie K, Bloom C, et al. Impact of comorbidities on peak troponin levels and mortality in acute myocardial infarction. Heart 2020; 106(9): 677-85.
[http://dx.doi.org/10.1136/heartjnl-2019-315844] [PMID: 32102896]
[175]
Koechlin L, Boeddinghaus J, Nestelberger T, et al. Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. Am Heart J 2021; 242: 132-7.
[http://dx.doi.org/10.1016/j.ahj.2021.08.008] [PMID: 34508692]
[176]
Schneider U, Mukharyamov M, Beyersdorf F, et al. The value of perioperative biomarker release for the assessment of myocardial injury or infarction in cardiac surgery. Eur J Cardiothorac Surg 2021.ezab493 Online ahead of print
[http://dx.doi.org/10.1093/ejcts/ezab493] [PMID: 34791135]
[177]
Leung SW, Charnigo RJ, Ratajczak T, et al. End-systolic circumferential strain derived from cardiac magnetic resonance feature-tracking as a predictor of functional recovery in patients with ST-segment elevation myocardial infarction. J Magn Reson Imaging 2021; 54(6): 2000-3.
[http://dx.doi.org/10.1002/jmri.27772] [PMID: 34110672]
[178]
Jensch PJ, Stiermaier T, Reinstadler SJ, et al. Prognostic relevance of peri-infarct zone measured by cardiovascular magnetic resonance in patients with ST-segment elevation myocardial infarction. Int J Cardiol 2021. S0167-5273(21): 01785-X. Online ahead of
[http://dx.doi.org/10.1016/j.ijcard.2021.11.017] [PMID: 34767896]
[179]
McCartney PJ, Berry C. Redefining successful primary PCI. Eur Heart J Cardiovasc Imaging 2019; 20(2): 133-5.
[http://dx.doi.org/10.1093/ehjci/jey159] [PMID: 30476011]
[180]
Basir MB, Lemor A, Gorgis S, et al. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv 2021. Online ahead of print
[http://dx.doi.org/10.1002/ccd.29895] [PMID: 34343409]
[181]
Garcia S, Schmidt CW, Garberich R, et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003-2018. Catheter Cardiovasc Interv 2021; 97(6): 1109-17.
[http://dx.doi.org/10.1002/ccd.28901] [PMID: 32294799]
[182]
Sambola A, Elola FJ, Buera I, et al. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur J Clin Invest 2021; 51(7)e13526
[http://dx.doi.org/10.1111/eci.13526] [PMID: 33621347]
[183]
Liakopoulos OJ, Schlachtenberger G, Wendt D, et al. Early clinical outcomes of surgical myocardial revascularization for acute coronary syndromes complicated by cardiogenic shock: A Report from the North-Rhine-Westphalia surgical myocardial infarction registry. J Am Heart Assoc 2019; 8(10)e012049
[http://dx.doi.org/10.1161/JAHA.119.012049] [PMID: 31070076]
[184]
Alekseeva YV, Vyshlov EV, Pavlyukova EN, Ussov VY, Markov VA, Ryabov VV. Impact of microvascular injury various types on function of left ventricular in patients with primary myocardial infarction with ST segment elevation. Kardiologiia 2021; 61(5): 23-31.
[http://dx.doi.org/10.18087/cardio.2021.5.n1500] [PMID: 34112072]
[185]
de Waha S, Patel MR, Granger CB, et al. Relationship between microvascular obstruction and adverse events following primary percutane-ous coronary intervention for ST-segment elevation myocardial infarction: An individual patient data pooled analysis from seven random-ized trials. Eur Heart J 2017; 38(47): 3502-10.
[http://dx.doi.org/10.1093/eurheartj/ehx414] [PMID: 29020248]
[186]
Xie ZJ, Xin SL, Chang C, et al. Combined glycoprotein IIb/IIIa inhibitor therapy with ticagrelor for patients with acute coronary syndrome. PLoS One 2021; 16(2)e0246166
[http://dx.doi.org/10.1371/journal.pone.0246166] [PMID: 33529262]
[187]
Shitole SG, Srinivas V, Berkowitz JL, et al. Hyperglycaemia, adverse outcomes and impact of intravenous insulin therapy in patients pre-senting with acute ST-elevation myocardial infarction in a socioeconomically disadvantaged urban setting: The Montefiore STEMI Regis-try. Endocrinol Diabetes Metab 2019; 3(1)e00089
[http://dx.doi.org/10.1002/edm2.89] [PMID: 31922020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy