Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

FLG Gene Mutation Up-regulates the Abnormal Tumor Immune Response and Promotes the Progression of Prostate Cancer

Author(s): Peng Zhang, Zesheng An, Changhai Sun, Yong Xu* and Zhihong Zhang*

Volume 23, Issue 14, 2022

Published on: 22 August, 2022

Page: [1658 - 1670] Pages: 13

DOI: 10.2174/1389201023666220413092507

Price: $65

Abstract

Background: Prostate Cancer (PCa) ranks sixth with regard to the cause of cancerinduced male diseases worldwide, and inflammation is closely associated with its morbidity, deterioration, and prognosis. Tumor Mutation Burden (TMB) is identified to be the most common biomarker for the prediction of immunotherapy. But it is still unclear about the relationship of gene mutations in PCa with TMB and immune response.

Objectives: To study the relationship between gene mutation and anti-tumor immune response in the prostate cancer tumor microenvironment.

Methods: In the present work, the PCa somatic mutation data were collected from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) datasets.

Results: As a result, 8 genes with high mutation frequency, including TP53, PTEN, TTN, FLG, CTNNB1, SPOP, MUC16, and KMT2C, were discovered to be covered by 4 cohorts from the United States, Canada, the United Kingdom, and China. Overall, the FLG mutation was related to a greater TMB, which predicted the dismal prognostic outcome. Besides, the CIBERSORT algorithm and Gene Set Enrichment Analysis (GSEA) were adopted for analysis, which revealed that FLG mutation remarkably promoted immune response in the context of PCa and accelerated cancer development. To sum up, FLG shows a high mutation frequency in PCa, and is related to the increase in TMB, up-regulation of abnormal immune responses in tumors, and promotion of tumor progression.

Conclusion: Therefore, it may be used as a biomarker to predict the abnormal immune responses and provide a therapeutic target for immunotherapy in the treatment of PCa.

Keywords: FLG, tumor mutation burden, tumor infiltrating immune cells, tumor immunity, cibersort, prostate cancer, TCGA, ICGC.

[1]
Baade, P.D.; Youlden, D.R.; Krnjacki, L.J. International epidemiology of prostate cancer: Geographical distribution and secular trends. Mol. Nutr. Food Res., 2009, 53(2), 171-184.
[http://dx.doi.org/10.1002/mnfr.200700511] [PMID: 19101947]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Kumar, S.; Singh, R.; Malik, S.; Manne, U.; Mishra, M. Prostate cancer health disparities: An immuno-biological perspective. Cancer Lett., 2018, 414, 153-165.
[http://dx.doi.org/10.1016/j.canlet.2017.11.011] [PMID: 29154974]
[4]
Sia, M.; Rosewall, T.; Warde, T.P. Radiotherapy as primary treatment modality. Front. Radiat. Ther. Oncol., 2008, 41, 15-25.
[http://dx.doi.org/10.1159/000139874] [PMID: 18544981]
[5]
Moore, C.M.; Pendse, D.; Emberton, M. Photodynamic therapy for prostate cancer--a review of current status and future promise. Nat. Clin. Pract. Urol., 2009, 6(1), 18-30.
[http://dx.doi.org/10.1038/ncpuro1274] [PMID: 19132003]
[6]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[7]
De Velasco, M.A.; Uemura, H. Prostate cancer immunotherapy: Where are we and where are we going? Curr. Opin. Urol., 2018, 28(1), 15-24.
[http://dx.doi.org/10.1097/MOU.0000000000000462] [PMID: 29095729]
[8]
Handy, C.E.; Antonarakis, E.S. Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Future Oncol., 2018, 14(10), 907-917.
[http://dx.doi.org/10.2217/fon-2017-0531] [PMID: 29260582]
[9]
Hansen, A.R.; Massard, C.; Ott, P.A.; Haas, N.B.; Lopez, J.S.; Ejadi, S.; Wallmark, J.M.; Keam, B.; Delord, J.P.; Aggarwal, R.; Gould, M.; Yang, P.; Keefe, S.M.; Piha-Paul, S.A. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the KEYNOTE-028 study. Ann. Oncol., 2018, 29(8), 1807-1813.
[http://dx.doi.org/10.1093/annonc/mdy232] [PMID: 29992241]
[10]
Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther., 2017, 16(11), 2598-2608.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0386] [PMID: 28835386]
[11]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[12]
Gubin, M.M.; Artyomov, M.N.; Mardis, E.R.; Schreiber, R.D. Tumor neoantigens: Building a framework for personalized cancer immunotherapy. J. Clin. Invest., 2015, 125(9), 3413-3421.
[http://dx.doi.org/10.1172/JCI80008] [PMID: 26258412]
[13]
Coulie, P.G.; Van den Eynde, B.J.; van der Bruggen, P.; Boon, T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat. Rev. Cancer, 2014, 14(2), 135-146.
[http://dx.doi.org/10.1038/nrc3670] [PMID: 24457417]
[14]
Wang, X.; Li, M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol., 2019, 20(1), 4.
[http://dx.doi.org/10.1186/s12865-018-0285-5] [PMID: 30634925]
[15]
Birkbak, N.J.; Kochupurakkal, B.; Izarzugaza, J.M.G.; Eklund, A.C.; Li, Y.; Liu, J.; Szallasi, Z.; Matulonis, U.A.; Richardson, A.L.; Iglehart, J.D.; Wang, Z.C. Tumor mutation burden forecasts outcome in ovarian cancer with BRCA1 or BRCA2 mutations. PLoS One, 2013, 8(11), e80023.
[http://dx.doi.org/10.1371/journal.pone.0080023] [PMID: 24265793]
[16]
Dhawan, M.; Ryan, C.J. BRCAness and prostate cancer: Diagnostic and therapeutic considerations. Prostate Cancer Prostatic Dis., 2018, 21(4), 488-498.
[http://dx.doi.org/10.1038/s41391-018-0069-2] [PMID: 30131605]
[17]
Pilarski, R. The role of BRCA testing in hereditary pancreatic and prostate cancer families. American Society of Clinical Oncology educational book American Society of Clinical Oncology Annual Meeting, 2019, 39, pp. 79-86.
[http://dx.doi.org/10.1200/EDBK_238977]
[18]
Gleason, D.F.; Mellinger, G.T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol., 1974, 111(1), 58-64.
[http://dx.doi.org/10.1016/S0022-5347(17)59889-4] [PMID: 4813554]
[19]
Kalsbeek, A.M.; Chan, E.F.; Grogan, J.; Petersen, D.C.; Jaratlerdsiri, W.; Gupta, R.; Lyons, R.J.; Haynes, A.M.; Horvath, L.G.; Kench, J.G.; Stricker, P.D.; Hayes, V.M. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer. Aging (Albany NY), 2016, 8(11), 2702-2712.
[http://dx.doi.org/10.18632/aging.101044] [PMID: 27705925]
[20]
Hieronymus, H.; Schultz, N.; Gopalan, A.; Carver, B.S.; Chang, M.T.; Xiao, Y.; Heguy, A.; Huberman, K.; Bernstein, M.; Assel, M.; Murali, R.; Vickers, A.; Scardino, P.T.; Sander, C.; Reuter, V.; Taylor, B.S.; Sawyers, C.L. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl. Acad. Sci. USA, 2014, 111(30), 11139-11144.
[http://dx.doi.org/10.1073/pnas.1411446111] [PMID: 25024180]
[21]
Wu, Z.; Wang, M.; Liu, Q.; Liu, Y.; Zhu, K.; Chen, L.; Guo, H.; Li, Y.; Shi, B. Identification of gene expression profiles and immune cell infiltration signatures between low and high tumor mutation burden groups in bladder cancer. Int. J. Med. Sci., 2020, 17(1), 89-96.
[http://dx.doi.org/10.7150/ijms.39056] [PMID: 31929742]
[22]
Zhang, C.; Li, Z.; Qi, F.; Hu, X.; Luo, J. Exploration of the relationships between tumor mutation burden with immune infiltrates in clear cell renal cell carcinoma. Ann. Transl. Med., 2019, 7(22), 648.
[http://dx.doi.org/10.21037/atm.2019.10.84] [PMID: 31930049]
[23]
Li, X.; Gao, Y.; Xu, Z.; Zhang, Z.; Zheng, Y.; Qi, F. Identification of prognostic genes in adrenocortical carcinoma microenvironment based on bioinformatic methods. Cancer Med., 2020, 9(3), 1161-1172.
[http://dx.doi.org/10.1002/cam4.2774] [PMID: 31856409]
[24]
Ono, K.; Takigawa, S.; Yamada, K. L-Glucose: Another path to cancer cells. Cancers (Basel), 2020, 12(4), E850.
[http://dx.doi.org/10.3390/cancers12040850] [PMID: 32244695]
[25]
Yamada, K. Aberrant uptake of a fluorescent L-glucose analogue (fLG) into tumor cells expressing malignant phenotypes. Biol. Pharm. Bull., 2018, 41(10), 1508-1516.
[http://dx.doi.org/10.1248/bpb.b18-00089] [PMID: 30270319]
[26]
Paller, A.S.; Spergel, J.M.; Mina-Osorio, P.; Irvine, A.D. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J. Allergy Clin. Immunol., 2019, 143(1), 46-55.
[http://dx.doi.org/10.1016/j.jaci.2018.11.006] [PMID: 30458183]
[27]
Løset, M.; Brown, S.J.; Saunes, M.; Hveem, K. Genetics of atopic dermatitis: From DNA sequence to clinical relevance. Dermatology, 2019, 235(5), 355-364.
[http://dx.doi.org/10.1159/000500402] [PMID: 31203284]
[28]
Vahidi, Y.; Faghih, Z.; Talei, A.R.; Doroudchi, M.; Ghaderi, A. Memory CD4+ T cell subsets in tumor draining lymph nodes of breast cancer patients: A focus on T stem cell memory cells. Cell Oncol. (Dordr.), 2018, 41(1), 1-11.
[http://dx.doi.org/10.1007/s13402-017-0352-6] [PMID: 28994018]
[29]
Hiraoka, K.; Miyamoto, M.; Cho, Y.; Suzuoki, M.; Oshikiri, T.; Nakakubo, Y.; Itoh, T.; Ohbuchi, T.; Kondo, S.; Katoh, H. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br. J. Cancer, 2006, 94(2), 275-280.
[http://dx.doi.org/10.1038/sj.bjc.6602934] [PMID: 16421594]
[30]
Subudhi, S.K.; Vence, L.; Zhao, H.; Blando, J.; Yadav, S.S.; Xiong, Q.; Reuben, A.; Aparicio, A.; Corn, P.G.; Chapin, B.F.; Pisters, L.L.; Troncoso, P.; Tidwell, R.S.; Thall, P.; Wu, C.J.; Zhang, J.; Logothetis, C.L.; Futreal, A.; Allison, J.P.; Sharma, P. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci. Transl. Med., 2020, 12(537), eaaz3577.
[http://dx.doi.org/10.1126/scitranslmed.aaz3577] [PMID: 32238575]
[31]
Nava Rodrigues, D.; Rescigno, P.; Liu, D.; Yuan, W.; Carreira, S.; Lambros, M.B.; Seed, G.; Mateo, J.; Riisnaes, R.; Mullane, S.; Margolis, C.; Miao, D.; Miranda, S.; Dolling, D.; Clarke, M.; Bertan, C.; Crespo, M.; Boysen, G.; Ferreira, A.; Sharp, A.; Figueiredo, I.; Keliher, D.; Aldubayan, S.; Burke, K.P.; Sumanasuriya, S.; Fontes, M.S.; Bianchini, D.; Zafeiriou, Z.; Teixeira Mendes, L.S.; Mouw, K.; Schweizer, M.T.; Pritchard, C.C.; Salipante, S.; Taplin, M.E.; Beltran, H.; Rubin, M.A.; Cieslik, M.; Robinson, D.; Heath, E.; Schultz, N.; Armenia, J.; Abida, W.; Scher, H.; Lord, C.; D’Andrea, A.; Sawyers, C.L.; Chinnaiyan, A.M.; Alimonti, A.; Nelson, P.S.; Drake, C.G.; Van Allen, E.M.; de Bono, J.S. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J. Clin. Invest., 2018, 128(10), 4441-4453.
[http://dx.doi.org/10.1172/JCI121924] [PMID: 30179225]
[32]
Kuss, I.; Schaefer, C.; Godfrey, T.E.; Ferris, R.L.; Harris, J.M.; Gooding, W.; Whiteside, T.L. Recent thymic emigrants and subsets of naive and memory T cells in the circulation of patients with head and neck cancer. Clin. Immunol., 2005, 116(1), 27-36.
[http://dx.doi.org/10.1016/j.clim.2004.12.011] [PMID: 15925829]
[33]
Harrington, L.E.; Janowski, K.M.; Oliver, J.R.; Zajac, A.J.; Weaver, C.T. Memory CD4 T cells emerge from effector T-cell progenitors. Nature, 2008, 452(7185), 356-360.
[http://dx.doi.org/10.1038/nature06672] [PMID: 18322463]
[34]
Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kennedy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[35]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[36]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy