Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Oridonin Induces Oxidative Stress-mediated Cancer Cells Apoptosis via Targeting Thioredoxin Reductase

Author(s): Dongzhu Duan*, Xiaolu Feng, Dabo Pan, Le Wang, Yanru Wang and Xiaoling Wang*

Volume 23, Issue 14, 2022

Published on: 18 February, 2022

Page: [1647 - 1657] Pages: 11

DOI: 10.2174/1389201023666211217151955

Price: $65

Abstract

Background: Thioredoxin reductase (TrxR) plays vital role in regulating cellular redox balance as well as redox-mediated signal transduction. Accumulating evidence supports that overactivation of TrxR is closely related to tumorigenesis and that targeting TrxR ablation reverses the growth of numerous malignant tumors, making TrxR a promising target for cancer chemotherapy. Thus, the discovery and development of molecules as promising anticancer agents that target TrxR is of great significance. Oridonin was shown to inhibit TrxR activity, but the detailed cellular mechanism is largely unknown.

Objective: The study investigated the mechanism of action and underlying inhibitory properties of oridonin on TrxR in HeLa cells.

Methods: A covalent docking was performed to reveal the possible interaction between oridonin and TrxR by Schrödinger Software Suite. TrxR activity was determined by 5,5’-dithiobis-2- nitrobenzoic acid reduction assay and endpoint insulin reduction assay. Sulforhodamine B and colony formation assay were employed to assess the viability and growth of cells. Reactive oxygen species level was measured by probe 2’, 7’-dichlorfluorescein diacetate, and dihydroethidium. Hoechst 33342 staining, caspase 3 activation, and fluorescein-5-isothiocyanate-conjugated Annexin V and propidium iodide double staining were used to evaluate apoptosis.

Results: Here, we reported the oridonin as a potent inhibitor of TrxR. Inhibition of TrxR results in a decrease of thiols content and total glutathione, elevates reactive oxygen species levels, and finally promotes oxidative stress-mediated apoptosis of cancer cells.

Conclusion: Targeting TrxR by oridonin discloses a novel molecular mechanism underlying the biological action of oridonin and sheds light on developing oridonin as a potential tumor therapeutic agent.

Keywords: Oridonin, thioredoxin reductase, redox regulation, chemotherapy, oxidative stress, apoptosis.

Graphical Abstract

Animated Abstract
[1]
Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci., 2017, 38(9), 794-808.
[http://dx.doi.org/10.1016/j.tips.2017.06.001] [PMID: 28648527]
[2]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[3]
Zhang, J.; Duan, D.; Osama, A.; Fang, J. Natural molecules targeting thioredoxin system and their therapeutic potentials. Antioxid. Redox Signal., 2020.
[http://dx.doi.org/10.1089/ars.2020.821310.1089/ars.2020.8213] [PMID: 33115246]
[4]
Zhong, L.; Arnér, E.S.; Holmgren, A. Structure and mechanism of mammalian thioredoxin reductase: The active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 5854-5859.
[http://dx.doi.org/10.1073/pnas.100114897] [PMID: 10801974]
[5]
Hu, G.; Jia, H.; Zhao, L.; Cho, D-H.; Fang, J. Small molecule fluorescent probes of protein vicinal dithiols. Chin. Chem. Lett., 2019, 30(10), 1704.
[http://dx.doi.org/10.1016/j.cclet.2019.06.039]
[6]
Sh/u, N.; Cheng, Q.; Arnér, E.S.J.; Davies, M.J. Inhibition and crosslinking of the selenoprotein thioredoxin reductase-1 by p-benzoquinone. Redox Biol., 2020, 28101335
[http://dx.doi.org/10.1016/j.redox.2019.101335] [PMID: 31590044]
[7]
Arnér, E.S. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim. Biophys. Acta, 2009, 1790(6), 495-526.
[http://dx.doi.org/10.1016/j.bbagen.2009.01.014] [PMID: 19364476]
[8]
Ghareeb, H.; Metanis, N. The thioredoxin system: A promising target for cancer drug development. Chemistry, 2020, 26(45), 10175-10184.
[http://dx.doi.org/10.1002/chem.201905792] [PMID: 32097513]
[9]
Ren, X.; Zou, L.; Lu, J.; Holmgren, A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic. Biol. Med., 2018, 127, 238-247.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.081] [PMID: 29807162]
[10]
Zhang, B.; Duan, D.; Ge, C.; Yao, J.; Liu, Y.; Li, X.; Fang, J. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent. J. Med. Chem., 2015, 58(4), 1795-1805.
[http://dx.doi.org/10.1021/jm5016507] [PMID: 25629304]
[11]
Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Sun, J.; Ge, C.; Peng, S.; Fang, J. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic. Biol. Med., 2014, 69, 15-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.12.027] [PMID: 24407164]
[12]
Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Fang, J. Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic. Biol. Med., 2014, 70, 182-193.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.02.016] [PMID: 24583460]
[13]
Zhang, J.; Li, Y.; Duan, D.; Yao, J.; Gao, K.; Fang, J. Inhibition of thioredoxin reductase by alantolactone prompts oxidative stress-mediated apoptosis of HeLa cells. Biochem. Pharmacol., 2016, 102, 34-44.
[http://dx.doi.org/10.1016/j.bcp.2015.12.004] [PMID: 26686580]
[14]
Duan, D.; Zhang, J.; Yao, J.; Liu, Y.; Fang, J. Targeting thioredoxin reductase by parthenolide contributes to inducing apoptosis of hela cells. J. Biol. Chem., 2016, 291(19), 10021-10031.
[http://dx.doi.org/10.1074/jbc.M115.700591] [PMID: 27002142]
[15]
Zhang, J.; Yao, J.; Peng, S.; Li, X.; Fang, J. Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(1), 129-138.
[http://dx.doi.org/10.1016/j.bbadis.2016.10.019] [PMID: 27777067]
[16]
Liu, R.; Shi, D.; Zhang, J.; Li, X.; Han, X.; Yao, X.; Fang, J. Xanthatin promotes apoptosis via inhibiting thioredoxin reductase and eliciting oxidative stress. Mol. Pharm., 2018, 15(8), 3285-3296.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00338] [PMID: 29939757]
[17]
Yao, J.; Duan, D.; Song, Z.L.; Zhang, J.; Fang, J. Sanguinarine as a new chemical entity of thioredoxin reductase inhibitor to elicit oxidative stress and promote tumor cell apoptosis. Free Radic. Biol. Med., 2020, 152, 659-667.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.01.008] [PMID: 31931095]
[18]
Fang, J.; Lu, J.; Holmgren, A. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J. Biol. Chem., 2005, 280(26), 25284-25290.
[http://dx.doi.org/10.1074/jbc.M414645200] [PMID: 15879598]
[19]
Liu, T.; Zhang, J.; Han, X.; Xu, J.; Wu, Y.; Fang, J. Promotion of HeLa cells apoptosis by cynaropicrin involving inhibition of thioredoxin reductase and induction of oxidative stress. Free Radic. Biol. Med., 2019, 135, 216-226.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.014] [PMID: 30880248]
[20]
Raninga, P.V.; Lee, A.C.; Sinha, D.; Shih, Y.Y.; Mittal, D.; Makhale, A.; Bain, A.L.; Nanayakarra, D.; Tonissen, K.F.; Kalimutho, M.; Khanna, K.K. Therapeutic cooperation between auranofin, a thioredoxin reductase inhibitor and anti-PD-L1 antibody for treatment of triple-negative breast cancer. Int. J. Cancer, 2020, 146(1), 123-136.
[http://dx.doi.org/10.1002/ijc.32410] [PMID: 31090219]
[21]
Paz, M.M.; Zhang, X.; Lu, J.; Holmgren, A. A new mechanism of action for the anticancer drug mitomycin C: Mechanism-based inhibition of thioredoxin reductase. Chem. Res. Toxicol., 2012, 25(7), 1502-1511.
[http://dx.doi.org/10.1021/tx3002065] [PMID: 22694104]
[22]
Lu, J.; Chew, E.H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
[http://dx.doi.org/10.1073/pnas.0701549104] [PMID: 17640917]
[23]
Sun, H.D.; Huang, S.X.; Han, Q.B. Diterpenoids from isodon species and their biological activities. Nat. Prod. Rep., 2006, 23(5), 673-698.
[http://dx.doi.org/10.1039/b604174d] [PMID: 17003905]
[24]
Gao, F.H.; Liu, F.; Wei, W.; Liu, L.B.; Xu, M.H.; Guo, Z.Y.; Li, W.; Jiang, B.; Wu, Y.L. Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int. J. Mol. Med., 2012, 29(4), 649-655.
[http://dx.doi.org/10.3892/ijmm.2012.895] [PMID: 22294162]
[25]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550.
[http://dx.doi.org/10.1038/s41467-018-04947-6] [PMID: 29959312]
[26]
Liu, P.; Du, J. Oridonin is an antidepressant molecule working through the PPARγ/AMPA receptor signaling pathway. Biochem. Pharmacol., 2020, 180114136
[http://dx.doi.org/10.1016/j.bcp.2020.114136] [PMID: 32628930]
[27]
Zhang, D.; Zhou, Q.; Huang, D.; He, L.; Zhang, H.; Hu, B.; Peng, H.; Ren, D. ROS/JNK/c-Jun axis is involved in oridonin-induced caspase-dependent apoptosis in human colorectal cancer cells. Biochem. Biophys. Res. Commun., 2019, 513(3), 594-601.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.011] [PMID: 30981511]
[28]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[29]
Lu, Y.; Sun, Y.; Zhu, J.; Yu, L.; Jiang, X.; Zhang, J.; Dong, X.; Ma, B.; Zhang, Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPARγ and inhibiting Nrf2 pathway. Cell Death Dis., 2018, 9(1), 15.
[http://dx.doi.org/10.1038/s41419-017-0031-6] [PMID: 29323103]
[30]
Ke, Y.; Liang, J.J.; Hou, R.J.; Li, M.M.; Zhao, L.F.; Wang, W.; Liu, Y.; Xie, H.; Yang, R.H.; Hu, T.X.; Wang, J.Y.; Liu, H.M. Synthesis and biological evaluation of novel Jiyuan Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. Eur. J. Med. Chem., 2018, 157, 1249-1263.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.056] [PMID: 30193221]
[31]
Ding, Y.; Li, D.; Ding, C.; Wang, P.; Liu, Z.; Wold, E.A.; Ye, N.; Chen, H.; White, M.A.; Shen, Q.; Zhou, J. regio- and stereospecific synthesis of oridonin d-ring aziridinated Analogues for the Treatment of Triple-Negative Breast Cancer via Mediated Irreversible Covalent Warheads. J. Med. Chem., 2018, 61(7), 2737-2752.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01514] [PMID: 29528645]
[32]
Yu, Y.; Fan, S.M.; Song, J.K.; Tashiro, S.; Onodera, S.; Ikejima, T. Hydroxyl radical (•OH) played a pivotal role in oridonin-induced apoptosis and autophagy in human epidermoid carcinoma A431 cells. Biol. Pharm. Bull., 2012, 35(12), 2148-2159.
[http://dx.doi.org/10.1248/bpb.b12-00405] [PMID: 23207767]
[33]
Zhang, Y.H.; Wu, Y.L.; Tashiro, S.; Onodera, S.; Ikejima, T. Reactive oxygen species contribute to oridonin-induced apoptosis and autophagy in human cervical carcinoma HeLa cells. Acta Pharmacol. Sin., 2011, 32(10), 1266-1275.
[http://dx.doi.org/10.1038/aps.2011.92] [PMID: 21892202]
[34]
Li, C.Y.; Wang, E.Q.; Cheng, Y.; Bao, J.K. Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol., 2011, 43(5), 701-704.
[http://dx.doi.org/10.1016/j.biocel.2011.01.020] [PMID: 21295154]
[35]
Zhang, X.; Chen, L.X.; Ouyang, L.; Cheng, Y.; Liu, B. Plant natural compounds: Targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif., 2012, 45(5), 466-476.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00833.x] [PMID: 22765290]
[36]
Zhen, T.; Wu, C.F.; Liu, P.; Wu, H.Y.; Zhou, G.B.; Lu, Y.; Liu, J.X.; Liang, Y.; Li, K.K.; Wang, Y.Y.; Xie, Y.Y.; He, M.M.; Cao, H.M.; Zhang, W.N.; Chen, L.M.; Petrie, K.; Chen, S.J.; Chen, Z. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein. Sci. Transl. Med., 2012, 4(127)127ra38
[http://dx.doi.org/10.1126/scitranslmed.3003562] [PMID: 22461642]
[37]
Zhang, J.; Wang, N.; Zhou, Y.; Wang, K.; Sun, Y.; Yan, H.; Han, W.; Wang, X.; Wei, B.; Ke, Y. Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells. Phytother. Res., 2020.
[http://dx.doi.org/10.1002/ptr.682910.1002/ptr.6829] [PMID: 32869425]
[38]
Yao, H.; Xie, S.; Ma, X.; Liu, J.; Wu, H.; Lin, A.; Yao, H.; Li, D.; Xu, S.; Yang, D.H.; Chen, Z.S.; Xu, J. identification of a potent oridonin analogue for treatment of triple-negative breast cancer. J. Med. Chem., 2020, 63(15), 8157-8178.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00408] [PMID: 32610904]
[39]
Hu, X.; Wang, Y.; Gao, X.; Xu, S.; Zang, L.; Xiao, Y.; Li, Z.; Hua, H.; Xu, J.; Li, D. Recent progress of oridonin and its derivatives for the treatment of acute myelogenous leukemia. Mini Rev. Med. Chem., 2020, 20(6), 483-497.
[http://dx.doi.org/10.2174/1389557519666191029121809] [PMID: 31660811]
[40]
Song, M.; Liu, X.; Liu, K.; Zhao, R.; Huang, H.; Shi, Y.; Zhang, M.; Zhou, S.; Xie, H.; Chen, H.; Li, Y.; Zheng, Y.; Wu, Q.; Liu, F.; Li, E.; Bode, A.M.; Dong, Z.; Lee, M.H. Targeting AKT with oridonin inhibits growth of esophageal squamous cell carcinoma in vitro and patient-derived xenografts in vivo. Mol. Cancer Ther., 2018, 17(7), 1540-1553.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0823] [PMID: 29695636]
[41]
Liu, Y.; Duan, D.; Yao, J.; Zhang, B.; Peng, S.; Ma, H.; Song, Y.; Fang, J. Dithiaarsanes induce oxidative stress-mediated apoptosis in HL-60 cells by selectively targeting thioredoxin reductase. J. Med. Chem., 2014, 57(12), 5203-5211.
[http://dx.doi.org/10.1021/jm500221p] [PMID: 24867309]
[42]
Liu, R.; Shi, D.; Zhang, J.; Li, X.; Han, X.; Yao, X.; Fang, J. Virtual screening-guided discovery of thioredoxin reductase inhibitors. Toxicol. Appl. Pharmacol., 2019, 370, 106-116.
[http://dx.doi.org/10.1016/j.taap.2019.03.014] [PMID: 30898620]
[43]
Peng, S.; Zhang, B.; Meng, X.; Yao, J.; Fang, J. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents. J. Med. Chem., 2015, 58(13), 5242-5255.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00410] [PMID: 26079183]
[44]
Wu, J.; Ding, Y.; Chen, C.H.; Zhou, Z.; Ding, C.; Chen, H.; Zhou, J.; Chen, C. A new oridonin analog suppresses triple-negative breast cancer cells and tumor growth via the induction of death receptor 5. Cancer Lett., 2016, 380(2), 393-402.
[http://dx.doi.org/10.1016/j.canlet.2016.06.024] [PMID: 27387452]
[45]
Zhang, J.; Duan, D.; Song, Z.L.; Liu, T.; Hou, Y.; Fang, J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med. Res. Rev., 2020.
[http://dx.doi.org/10.1002/med.2173410.1002/med.21734] [PMID: 32981100]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy