Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

胃癌代谢研究进展及治疗意义

卷 22, 期 9, 2022

发表于: 09 June, 2022

页: [703 - 716] 页: 14

弟呕挨: 10.2174/1568009622666220413083534

价格: $65

conference banner
摘要

背景:在全球范围内,胃癌的发病率位居恶性肿瘤的第五位,死亡率位居第三位。胃癌会导致可用于治疗的新陈代谢改变。 目的:本研究的目的是概述胃癌引起的显着代谢改变并提出阻断措施。 方法:对胃癌及其阻断引起的代谢改变的描述性和实验性出版物进行全面和最新的审查。这不是系统评价。 结果:胃癌导致糖酵解和谷氨酰胺分解的高发生率。脂肪酸从头合成和胆固醇合成的速率增加。此外,胃癌通过脂肪酸β-氧化导致脂质周转率高。临床前数据表明,通过酶靶向单独阻断这些途径会在体外和体内产生抗肿瘤作用。然而,没有关于同时阻断这五种途径的数据,这是至关重要的,因为肿瘤在响应营养物质的可用性时表现出代谢灵活性。这意味着当一种或多种被抑制时,肿瘤可能会激活替代途径。我们假设需要同时阻断它们以避免或降低可能导致治疗抵抗的代谢灵活性。 结论:有必要探索针对葡萄糖、谷氨酰胺、脂肪酸合成、胆固醇合成和脂肪酸氧化途径的联合代谢疗法的临床前疗效和可行性。这可能具有治疗意义,因为我们有针对胃癌这些途径的临床可用药物。

关键词: 胃癌、糖酵解、谷氨酰胺分解、脂质、代谢阻断、新陈代谢。

Next »
图形摘要

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Worthley, D.L.; Phillips, K.D.; Wayte, N.; Schrader, K.A.; Healey, S.; Kaurah, P.; Shulkes, A.; Grimpen, F.; Clouston, A.; Moore, D.; Cullen, D.; Ormonde, D.; Mounkley, D.; Wen, X.; Lindor, N.; Carneiro, F.; Huntsman, D.G.; Chenevix-Trench, G.; Suthers, G.K. Gastric adenocarcinoma and prox-imal polyposis of the stomach (GAPPS): A new autosomal dominant syndrome. Gut, 2012, 61(5), 774-779.
[http://dx.doi.org/10.1136/gutjnl-2011-300348] [PMID: 21813476]
[3]
Carneiro, F.; Wen, X.; Seruca, R.; Oliveira, C. Familial gastric carcinoma. Diagn. Histopathol., 2014, 20(6), 239-246.
[http://dx.doi.org/10.1016/j.mpdhp.2014.03.010]
[4]
Oliveira, C.; Pinheiro, H.; Figueiredo, J.; Seruca, R.; Carneiro, F. Familial gastric cancer: Genetic susceptibility, pathology, and implications for management. Lancet Oncol., 2015, 16(2), e60-e70.
[http://dx.doi.org/10.1016/S1470-2045(14)71016-2] [PMID: 25638682]
[5]
Sugano, K.; Tack, J.; Kuipers, E.J.; Graham, D.Y.; El-Omar, E.M.; Miura, S.; Haruma, K.; Asaka, M.; Uemura, N.; Mal-fertheiner, P.; Azuma, T.; Bazzoli, F.; Chan, F.K.L.; Chen, M.; Chiba, N.; Chiba, T.; Vas Coelho, L.G.; Di Mario, F.; Fock, K.M.; Fukuda, Y.; Genta, R.M.; Goh, K.L.; Katelaris, P.H.; Kato, M.; Kawai, T.; Kushima, R.; Mahachai, V.; Matsuhisa, T.; Miwa, H.; Murakami, K.; O’Morain, C.A.; Rugge, M.; Sato, K.; Shimoyama, T.; Sugiyama, T.; Suzuki, H.; Yagi, K.; Wu, M.S.; Ito, M.; Kim, N.; Furuta, T.; Mégraud, F.; Shiotani, A.; Kamada, T. Kyoto global consensus report on Helicobac-ter pylori gastritis. Gut, 2015, 64(9), 1353-1367.
[http://dx.doi.org/10.1136/gutjnl-2015-309252] [PMID: 26187502]
[6]
Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Ather-ton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M.; Agreus, L.; Andersen, L.P.; Coelho, L.; Delchier, J.C.; Di Mario, F.; Dinis-Ribeiro, M.; Fischbach, W.; Flahou, B.; Fock, K.M.; Gasbarrini, G.; Gensini, G.; Goh, K.L.; Herrero, R.; Kupcinskas, L.; Lanas, A.; Leja, M.; Machado, J.C.; Ma-hachai, V.; Milosavljevic, T.; Niv, Y.; Ristimaki, A.; Tepes, B.; Vaira, D.; Vieth, M.; You, W. Management of Helicobacter pylori infection-the Maastricht V/Florence consensus report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[7]
Leja, M.; You, W.; Camargo, M.C.; Saito, H. Implementation of gastric cancer screening - the global experience. Best Pract. Res. Clin. Gastroenterol., 2014, 28(6), 1093-1106.
[http://dx.doi.org/10.1016/j.bpg.2014.09.005] [PMID: 25439074]
[8]
Bornschein, J.; Leja, M. The global challenge of a healthy stomach. Best Pract. Res. Clin. Gastroenterol., 2014, 28(6), 949-951.
[http://dx.doi.org/10.1016/j.bpg.2014.09.008] [PMID: 25439062]
[9]
Gasenko, E.; Leja, M.; Polaka, I.; Hegmane, A.; Murillo, R.; Bordin, D.; Link, A.; Kulju, M.; Mochalski, P.; Shani, G.; Malfertheiner, P.; Herrero, R.; Haick, H. How do international gastric cancer prevention guidelines influence clinical practice globally? Eur. J. Cancer Prev., 2020, 29(5), 400-407.
[http://dx.doi.org/10.1097/CEJ.0000000000000580] [PMID: 32740165]
[10]
Songun, I.; Putter, H.; Kranenbarg, E.M.K.; Sasako, M.; van de Velde, C.J.H. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol., 2010, 11(5), 439-449.
[http://dx.doi.org/10.1016/S1470-2045(10)70070-X] [PMID: 20409751]
[11]
Yin, S.; Wang, P.; Xu, X.; Tan, Y.; Huang, J.; Xu, H. The optimal strategy of multimodality therapies for resectable gas-tric cancer: Evidence from a network meta-analysis. J. Cancer, 2019, 10(14), 3094-3101.
[http://dx.doi.org/10.7150/jca.30456] [PMID: 31289579]
[12]
Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.H.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; Smith, D.B.; Langley, R.E.; Ver-ma, M.; Weeden, S.; Chua, Y.J. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med., 2006, 355(1), 11-20.
[http://dx.doi.org/10.1056/NEJMoa055531] [PMID: 16822992]
[13]
Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; Lindig, U.; Schmiegel, W.; Pohl, M.; Stoehlmacher, J.; Folprecht, G.; Probst, S.; Prasnikar, N.; Fischbach, W.; Mahlberg, R.; Trojan, J.; Koenigsmann, M.; Martens, U.M.; Thuss-Patience, P.; Egger, M.; Block, A.; Heinemann, V.; Illerhaus, G.; Moehler, M.; Schenk, M.; Kullmann, F.; Beh-ringer, D.M.; Heike, M.; Pink, D.; Teschendorf, C.; Löhr, C.; Bernhard, H.; Schuch, G.; Rethwisch, V.; von Weikersthal, L.F.; Hartmann, J.T.; Kneba, M.; Daum, S.; Schulmann, K.; Weniger, J.; Belle, S.; Gaiser, T.; Oduncu, F.S.; Güntner, M.; Hozaeel, W.; Reichart, A.; Jäger, E.; Kraus, T.; Mönig, S.; Bechstein, W.O.; Schuler, M.; Schmalenberg, H.; Hofheinz, R.D. Perioperative chemotherapy with fluorouracil plus leu-covorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally ad-vanced, resectable gastric or gastro-oesophageal junction ade-nocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet, 2019, 393(10184), 1948-1957.
[http://dx.doi.org/10.1016/S0140-6736(18)32557-1] [PMID: 30982686]
[14]
Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; Martenson, J.A. Chemoradio-therapy after surgery compared with surgery alone for adeno-carcinoma of the stomach or gastroesophageal junction. N. Engl. J. Med., 2001, 345(10), 725-730.
[http://dx.doi.org/10.1056/NEJMoa010187] [PMID: 11547741]
[15]
Wagner, A.D.; Syn, N.L.X.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.C.; Ho, J.; Unverzagt, S. Chemotherapy for ad-vanced gastric cancer. Cochrane Database Syst. Rev., 2017, 8(8), CD004064.
[PMID: 28850174]
[16]
Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalac-qua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; Melichar, B.; Tehfe, M.; Topuzov, E.; Zalcberg, J.R.; Chau, I.; Campbell, W.; Sivanandan, C.; Pikiel, J.; Koshiji, M.; Hsu, Y.; Liepa, A.M.; Gao, L.; Schwartz, J.D.; Tabernero, J. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction ade-nocarcinoma (REGARD): An international, randomised, mul-ticentre, placebo-controlled, phase 3 trial. Lancet, 2014, 383(9911), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(13)61719-5] [PMID: 24094768]
[17]
Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; Cunningham, D.; Rougier, P.; Komatsu, Y.; Ajani, J.; Emig, M.; Carlesi, R.; Ferry, D.; Chandrawansa, K.; Schwartz, J.D.; Ohtsu, A. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol., 2014, 15(11), 1224-1235.
[http://dx.doi.org/10.1016/S1470-2045(14)70420-6] [PMID: 25240821]
[18]
Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; Aprile, G.; Kulikov, E.; Hill, J.; Lehle, M.; Rüschoff, J.; Kang, Y.K. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junc-tion cancer (ToGA): A phase 3, open-label, randomised con-trolled trial. Lancet, 2010, 376(9742), 687-697.
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[19]
Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; McRee, A.J.; Lin, C.C.; Pathiraja, K.; Lunceford, J.; Emanci-pator, K.; Juco, J.; Koshiji, M.; Bang, Y.J. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEY-NOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol., 2016, 17(6), 717-726.
[http://dx.doi.org/10.1016/S1470-2045(16)00175-3] [PMID: 27157491]
[20]
Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; Yeh, K.H.; Yoshikawa, T.; Oh, S.C.; Bai, L.Y.; Tamura, T.; Lee, K.W.; Hamamoto, Y.; Kim, J.G.; Chin, K.; Oh, D.Y.; Minashi, K.; Cho, J.Y.; Tsuda, M.; Chen, L.T. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemo-therapy regimens (ONO-4538-12, ATTRACTION-2): A ran-domised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111), 2461-2471.
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5] [PMID: 28993052]
[21]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[22]
Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The Warburg effect 97 years after its discovery. Cancers (Basel), 2020, 12(10), 2819.
[http://dx.doi.org/10.3390/cancers12102819] [PMID: 33008042]
[23]
Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; Chino-poulos, C. On the origin of ATP synthesis in cancer. iScience, 2020, 23(11), 101761.
[http://dx.doi.org/10.1016/j.isci.2020.101761] [PMID: 33251492]
[24]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lac-tate in the regulation of tumor microenvironment and thera-peutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[25]
Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; Schwartz, L.H.; Ali, H.S.; Ahmed, A.; Forde, P.F.; Devesa, J.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metabolites, 2020, 10(7), 285.
[http://dx.doi.org/10.3390/metabo10070285] [PMID: 32664469]
[26]
Schlößer, H.A.; Drebber, U.; Urbanski, A.; Haase, S.; Baltin, C.; Berlth, F.; Neiß, S.; von Bergwelt-Baildon, M.; Fetzner, U.K.; Warnecke-Eberz, U.; Bollschweiler, E.; Hölscher, A.H.; Mönig, S.P.; Alakus, H. Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer, 2017, 20(1), 83-91.
[http://dx.doi.org/10.1007/s10120-015-0577-x] [PMID: 26643879]
[27]
Noguchi, Y.; Sato, S.; Marat, D.; Doi, C.; Yoshikawa, T.; Sai-to, A.; Ito, T.; Tsuburaya, A.; Yanuma, S. Glucose uptake in the human gastric cancer cell line, MKN28, is increased by insulin stimulation. Cancer Lett., 1999, 140(1-2), 69-74.
[http://dx.doi.org/10.1016/S0304-3835(99)00054-3] [PMID: 10403543]
[28]
Zhang, T.B.; Zhao, Y.; Tong, Z.X.; Guan, Y.F. Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45. Int. J. Clin. Exp. Med., 2015, 8(2), 2423-2428.
[PMID: 25932183]
[29]
Noguchi, Y.; Marat, D.; Saito, A.; Yoshikawa, T.; Doi, C.; Fukuzawa, K.; Tsuburaya, A.; Satoh, S.; Ito, T. Expression of facilitative glucose transporters in gastric tumors. Hepatogastroenterology, 1999, 46(28), 2683-2689.
[PMID: 10522065]
[30]
Krasnov, G.S.; Dmitriev, A.A.; Lakunina, V.A.; Kirpiy, A.A.; Kudryavtseva, A.V. Targeting VDAC-bound hexokinase II: A promising approach for concomitant anti-cancer therapy. Expert Opin. Ther. Targets, 2013, 17(10), 1221-1233.
[http://dx.doi.org/10.1517/14728222.2013.833607] [PMID: 23984984]
[31]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L.; Hexokinase, I.I.; Hexokinase, I.I. Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mito-chondria. Oncogene, 2006, 25(34), 4777-4786.
[http://dx.doi.org/10.1038/sj.onc.1209603] [PMID: 16892090]
[32]
Rho, M.; Kim, J.; Jee, C.D.; Lee, Y.M.; Lee, H.E.; Kim, M.A.; Lee, H.S.; Kim, W.H. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer Res., 2007, 27(1A), 251-258.
[PMID: 17352240]
[33]
Qiu, M.Z.; Han, B.; Luo, H.Y.; Zhou, Z.W.; Wang, Z.Q.; Wang, F.H.; Li, Y.H.; Xu, R.H. Expressions of hypoxia-inducible factor-1α and hexokinase-II in gastric adenocarci-noma: The impact on prognosis and correlation to clinico-pathologic features. Tumour Biol., 2011, 32(1), 159-166.
[http://dx.doi.org/10.1007/s13277-010-0109-6] [PMID: 20845004]
[34]
Liu, Y.; Wu, K.; Shi, L.; Xiang, F.; Tao, K.; Wang, G. Prog-nostic significance of the metabolic marker hexokinase-2 in various solid tumors: A meta-analysis. PLoS One, 2016, 11(11), e0166230.
[http://dx.doi.org/10.1371/journal.pone.0166230] [PMID: 27824926]
[35]
Chang, Y.C.; Yang, Y.C.; Tien, C.P.; Yang, C.J.; Hsiao, M. Roles of aldolase family genes in human cancers and diseas-es. Trends Endocrinol. Metab., 2018, 29(8), 549-559.
[http://dx.doi.org/10.1016/j.tem.2018.05.003] [PMID: 29907340]
[36]
Gizak, A. Wiśniewski, J.; Heron, P.; Mamczur, P.; Sygusch, J.; Rakus, D. Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death Dis., 2019, 10(10), 712.
[http://dx.doi.org/10.1038/s41419-019-1968-4] [PMID: 31558701]
[37]
Jiang, Z.; Wang, X.; Li, J.; Yang, H.; Lin, X. Aldolase A as a prognostic factor and mediator of progression via inducing epithelial-mesenchymal transition in gastric cancer. J. Cell. Mol. Med., 2018, 22(9), 4377-4386.
[http://dx.doi.org/10.1111/jcmm.13732] [PMID: 29992789]
[38]
Didiasova, M.; Schaefer, L.; Wygrecka, M. When place mat-ters: Shuttling of enolase-1 across cellular compartments. Front. Cell Dev. Biol., 2019, 7, 61.
[http://dx.doi.org/10.3389/fcell.2019.00061] [PMID: 31106201]
[39]
Altenberg, B.; Greulich, K.O. Genes of glycolysis are ubiqui-tously overexpressed in 24 cancer classes. Genomics, 2004, 84(6), 1014-1020.
[http://dx.doi.org/10.1016/j.ygeno.2004.08.010] [PMID: 15533718]
[40]
Qiao, H.; Wang, Y.; Zhu, B.; Jiang, L.; Yuan, W.; Zhou, Y.; Guan, Q. Enolase1 overexpression regulates the growth of gastric cancer cells and predicts poor survival. J. Cell. Biochem., 2019, 120(11), 18714-18723.
[http://dx.doi.org/10.1002/jcb.29179] [PMID: 31218757]
[41]
Liu, Y-Q.; Huang, Z-G.; Li, G-N.; Du, J-L.; Ou, Y-P.; Zhang, X-N.; Chen, T-T.; Liang, Q-L. Effects of α-enolase (ENO1) over-expression on malignant biological behaviors of AGS cells. Int. J. Clin. Exp. Med., 2015, 8(1), 231-239.
[PMID: 25784992]
[42]
Qian, X.; Xu, W.; Xu, J.; Shi, Q.; Li, J.; Weng, Y.; Jiang, Z.; Feng, L.; Wang, X.; Zhou, J.; Jin, H. Enolase 1 stimulates gly-colysis to promote chemoresistance in gastric cancer. Oncotarget, 2017, 8(29), 47691-47708.
[http://dx.doi.org/10.18632/oncotarget.17868] [PMID: 28548950]
[43]
Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Func-tion, regulation and role in cancer. Semin. Cell Dev. Biol., 2015, 43, 43-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.004] [PMID: 26277545]
[44]
Lim, J.Y.; Yoon, S.O.; Seol, S.Y.; Hong, S.W.; Kim, J.W.; Choi, S.H.; Cho, J.Y. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World J. Gastroenterol., 2012, 18(30), 4037-4043.
[http://dx.doi.org/10.3748/wjg.v18.i30.4037] [PMID: 22912555]
[45]
Kwon, O.H.; Kang, T.W.; Kim, J.H.; Kim, M.; Noh, S.M.; Song, K.S.; Yoo, H.S.; Kim, W.H.; Xie, Z.; Pocalyko, D.; Kim, S.Y.; Kim, Y.S. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochem. Biophys. Res. Commun., 2012, 423(1), 38-44.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.063] [PMID: 22627140]
[46]
Shiroki, T.; Yokoyama, M.; Tanuma, N.; Maejima, R.; Tamai, K.; Yamaguchi, K.; Oikawa, T.; Noguchi, T.; Miura, K.; Fuji-ya, T.; Shima, H.; Sato, I.; Murata-Kamiya, N.; Hatakeyama, M.; Iijima, K.; Shimosegawa, T.; Satoh, K. Enhanced expres-sion of the M2 isoform of pyruvate kinase is involved in gas-tric cancer development by regulating cancer-specific metabo-lism. Cancer Sci., 2017, 108(5), 931-940.
[http://dx.doi.org/10.1111/cas.13211] [PMID: 28235245]
[47]
Forkasiewicz, A.; Dorociak, M.; Stach, K.; Szelachowski, P.; Tabola, R.; Augoff, K. The usefulness of lactate dehydrogen-ase measurements in current oncological practice. Cell. Mol. Biol. Lett., 2020, 25(1), 35.
[http://dx.doi.org/10.1186/s11658-020-00228-7] [PMID: 32528540]
[48]
Kolev, Y.; Uetake, H.; Takagi, Y.; Sugihara, K. Lactate dehy-drogenase-5 (LDH-5) expression in human gastric cancer: Association with Hypoxia-Inducible Factor (HIF-1α) path-way, angiogenic factors production and poor prognosis. Ann. Surg. Oncol., 2008, 15(8), 2336-2344.
[http://dx.doi.org/10.1245/s10434-008-9955-5] [PMID: 18521687]
[49]
Sun, X.; Sun, Z.; Zhu, Z.; Guan, H.; Zhang, J.; Zhang, Y.; Xu, H.; Sun, M. Clinicopathological significance and prognostic value of lactate dehydrogenase A expression in gastric cancer patients. PLoS One, 2014, 9(3), e91068.
[http://dx.doi.org/10.1371/journal.pone.0091068] [PMID: 24608789]
[50]
Kodama, M.; Nakayama, K.I. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis con-tributes to malignant evolution of cancer. BioEssays, 2020, 42(12), e2000169.
[http://dx.doi.org/10.1002/bies.202000169] [PMID: 33165972]
[51]
Matés, J.M.; Campos-Sandoval, J.A.; de Los Santos-Jiménez, J.; Márquez, J. Glutaminases regulate glutathione and oxida-tive stress in cancer. Arch. Toxicol., 2020, 94(8), 2603-2623.
[http://dx.doi.org/10.1007/s00204-020-02838-8] [PMID: 32681190]
[52]
Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516.
[http://dx.doi.org/10.1038/s12276-020-00504-8] [PMID: 32943735]
[53]
Scalise, M.; Pochini, L.; Galluccio, M.; Console, L.; Indiveri, C. Glutamine transport and mitochondrial metabolism in can-cer cell growth. Front. Oncol., 2017, 7, 306.
[http://dx.doi.org/10.3389/fonc.2017.00306] [PMID: 29376023]
[54]
Yoo, H.C.; Park, S.J.; Nam, M.; Kang, J.; Kim, K.; Yeo, J.H.; Kim, J.K.; Heo, Y.; Lee, H.S.; Lee, M.Y.; Lee, C.W.; Kang, J.S.; Kim, Y.H.; Lee, J.; Choi, J.; Hwang, G.S.; Bang, S.; Han, J.M. A Variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab., 2020, 31(2), 267-283.e12.
[http://dx.doi.org/10.1016/j.cmet.2019.11.020] [PMID: 31866442]
[55]
Stine, Z.E.; Dang, C.V. Glutamine skipping the Q into mito-chondria. Trends Mol. Med., 2020, 26(1), 6-7.
[http://dx.doi.org/10.1016/j.molmed.2019.11.004] [PMID: 31866300]
[56]
Xie, J.; Li, P.; Gao, H.F.; Qian, J.X.; Yuan, L.Y.; Wang, J.J. Overexpression of SLC38A1 is associated with poorer prog-nosis in Chinese patients with gastric cancer. BMC Gastroenterol., 2014, 14(1), 70.
[http://dx.doi.org/10.1186/1471-230X-14-70] [PMID: 24712400]
[57]
Lu, J.; Chen, M.; Tao, Z.; Gao, S.; Li, Y.; Cao, Y.; Lu, C.; Zou, X. Effects of targeting SLC1A5 on inhibiting gastric can-cer growth and tumor development in vitro and in vivo. Oncotarget, 2017, 8(44), 76458-76467.
[http://dx.doi.org/10.18632/oncotarget.19479] [PMID: 29100325]
[58]
Ye, J.; Huang, Q.; Xu, J.; Huang, J.; Wang, J.; Zhong, W.; Chen, W.; Lin, X.; Lin, X. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth. J. Cancer Res. Clin. Oncol., 2018, 144(5), 821-833.
[http://dx.doi.org/10.1007/s00432-018-2605-9] [PMID: 29435734]
[59]
Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutami-nase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[60]
Li, B.; Cao, Y.; Meng, G.; Qian, L.; Xu, T.; Yan, C.; Luo, O.; Wang, S.; Wei, J.; Ding, Y.; Yu, D. Targeting glutaminase 1 at-tenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, 2019, 39, 239-254.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.063] [PMID: 30555042]
[61]
Lukey, M.J.; Cluntun, A.A.; Katt, W.P.; Lin, M.J.; Druso, J.E.; Ramachandran, S.; Erickson, J.W.; Le, H.H.; Wang, Z.E.; Blank, B.; Greene, K.S.; Cerione, R.A. Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer. Cell Rep., 2019, 29(1), 76-88.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.08.076] [PMID: 31577957]
[62]
Kitayama, K.; Yashiro, M.; Morisaki, T.; Miki, Y.; Okuno, T.; Kinoshita, H.; Fukuoka, T.; Kasashima, H.; Masuda, G.; Ha-segawa, T.; Sakurai, K.; Kubo, N.; Hirakawa, K.; Ohira, M. Pyruvate kinase isozyme M2 and glutaminase might be prom-ising molecular targets for the treatment of gastric cancer. Cancer Sci., 2017, 108(12), 2462-2469.
[http://dx.doi.org/10.1111/cas.13421] [PMID: 29032577]
[63]
Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; Zhu, R.; Ji, X.; Yu, Q.; Wang, L. iTRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric can-cer. Proteomics Clin. Appl., 2019, 13(4), e1800038.
[http://dx.doi.org/10.1002/prca.201800038] [PMID: 30485682]
[64]
Wu, Y.J.; Hu, Z.L.; Hu, S.D.; Li, Y.X.; Xing, X.W.; Yang, Y.; Du, X.H. Glutamate dehydrogenase inhibits tumor growth in gastric cancer through the Notch signaling pathway. Cancer Biomark., 2019, 26(3), 303-312.
[http://dx.doi.org/10.3233/CBM-190022] [PMID: 31322543]
[65]
Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; Esumi, H.; Soga, T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 2009, 69(11), 4918-4925.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4806] [PMID: 19458066]
[66]
Wang, H.; Zhang, H.; Deng, P.; Liu, C.; Li, D.; Jie, H.; Zhang, H.; Zhou, Z.; Zhao, Y.L. Tissue metabolic profiling of human gastric cancer assessed by (1)H NMR. BMC Cancer, 2016, 16(1), 371.
[http://dx.doi.org/10.1186/s12885-016-2356-4] [PMID: 27356757]
[67]
Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab., 2021, 9(1), 2.
[http://dx.doi.org/10.1186/s40170-020-00237-2] [PMID: 33413672]
[68]
Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Var-ney, B.; Liu-Fu, F.; Lee, L.S.; Nagarajan, S.R.; Shearer, R.F.; Hardie, R.A.; Raftopulos, N.L.; Kakani, M.S.; Saunders, D.N.; Holst, J.; Horvath, L.G.; Butler, L.M.; Hoy, A.J. Extracellular fatty acids are the major contributor to lipid synthesis in pros-tate cancer. Mol. Cancer Res., 2019, 17(4), 949-962.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0347] [PMID: 30647103]
[69]
Qian, X.; Hu, J.; Zhao, J.; Chen, H. ATP citrate lyase expres-sion is associated with advanced stage and prognosis in gas-tric adenocarcinoma. Int. J. Clin. Exp. Med., 2015, 8(5), 7855-7860.
[PMID: 26221340]
[70]
Zheng, X.; Wang, X.; Zheng, L.; Zhao, H.; Li, W.; Wang, B.; Xue, L.; Tian, Y.; Xie, Y. Construction and analysis of the tumor-specific mRNA-miRNA-lncRNA network in gastric cancer. Front. Pharmacol., 2020, 11, 1112.
[http://dx.doi.org/10.3389/fphar.2020.01112] [PMID: 32848739]
[71]
Kim, K.H.; López-Casillas, F.; Bai, D.H.; Luo, X.; Pape, M.E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J., 1989, 3(11), 2250-2256.
[http://dx.doi.org/10.1096/fasebj.3.11.2570725] [PMID: 2570725]
[72]
Fang, W.; Cui, H.; Yu, D.; Chen, Y.; Wang, J.; Yu, G. In-creased expression of phospho-acetyl-CoA carboxylase pro-tein is an independent prognostic factor for human gastric cancer without lymph node metastasis. Med. Oncol., 2014, 31(7), 15.
[http://dx.doi.org/10.1007/s12032-014-0015-7] [PMID: 24924473]
[73]
Hou, W.; Fei, M.; Qin, X.; Zhu, X.; Greshock, J.; Liu, P.; Zhou, Y.; Wang, H.; Ye, B.C.; Qin, C.Y. High overexpression of fatty acid synthase is associated with poor survival in Chi-nese patients with gastric carcinoma. Exp. Ther. Med., 2012, 4(6), 999-1004.
[http://dx.doi.org/10.3892/etm.2012.727] [PMID: 23226763]
[74]
Duan, J.; Sun, L.; Huang, H.; Wu, Z.; Wang, L.; Liao, W. Overexpression of fatty acid synthase predicts a poor prog-nosis for human gastric cancer. Mol. Med. Rep., 2016, 13(4), 3027-3035.
[http://dx.doi.org/10.3892/mmr.2016.4902] [PMID: 26936091]
[75]
Xiang, H.G.; Hao, J.; Zhang, W.J.; Lu, W.J.; Dong, P.; Liu, Y.B.; Chen, L. Expression of fatty acid synthase negatively correlates with PTEN and predicts peritoneal dissemination of human gastric cancer. Asian Pac. J. Cancer Prev., 2015, 16(16), 6851-6855.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.6851] [PMID: 26514456]
[76]
Sun, L.; Yao, Y.; Pan, G.; Zhan, S.; Shi, W.; Lu, T.; Yuan, J.; Tian, K.; Jiang, L.; Song, S.; Zhu, X.; He, S. Small interfering RNA-mediated knockdown of fatty acid synthase attenuates the proliferation and metastasis of human gastric cancer cells via the mTOR/Gli1 signaling pathway. Oncol. Lett., 2018, 16(1), 594-602.
[http://dx.doi.org/10.3892/ol.2018.8648] [PMID: 29928446]
[77]
Zhou, Y.; Su, W.; Liu, H.; Chen, T.; Höti, N.; Pei, H.; Zhu, H. Fatty acid synthase is a prognostic marker and associated with immune infiltrating in gastric cancers precision medicine. Biomarkers Med., 2020, 14(3), 185-199.
[http://dx.doi.org/10.2217/bmm-2019-0476] [PMID: 31904263]
[78]
Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Choles-terol and beyond - The role of the mevalonate pathway in cancer biology. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188351.
[http://dx.doi.org/10.1016/j.bbcan.2020.188351] [PMID: 32007596]
[79]
Ortiz, N.; Díaz, C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol. Lett., 2020, 20(6), 320.
[http://dx.doi.org/10.3892/ol.2020.12183] [PMID: 33093924]
[80]
Urbanelli, L.; Buratta, S.; Logozzi, M.; Mitro, N.; Sagini, K.; Raimo, R.D.; Caruso, D.; Fais, S.; Emiliani, C. Lipidomic analysis of cancer cells cultivated at acidic pH reveals phos-pholipid fatty acids remodelling associated with transcription-al reprogramming. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 963-973.
[http://dx.doi.org/10.1080/14756366.2020.1748025] [PMID: 32308048]
[81]
Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers (Basel), 2019, 11(7), 948.
[http://dx.doi.org/10.3390/cancers11070948] [PMID: 31284458]
[82]
Wang, C.; Shi, M.; Ji, J.; Cai, Q.; Zhao, Q.; Jiang, J.; Liu, J.; Zhang, H.; Zhu, Z.; Zhang, J. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY), 2020, 12(15), 15374-15391.
[http://dx.doi.org/10.18632/aging.103598] [PMID: 32726752]
[83]
De Oliveira, M.P.; Liesa, M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells, 2020, 9(12), 2600.
[http://dx.doi.org/10.3390/cells9122600] [PMID: 33291682]
[84]
Chen, T.; Wu, G.; Hu, H.; Wu, C. Enhanced fatty acid oxida-tion mediated by CPT1C promotes gastric cancer progression. J. Gastrointest. Oncol., 2020, 11(4), 695-707.
[http://dx.doi.org/10.21037/jgo-20-157] [PMID: 32953153]
[85]
Wang, Y.; Lu, J.H.; Wang, F.; Wang, Y.N.; He, M.M.; Wu, Q.N.; Lu, Y.X.; Yu, H.E.; Chen, Z.H.; Zhao, Q.; Liu, J.; Chen, Y.X.; Wang, D.S.; Sheng, H.; Liu, Z.X.; Zeng, Z.L.; Xu, R.H.; Ju, H.Q. Inhibition of fatty acid catabolism augments the effi-cacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett., 2020, 473, 74-89.
[http://dx.doi.org/10.1016/j.canlet.2019.12.036] [PMID: 31904482]
[86]
Newsholme, E.A.; Crabtree, B.; Ardawi, M.S.M. Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance. Q. J. Exp. Physiol., 1985, 70(4), 473-489.
[http://dx.doi.org/10.1113/expphysiol.1985.sp002935] [PMID: 3909197]
[87]
Hume, D.A.; Weidemann, M.J. Role and regulation of glucose metabolism in proliferating cells. J. Natl. Cancer Inst., 1979, 62(1), 3-8.
[PMID: 364152]
[88]
Dienel, G.A.; Cruz, N.F. Aerobic glycolysis during brain acti-vation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J. Neurochem., 2016, 138(1), 14-52.
[http://dx.doi.org/10.1111/jnc.13630] [PMID: 27166428]
[89]
Prichard, J.; Rothman, D.; Novotny, E.; Petroff, O.; Ku-wabara, T.; Avison, M.; Howseman, A.; Hanstock, C.; Shul-man, R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5829-5831.
[http://dx.doi.org/10.1073/pnas.88.13.5829] [PMID: 2062861]
[90]
Wang, T.; Marquardt, C.; Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature, 1976, 261(5562), 702-705.
[http://dx.doi.org/10.1038/261702a0] [PMID: 934318]
[91]
Mohammad, M.A.; Haymond, M.W. Regulation of lipid syn-thesis genes and milk fat production in human mammary epi-thelial cells during secretory activation. Am. J. Physiol. Endocrinol. Metab., 2013, 305(6), E700-E716.
[http://dx.doi.org/10.1152/ajpendo.00052.2013] [PMID: 23880316]
[92]
Teuwen, L.A.; Geldhof, V.; Carmeliet, P. How glucose, gluta-mine and fatty acid metabolism shape blood and lymph ves-sel development. Dev. Biol., 2019, 447(1), 90-102.
[http://dx.doi.org/10.1016/j.ydbio.2017.12.001] [PMID: 29224892]
[93]
Griffiths, M.; Keast, D.; Patrick, G.; Crawford, M.; Palmer, T.N. The role of glutamine and glucose analogues in metabol-ic inhibition of human myeloid leukaemia in vitro. Int. J. Biochem., 1993, 25(12), 1749-1755.
[http://dx.doi.org/10.1016/0020-711X(88)90303-5] [PMID: 8138012]
[94]
Meijer, T.W.H.; Peeters, W.J.M.; Dubois, L.J.; van Gisbergen, M.W.; Biemans, R.; Venhuizen, J-H.; Span, P.N.; Bussink, J. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer, 2018, 126, 32-40.
[http://dx.doi.org/10.1016/j.lungcan.2018.10.016] [PMID: 30527190]
[95]
Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A.Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jack-son, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminol-ysis as a therapeutic strategy in the treatment of ovarian can-cer. Oncotarget, 2017, 8(38), 63551-63561.
[http://dx.doi.org/10.18632/oncotarget.18854] [PMID: 28969010]
[96]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[97]
Schlaepfer, I.R.; Glodé, L.M.; Hitz, C.A.; Pac, C.T.; Boyle, K.E.; Maroni, P.; Deep, G.; Agarwal, R.; Lucia, S.M.; Cramer, S.D.; Serkova, N.J.; Eckel, R.H. Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)f]fluoro-d-glucose uptake in prostate cancer mouse xen-ografts. Mol. Imaging Biol., 2015, 17(4), 529-538.
[http://dx.doi.org/10.1007/s11307-014-0814-4] [PMID: 25561013]
[98]
Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.024] [PMID: 25041845]
[99]
Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; So-corro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol. (Dordr.), 2021, 44(2), 385-403.
[http://dx.doi.org/10.1007/s13402-020-00575-9] [PMID: 33464483]
[100]
Sankaranarayanapillai, M.; Zhang, N.; Baggerly, K.A.; Gelo-vani, J.G. Metabolic shifts induced by fatty acid synthase in-hibitor orlistat in non-small cell lung carcinoma cells provide novel pharmacodynamic biomarkers for positron emission tomography and magnetic resonance spectroscopy. Mol. Imaging Biol., 2013, 15(2), 136-147.
[http://dx.doi.org/10.1007/s11307-012-0587-6] [PMID: 22886728]
[101]
Cervantes-Madrid, D.; Romero, Y.; Dueñas-González, A. Reviving lonidamine and 6-diazo-5-oxo-l-norleucine to be used in combination for metabolic cancer therapy. BioMed Res. Int., 2015, 2015, 690492.
[http://dx.doi.org/10.1155/2015/690492] [PMID: 26425550]
[102]
Cervantes-Madrid, D.; Dueñas-González, A. Antitumor ef-fects of a drug combination targeting glycolysis, glutaminoly-sis and de novo synthesis of fatty acids. Oncol. Rep., 2015, 34(3), 1533-1542.
[http://dx.doi.org/10.3892/or.2015.4077] [PMID: 26134042]
[103]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor ac-tivity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[104]
Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glu-taminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.5615] [PMID: 28454342]
[105]
Schcolnik-Cabrera, A.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Juarez, M.; Lai, D.; Hua, S.; Tovar, A.R.; Diaz-Chavez, J.; Duenas-Gonzalez, A. The combination of orlistat, lonidamine and 6-diazo-5-oxo-L-norleucine induces a quies-cent energetic phenotype and limits substrate flexibility in co-lon cancer cells. Oncol. Lett., 2020, 20(3), 3053-3060.
[http://dx.doi.org/10.3892/ol.2020.11838] [PMID: 32782623]
[106]
Schcolnik-Cabrera, A.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Juarez, M.; Vargas-Castillo, A.; Ponce-Toledo, R.I.; Lai, D.; Hua, S.; Tovar, A.R.; Torres, N.; Perez-Montiel, D.; Diaz-Chavez, J.; Duenas-Gonzalez, A. Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Sci. Rep., 2021, 11(1), 5222.
[http://dx.doi.org/10.1038/s41598-021-84538-6] [PMID: 33664364]
[107]
Häggström, L. Energetics of glutaminolysis- A theoretical evaluation. In:Spier, R.E.; Griffiths, J.B.; Meignier, B. Eds. Production of Biologicals from Animal Cells in Culture; But-terworth-Heinemann: Oxford, 1991, pp. 79-81.
[108]
Granchi, C.; Minutolo, F. Anticancer agents that counteract tumor glycolysis. ChemMedChem, 2012, 7(8), 1318-1350.
[http://dx.doi.org/10.1002/cmdc.201200176] [PMID: 22684868]
[109]
Shen, Y.A.; Chen, C.L.; Huang, Y.H.; Evans, E.E.; Cheng, C.C.; Chuang, Y.J.; Zhang, C.; Le, A. Inhibition of glutami-nolysis in combination with other therapies to improve cancer treatment. Curr. Opin. Chem. Biol., 2021, 62, 64-81.
[http://dx.doi.org/10.1016/j.cbpa.2021.01.006] [PMID: 33721588]
[110]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules, 2020, 25(17), 3935.
[http://dx.doi.org/10.3390/molecules25173935] [PMID: 32872164]
[111]
Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett., 2018, 435, 92-100.
[http://dx.doi.org/10.1016/j.canlet.2018.08.006] [PMID: 30102953]
[112]
Giacomini, I.; Gianfanti, F.; Desbats, M.A.; Orso, G.; Berretta, M.; Prayer-Galetti, T.; Ragazzi, E.; Cocetta, V. Cholesterol metabolic reprogramming in cancer and its pharmacological modulation as therapeutic strategy. Front. Oncol., 2021, 11, 682911.
[http://dx.doi.org/10.3389/fonc.2021.682911] [PMID: 34109128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy