Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications

Author(s): Adriana Romo-Perez, Guadalupe Dominguez-Gomez, Alma Chavez-Blanco, Lucia Taja-Chayeb, Aurora Gonzalez-Fierro, Consuelo Diaz-Romero, Horacio Noe Lopez-Basave and Alfonso Duenas-Gonzalez*

Volume 22, Issue 9, 2022

Published on: 09 June, 2022

Page: [703 - 716] Pages: 14

DOI: 10.2174/1568009622666220413083534

Price: $65

Abstract

Background: Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited.

Objective: The objective of this study is to provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade.

Methods: A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review.

Results: Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid β-oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously block them to avoid or decrease the metabolic flexibility that may lead to treatment resistance.

Conclusion: There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.

Keywords: Gastric cancer, glycolysis, glutaminolysis, lipidic, metabolic blockade, metabolism.

Next »
Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Worthley, D.L.; Phillips, K.D.; Wayte, N.; Schrader, K.A.; Healey, S.; Kaurah, P.; Shulkes, A.; Grimpen, F.; Clouston, A.; Moore, D.; Cullen, D.; Ormonde, D.; Mounkley, D.; Wen, X.; Lindor, N.; Carneiro, F.; Huntsman, D.G.; Chenevix-Trench, G.; Suthers, G.K. Gastric adenocarcinoma and prox-imal polyposis of the stomach (GAPPS): A new autosomal dominant syndrome. Gut, 2012, 61(5), 774-779.
[http://dx.doi.org/10.1136/gutjnl-2011-300348] [PMID: 21813476]
[3]
Carneiro, F.; Wen, X.; Seruca, R.; Oliveira, C. Familial gastric carcinoma. Diagn. Histopathol., 2014, 20(6), 239-246.
[http://dx.doi.org/10.1016/j.mpdhp.2014.03.010]
[4]
Oliveira, C.; Pinheiro, H.; Figueiredo, J.; Seruca, R.; Carneiro, F. Familial gastric cancer: Genetic susceptibility, pathology, and implications for management. Lancet Oncol., 2015, 16(2), e60-e70.
[http://dx.doi.org/10.1016/S1470-2045(14)71016-2] [PMID: 25638682]
[5]
Sugano, K.; Tack, J.; Kuipers, E.J.; Graham, D.Y.; El-Omar, E.M.; Miura, S.; Haruma, K.; Asaka, M.; Uemura, N.; Mal-fertheiner, P.; Azuma, T.; Bazzoli, F.; Chan, F.K.L.; Chen, M.; Chiba, N.; Chiba, T.; Vas Coelho, L.G.; Di Mario, F.; Fock, K.M.; Fukuda, Y.; Genta, R.M.; Goh, K.L.; Katelaris, P.H.; Kato, M.; Kawai, T.; Kushima, R.; Mahachai, V.; Matsuhisa, T.; Miwa, H.; Murakami, K.; O’Morain, C.A.; Rugge, M.; Sato, K.; Shimoyama, T.; Sugiyama, T.; Suzuki, H.; Yagi, K.; Wu, M.S.; Ito, M.; Kim, N.; Furuta, T.; Mégraud, F.; Shiotani, A.; Kamada, T. Kyoto global consensus report on Helicobac-ter pylori gastritis. Gut, 2015, 64(9), 1353-1367.
[http://dx.doi.org/10.1136/gutjnl-2015-309252] [PMID: 26187502]
[6]
Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Ather-ton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M.; Agreus, L.; Andersen, L.P.; Coelho, L.; Delchier, J.C.; Di Mario, F.; Dinis-Ribeiro, M.; Fischbach, W.; Flahou, B.; Fock, K.M.; Gasbarrini, G.; Gensini, G.; Goh, K.L.; Herrero, R.; Kupcinskas, L.; Lanas, A.; Leja, M.; Machado, J.C.; Ma-hachai, V.; Milosavljevic, T.; Niv, Y.; Ristimaki, A.; Tepes, B.; Vaira, D.; Vieth, M.; You, W. Management of Helicobacter pylori infection-the Maastricht V/Florence consensus report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[7]
Leja, M.; You, W.; Camargo, M.C.; Saito, H. Implementation of gastric cancer screening - the global experience. Best Pract. Res. Clin. Gastroenterol., 2014, 28(6), 1093-1106.
[http://dx.doi.org/10.1016/j.bpg.2014.09.005] [PMID: 25439074]
[8]
Bornschein, J.; Leja, M. The global challenge of a healthy stomach. Best Pract. Res. Clin. Gastroenterol., 2014, 28(6), 949-951.
[http://dx.doi.org/10.1016/j.bpg.2014.09.008] [PMID: 25439062]
[9]
Gasenko, E.; Leja, M.; Polaka, I.; Hegmane, A.; Murillo, R.; Bordin, D.; Link, A.; Kulju, M.; Mochalski, P.; Shani, G.; Malfertheiner, P.; Herrero, R.; Haick, H. How do international gastric cancer prevention guidelines influence clinical practice globally? Eur. J. Cancer Prev., 2020, 29(5), 400-407.
[http://dx.doi.org/10.1097/CEJ.0000000000000580] [PMID: 32740165]
[10]
Songun, I.; Putter, H.; Kranenbarg, E.M.K.; Sasako, M.; van de Velde, C.J.H. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol., 2010, 11(5), 439-449.
[http://dx.doi.org/10.1016/S1470-2045(10)70070-X] [PMID: 20409751]
[11]
Yin, S.; Wang, P.; Xu, X.; Tan, Y.; Huang, J.; Xu, H. The optimal strategy of multimodality therapies for resectable gas-tric cancer: Evidence from a network meta-analysis. J. Cancer, 2019, 10(14), 3094-3101.
[http://dx.doi.org/10.7150/jca.30456] [PMID: 31289579]
[12]
Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.H.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; Smith, D.B.; Langley, R.E.; Ver-ma, M.; Weeden, S.; Chua, Y.J. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med., 2006, 355(1), 11-20.
[http://dx.doi.org/10.1056/NEJMoa055531] [PMID: 16822992]
[13]
Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; Lindig, U.; Schmiegel, W.; Pohl, M.; Stoehlmacher, J.; Folprecht, G.; Probst, S.; Prasnikar, N.; Fischbach, W.; Mahlberg, R.; Trojan, J.; Koenigsmann, M.; Martens, U.M.; Thuss-Patience, P.; Egger, M.; Block, A.; Heinemann, V.; Illerhaus, G.; Moehler, M.; Schenk, M.; Kullmann, F.; Beh-ringer, D.M.; Heike, M.; Pink, D.; Teschendorf, C.; Löhr, C.; Bernhard, H.; Schuch, G.; Rethwisch, V.; von Weikersthal, L.F.; Hartmann, J.T.; Kneba, M.; Daum, S.; Schulmann, K.; Weniger, J.; Belle, S.; Gaiser, T.; Oduncu, F.S.; Güntner, M.; Hozaeel, W.; Reichart, A.; Jäger, E.; Kraus, T.; Mönig, S.; Bechstein, W.O.; Schuler, M.; Schmalenberg, H.; Hofheinz, R.D. Perioperative chemotherapy with fluorouracil plus leu-covorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally ad-vanced, resectable gastric or gastro-oesophageal junction ade-nocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet, 2019, 393(10184), 1948-1957.
[http://dx.doi.org/10.1016/S0140-6736(18)32557-1] [PMID: 30982686]
[14]
Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; Martenson, J.A. Chemoradio-therapy after surgery compared with surgery alone for adeno-carcinoma of the stomach or gastroesophageal junction. N. Engl. J. Med., 2001, 345(10), 725-730.
[http://dx.doi.org/10.1056/NEJMoa010187] [PMID: 11547741]
[15]
Wagner, A.D.; Syn, N.L.X.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.C.; Ho, J.; Unverzagt, S. Chemotherapy for ad-vanced gastric cancer. Cochrane Database Syst. Rev., 2017, 8(8), CD004064.
[PMID: 28850174]
[16]
Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalac-qua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; Melichar, B.; Tehfe, M.; Topuzov, E.; Zalcberg, J.R.; Chau, I.; Campbell, W.; Sivanandan, C.; Pikiel, J.; Koshiji, M.; Hsu, Y.; Liepa, A.M.; Gao, L.; Schwartz, J.D.; Tabernero, J. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction ade-nocarcinoma (REGARD): An international, randomised, mul-ticentre, placebo-controlled, phase 3 trial. Lancet, 2014, 383(9911), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(13)61719-5] [PMID: 24094768]
[17]
Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; Cunningham, D.; Rougier, P.; Komatsu, Y.; Ajani, J.; Emig, M.; Carlesi, R.; Ferry, D.; Chandrawansa, K.; Schwartz, J.D.; Ohtsu, A. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol., 2014, 15(11), 1224-1235.
[http://dx.doi.org/10.1016/S1470-2045(14)70420-6] [PMID: 25240821]
[18]
Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; Aprile, G.; Kulikov, E.; Hill, J.; Lehle, M.; Rüschoff, J.; Kang, Y.K. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junc-tion cancer (ToGA): A phase 3, open-label, randomised con-trolled trial. Lancet, 2010, 376(9742), 687-697.
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[19]
Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; McRee, A.J.; Lin, C.C.; Pathiraja, K.; Lunceford, J.; Emanci-pator, K.; Juco, J.; Koshiji, M.; Bang, Y.J. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEY-NOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol., 2016, 17(6), 717-726.
[http://dx.doi.org/10.1016/S1470-2045(16)00175-3] [PMID: 27157491]
[20]
Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; Yeh, K.H.; Yoshikawa, T.; Oh, S.C.; Bai, L.Y.; Tamura, T.; Lee, K.W.; Hamamoto, Y.; Kim, J.G.; Chin, K.; Oh, D.Y.; Minashi, K.; Cho, J.Y.; Tsuda, M.; Chen, L.T. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemo-therapy regimens (ONO-4538-12, ATTRACTION-2): A ran-domised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111), 2461-2471.
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5] [PMID: 28993052]
[21]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[22]
Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The Warburg effect 97 years after its discovery. Cancers (Basel), 2020, 12(10), 2819.
[http://dx.doi.org/10.3390/cancers12102819] [PMID: 33008042]
[23]
Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; Chino-poulos, C. On the origin of ATP synthesis in cancer. iScience, 2020, 23(11), 101761.
[http://dx.doi.org/10.1016/j.isci.2020.101761] [PMID: 33251492]
[24]
de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lac-tate in the regulation of tumor microenvironment and thera-peutic approaches. Front. Oncol., 2019, 9, 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[25]
Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; Schwartz, L.H.; Ali, H.S.; Ahmed, A.; Forde, P.F.; Devesa, J.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metabolites, 2020, 10(7), 285.
[http://dx.doi.org/10.3390/metabo10070285] [PMID: 32664469]
[26]
Schlößer, H.A.; Drebber, U.; Urbanski, A.; Haase, S.; Baltin, C.; Berlth, F.; Neiß, S.; von Bergwelt-Baildon, M.; Fetzner, U.K.; Warnecke-Eberz, U.; Bollschweiler, E.; Hölscher, A.H.; Mönig, S.P.; Alakus, H. Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer, 2017, 20(1), 83-91.
[http://dx.doi.org/10.1007/s10120-015-0577-x] [PMID: 26643879]
[27]
Noguchi, Y.; Sato, S.; Marat, D.; Doi, C.; Yoshikawa, T.; Sai-to, A.; Ito, T.; Tsuburaya, A.; Yanuma, S. Glucose uptake in the human gastric cancer cell line, MKN28, is increased by insulin stimulation. Cancer Lett., 1999, 140(1-2), 69-74.
[http://dx.doi.org/10.1016/S0304-3835(99)00054-3] [PMID: 10403543]
[28]
Zhang, T.B.; Zhao, Y.; Tong, Z.X.; Guan, Y.F. Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45. Int. J. Clin. Exp. Med., 2015, 8(2), 2423-2428.
[PMID: 25932183]
[29]
Noguchi, Y.; Marat, D.; Saito, A.; Yoshikawa, T.; Doi, C.; Fukuzawa, K.; Tsuburaya, A.; Satoh, S.; Ito, T. Expression of facilitative glucose transporters in gastric tumors. Hepatogastroenterology, 1999, 46(28), 2683-2689.
[PMID: 10522065]
[30]
Krasnov, G.S.; Dmitriev, A.A.; Lakunina, V.A.; Kirpiy, A.A.; Kudryavtseva, A.V. Targeting VDAC-bound hexokinase II: A promising approach for concomitant anti-cancer therapy. Expert Opin. Ther. Targets, 2013, 17(10), 1221-1233.
[http://dx.doi.org/10.1517/14728222.2013.833607] [PMID: 23984984]
[31]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L.; Hexokinase, I.I.; Hexokinase, I.I. Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mito-chondria. Oncogene, 2006, 25(34), 4777-4786.
[http://dx.doi.org/10.1038/sj.onc.1209603] [PMID: 16892090]
[32]
Rho, M.; Kim, J.; Jee, C.D.; Lee, Y.M.; Lee, H.E.; Kim, M.A.; Lee, H.S.; Kim, W.H. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer Res., 2007, 27(1A), 251-258.
[PMID: 17352240]
[33]
Qiu, M.Z.; Han, B.; Luo, H.Y.; Zhou, Z.W.; Wang, Z.Q.; Wang, F.H.; Li, Y.H.; Xu, R.H. Expressions of hypoxia-inducible factor-1α and hexokinase-II in gastric adenocarci-noma: The impact on prognosis and correlation to clinico-pathologic features. Tumour Biol., 2011, 32(1), 159-166.
[http://dx.doi.org/10.1007/s13277-010-0109-6] [PMID: 20845004]
[34]
Liu, Y.; Wu, K.; Shi, L.; Xiang, F.; Tao, K.; Wang, G. Prog-nostic significance of the metabolic marker hexokinase-2 in various solid tumors: A meta-analysis. PLoS One, 2016, 11(11), e0166230.
[http://dx.doi.org/10.1371/journal.pone.0166230] [PMID: 27824926]
[35]
Chang, Y.C.; Yang, Y.C.; Tien, C.P.; Yang, C.J.; Hsiao, M. Roles of aldolase family genes in human cancers and diseas-es. Trends Endocrinol. Metab., 2018, 29(8), 549-559.
[http://dx.doi.org/10.1016/j.tem.2018.05.003] [PMID: 29907340]
[36]
Gizak, A. Wiśniewski, J.; Heron, P.; Mamczur, P.; Sygusch, J.; Rakus, D. Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death Dis., 2019, 10(10), 712.
[http://dx.doi.org/10.1038/s41419-019-1968-4] [PMID: 31558701]
[37]
Jiang, Z.; Wang, X.; Li, J.; Yang, H.; Lin, X. Aldolase A as a prognostic factor and mediator of progression via inducing epithelial-mesenchymal transition in gastric cancer. J. Cell. Mol. Med., 2018, 22(9), 4377-4386.
[http://dx.doi.org/10.1111/jcmm.13732] [PMID: 29992789]
[38]
Didiasova, M.; Schaefer, L.; Wygrecka, M. When place mat-ters: Shuttling of enolase-1 across cellular compartments. Front. Cell Dev. Biol., 2019, 7, 61.
[http://dx.doi.org/10.3389/fcell.2019.00061] [PMID: 31106201]
[39]
Altenberg, B.; Greulich, K.O. Genes of glycolysis are ubiqui-tously overexpressed in 24 cancer classes. Genomics, 2004, 84(6), 1014-1020.
[http://dx.doi.org/10.1016/j.ygeno.2004.08.010] [PMID: 15533718]
[40]
Qiao, H.; Wang, Y.; Zhu, B.; Jiang, L.; Yuan, W.; Zhou, Y.; Guan, Q. Enolase1 overexpression regulates the growth of gastric cancer cells and predicts poor survival. J. Cell. Biochem., 2019, 120(11), 18714-18723.
[http://dx.doi.org/10.1002/jcb.29179] [PMID: 31218757]
[41]
Liu, Y-Q.; Huang, Z-G.; Li, G-N.; Du, J-L.; Ou, Y-P.; Zhang, X-N.; Chen, T-T.; Liang, Q-L. Effects of α-enolase (ENO1) over-expression on malignant biological behaviors of AGS cells. Int. J. Clin. Exp. Med., 2015, 8(1), 231-239.
[PMID: 25784992]
[42]
Qian, X.; Xu, W.; Xu, J.; Shi, Q.; Li, J.; Weng, Y.; Jiang, Z.; Feng, L.; Wang, X.; Zhou, J.; Jin, H. Enolase 1 stimulates gly-colysis to promote chemoresistance in gastric cancer. Oncotarget, 2017, 8(29), 47691-47708.
[http://dx.doi.org/10.18632/oncotarget.17868] [PMID: 28548950]
[43]
Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Func-tion, regulation and role in cancer. Semin. Cell Dev. Biol., 2015, 43, 43-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.004] [PMID: 26277545]
[44]
Lim, J.Y.; Yoon, S.O.; Seol, S.Y.; Hong, S.W.; Kim, J.W.; Choi, S.H.; Cho, J.Y. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World J. Gastroenterol., 2012, 18(30), 4037-4043.
[http://dx.doi.org/10.3748/wjg.v18.i30.4037] [PMID: 22912555]
[45]
Kwon, O.H.; Kang, T.W.; Kim, J.H.; Kim, M.; Noh, S.M.; Song, K.S.; Yoo, H.S.; Kim, W.H.; Xie, Z.; Pocalyko, D.; Kim, S.Y.; Kim, Y.S. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochem. Biophys. Res. Commun., 2012, 423(1), 38-44.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.063] [PMID: 22627140]
[46]
Shiroki, T.; Yokoyama, M.; Tanuma, N.; Maejima, R.; Tamai, K.; Yamaguchi, K.; Oikawa, T.; Noguchi, T.; Miura, K.; Fuji-ya, T.; Shima, H.; Sato, I.; Murata-Kamiya, N.; Hatakeyama, M.; Iijima, K.; Shimosegawa, T.; Satoh, K. Enhanced expres-sion of the M2 isoform of pyruvate kinase is involved in gas-tric cancer development by regulating cancer-specific metabo-lism. Cancer Sci., 2017, 108(5), 931-940.
[http://dx.doi.org/10.1111/cas.13211] [PMID: 28235245]
[47]
Forkasiewicz, A.; Dorociak, M.; Stach, K.; Szelachowski, P.; Tabola, R.; Augoff, K. The usefulness of lactate dehydrogen-ase measurements in current oncological practice. Cell. Mol. Biol. Lett., 2020, 25(1), 35.
[http://dx.doi.org/10.1186/s11658-020-00228-7] [PMID: 32528540]
[48]
Kolev, Y.; Uetake, H.; Takagi, Y.; Sugihara, K. Lactate dehy-drogenase-5 (LDH-5) expression in human gastric cancer: Association with Hypoxia-Inducible Factor (HIF-1α) path-way, angiogenic factors production and poor prognosis. Ann. Surg. Oncol., 2008, 15(8), 2336-2344.
[http://dx.doi.org/10.1245/s10434-008-9955-5] [PMID: 18521687]
[49]
Sun, X.; Sun, Z.; Zhu, Z.; Guan, H.; Zhang, J.; Zhang, Y.; Xu, H.; Sun, M. Clinicopathological significance and prognostic value of lactate dehydrogenase A expression in gastric cancer patients. PLoS One, 2014, 9(3), e91068.
[http://dx.doi.org/10.1371/journal.pone.0091068] [PMID: 24608789]
[50]
Kodama, M.; Nakayama, K.I. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis con-tributes to malignant evolution of cancer. BioEssays, 2020, 42(12), e2000169.
[http://dx.doi.org/10.1002/bies.202000169] [PMID: 33165972]
[51]
Matés, J.M.; Campos-Sandoval, J.A.; de Los Santos-Jiménez, J.; Márquez, J. Glutaminases regulate glutathione and oxida-tive stress in cancer. Arch. Toxicol., 2020, 94(8), 2603-2623.
[http://dx.doi.org/10.1007/s00204-020-02838-8] [PMID: 32681190]
[52]
Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516.
[http://dx.doi.org/10.1038/s12276-020-00504-8] [PMID: 32943735]
[53]
Scalise, M.; Pochini, L.; Galluccio, M.; Console, L.; Indiveri, C. Glutamine transport and mitochondrial metabolism in can-cer cell growth. Front. Oncol., 2017, 7, 306.
[http://dx.doi.org/10.3389/fonc.2017.00306] [PMID: 29376023]
[54]
Yoo, H.C.; Park, S.J.; Nam, M.; Kang, J.; Kim, K.; Yeo, J.H.; Kim, J.K.; Heo, Y.; Lee, H.S.; Lee, M.Y.; Lee, C.W.; Kang, J.S.; Kim, Y.H.; Lee, J.; Choi, J.; Hwang, G.S.; Bang, S.; Han, J.M. A Variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab., 2020, 31(2), 267-283.e12.
[http://dx.doi.org/10.1016/j.cmet.2019.11.020] [PMID: 31866442]
[55]
Stine, Z.E.; Dang, C.V. Glutamine skipping the Q into mito-chondria. Trends Mol. Med., 2020, 26(1), 6-7.
[http://dx.doi.org/10.1016/j.molmed.2019.11.004] [PMID: 31866300]
[56]
Xie, J.; Li, P.; Gao, H.F.; Qian, J.X.; Yuan, L.Y.; Wang, J.J. Overexpression of SLC38A1 is associated with poorer prog-nosis in Chinese patients with gastric cancer. BMC Gastroenterol., 2014, 14(1), 70.
[http://dx.doi.org/10.1186/1471-230X-14-70] [PMID: 24712400]
[57]
Lu, J.; Chen, M.; Tao, Z.; Gao, S.; Li, Y.; Cao, Y.; Lu, C.; Zou, X. Effects of targeting SLC1A5 on inhibiting gastric can-cer growth and tumor development in vitro and in vivo. Oncotarget, 2017, 8(44), 76458-76467.
[http://dx.doi.org/10.18632/oncotarget.19479] [PMID: 29100325]
[58]
Ye, J.; Huang, Q.; Xu, J.; Huang, J.; Wang, J.; Zhong, W.; Chen, W.; Lin, X.; Lin, X. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth. J. Cancer Res. Clin. Oncol., 2018, 144(5), 821-833.
[http://dx.doi.org/10.1007/s00432-018-2605-9] [PMID: 29435734]
[59]
Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutami-nase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[60]
Li, B.; Cao, Y.; Meng, G.; Qian, L.; Xu, T.; Yan, C.; Luo, O.; Wang, S.; Wei, J.; Ding, Y.; Yu, D. Targeting glutaminase 1 at-tenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, 2019, 39, 239-254.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.063] [PMID: 30555042]
[61]
Lukey, M.J.; Cluntun, A.A.; Katt, W.P.; Lin, M.J.; Druso, J.E.; Ramachandran, S.; Erickson, J.W.; Le, H.H.; Wang, Z.E.; Blank, B.; Greene, K.S.; Cerione, R.A. Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer. Cell Rep., 2019, 29(1), 76-88.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.08.076] [PMID: 31577957]
[62]
Kitayama, K.; Yashiro, M.; Morisaki, T.; Miki, Y.; Okuno, T.; Kinoshita, H.; Fukuoka, T.; Kasashima, H.; Masuda, G.; Ha-segawa, T.; Sakurai, K.; Kubo, N.; Hirakawa, K.; Ohira, M. Pyruvate kinase isozyme M2 and glutaminase might be prom-ising molecular targets for the treatment of gastric cancer. Cancer Sci., 2017, 108(12), 2462-2469.
[http://dx.doi.org/10.1111/cas.13421] [PMID: 29032577]
[63]
Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; Zhu, R.; Ji, X.; Yu, Q.; Wang, L. iTRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric can-cer. Proteomics Clin. Appl., 2019, 13(4), e1800038.
[http://dx.doi.org/10.1002/prca.201800038] [PMID: 30485682]
[64]
Wu, Y.J.; Hu, Z.L.; Hu, S.D.; Li, Y.X.; Xing, X.W.; Yang, Y.; Du, X.H. Glutamate dehydrogenase inhibits tumor growth in gastric cancer through the Notch signaling pathway. Cancer Biomark., 2019, 26(3), 303-312.
[http://dx.doi.org/10.3233/CBM-190022] [PMID: 31322543]
[65]
Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; Esumi, H.; Soga, T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 2009, 69(11), 4918-4925.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4806] [PMID: 19458066]
[66]
Wang, H.; Zhang, H.; Deng, P.; Liu, C.; Li, D.; Jie, H.; Zhang, H.; Zhou, Z.; Zhao, Y.L. Tissue metabolic profiling of human gastric cancer assessed by (1)H NMR. BMC Cancer, 2016, 16(1), 371.
[http://dx.doi.org/10.1186/s12885-016-2356-4] [PMID: 27356757]
[67]
Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab., 2021, 9(1), 2.
[http://dx.doi.org/10.1186/s40170-020-00237-2] [PMID: 33413672]
[68]
Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Var-ney, B.; Liu-Fu, F.; Lee, L.S.; Nagarajan, S.R.; Shearer, R.F.; Hardie, R.A.; Raftopulos, N.L.; Kakani, M.S.; Saunders, D.N.; Holst, J.; Horvath, L.G.; Butler, L.M.; Hoy, A.J. Extracellular fatty acids are the major contributor to lipid synthesis in pros-tate cancer. Mol. Cancer Res., 2019, 17(4), 949-962.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0347] [PMID: 30647103]
[69]
Qian, X.; Hu, J.; Zhao, J.; Chen, H. ATP citrate lyase expres-sion is associated with advanced stage and prognosis in gas-tric adenocarcinoma. Int. J. Clin. Exp. Med., 2015, 8(5), 7855-7860.
[PMID: 26221340]
[70]
Zheng, X.; Wang, X.; Zheng, L.; Zhao, H.; Li, W.; Wang, B.; Xue, L.; Tian, Y.; Xie, Y. Construction and analysis of the tumor-specific mRNA-miRNA-lncRNA network in gastric cancer. Front. Pharmacol., 2020, 11, 1112.
[http://dx.doi.org/10.3389/fphar.2020.01112] [PMID: 32848739]
[71]
Kim, K.H.; López-Casillas, F.; Bai, D.H.; Luo, X.; Pape, M.E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J., 1989, 3(11), 2250-2256.
[http://dx.doi.org/10.1096/fasebj.3.11.2570725] [PMID: 2570725]
[72]
Fang, W.; Cui, H.; Yu, D.; Chen, Y.; Wang, J.; Yu, G. In-creased expression of phospho-acetyl-CoA carboxylase pro-tein is an independent prognostic factor for human gastric cancer without lymph node metastasis. Med. Oncol., 2014, 31(7), 15.
[http://dx.doi.org/10.1007/s12032-014-0015-7] [PMID: 24924473]
[73]
Hou, W.; Fei, M.; Qin, X.; Zhu, X.; Greshock, J.; Liu, P.; Zhou, Y.; Wang, H.; Ye, B.C.; Qin, C.Y. High overexpression of fatty acid synthase is associated with poor survival in Chi-nese patients with gastric carcinoma. Exp. Ther. Med., 2012, 4(6), 999-1004.
[http://dx.doi.org/10.3892/etm.2012.727] [PMID: 23226763]
[74]
Duan, J.; Sun, L.; Huang, H.; Wu, Z.; Wang, L.; Liao, W. Overexpression of fatty acid synthase predicts a poor prog-nosis for human gastric cancer. Mol. Med. Rep., 2016, 13(4), 3027-3035.
[http://dx.doi.org/10.3892/mmr.2016.4902] [PMID: 26936091]
[75]
Xiang, H.G.; Hao, J.; Zhang, W.J.; Lu, W.J.; Dong, P.; Liu, Y.B.; Chen, L. Expression of fatty acid synthase negatively correlates with PTEN and predicts peritoneal dissemination of human gastric cancer. Asian Pac. J. Cancer Prev., 2015, 16(16), 6851-6855.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.6851] [PMID: 26514456]
[76]
Sun, L.; Yao, Y.; Pan, G.; Zhan, S.; Shi, W.; Lu, T.; Yuan, J.; Tian, K.; Jiang, L.; Song, S.; Zhu, X.; He, S. Small interfering RNA-mediated knockdown of fatty acid synthase attenuates the proliferation and metastasis of human gastric cancer cells via the mTOR/Gli1 signaling pathway. Oncol. Lett., 2018, 16(1), 594-602.
[http://dx.doi.org/10.3892/ol.2018.8648] [PMID: 29928446]
[77]
Zhou, Y.; Su, W.; Liu, H.; Chen, T.; Höti, N.; Pei, H.; Zhu, H. Fatty acid synthase is a prognostic marker and associated with immune infiltrating in gastric cancers precision medicine. Biomarkers Med., 2020, 14(3), 185-199.
[http://dx.doi.org/10.2217/bmm-2019-0476] [PMID: 31904263]
[78]
Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Choles-terol and beyond - The role of the mevalonate pathway in cancer biology. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188351.
[http://dx.doi.org/10.1016/j.bbcan.2020.188351] [PMID: 32007596]
[79]
Ortiz, N.; Díaz, C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol. Lett., 2020, 20(6), 320.
[http://dx.doi.org/10.3892/ol.2020.12183] [PMID: 33093924]
[80]
Urbanelli, L.; Buratta, S.; Logozzi, M.; Mitro, N.; Sagini, K.; Raimo, R.D.; Caruso, D.; Fais, S.; Emiliani, C. Lipidomic analysis of cancer cells cultivated at acidic pH reveals phos-pholipid fatty acids remodelling associated with transcription-al reprogramming. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 963-973.
[http://dx.doi.org/10.1080/14756366.2020.1748025] [PMID: 32308048]
[81]
Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers (Basel), 2019, 11(7), 948.
[http://dx.doi.org/10.3390/cancers11070948] [PMID: 31284458]
[82]
Wang, C.; Shi, M.; Ji, J.; Cai, Q.; Zhao, Q.; Jiang, J.; Liu, J.; Zhang, H.; Zhu, Z.; Zhang, J. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY), 2020, 12(15), 15374-15391.
[http://dx.doi.org/10.18632/aging.103598] [PMID: 32726752]
[83]
De Oliveira, M.P.; Liesa, M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells, 2020, 9(12), 2600.
[http://dx.doi.org/10.3390/cells9122600] [PMID: 33291682]
[84]
Chen, T.; Wu, G.; Hu, H.; Wu, C. Enhanced fatty acid oxida-tion mediated by CPT1C promotes gastric cancer progression. J. Gastrointest. Oncol., 2020, 11(4), 695-707.
[http://dx.doi.org/10.21037/jgo-20-157] [PMID: 32953153]
[85]
Wang, Y.; Lu, J.H.; Wang, F.; Wang, Y.N.; He, M.M.; Wu, Q.N.; Lu, Y.X.; Yu, H.E.; Chen, Z.H.; Zhao, Q.; Liu, J.; Chen, Y.X.; Wang, D.S.; Sheng, H.; Liu, Z.X.; Zeng, Z.L.; Xu, R.H.; Ju, H.Q. Inhibition of fatty acid catabolism augments the effi-cacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett., 2020, 473, 74-89.
[http://dx.doi.org/10.1016/j.canlet.2019.12.036] [PMID: 31904482]
[86]
Newsholme, E.A.; Crabtree, B.; Ardawi, M.S.M. Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance. Q. J. Exp. Physiol., 1985, 70(4), 473-489.
[http://dx.doi.org/10.1113/expphysiol.1985.sp002935] [PMID: 3909197]
[87]
Hume, D.A.; Weidemann, M.J. Role and regulation of glucose metabolism in proliferating cells. J. Natl. Cancer Inst., 1979, 62(1), 3-8.
[PMID: 364152]
[88]
Dienel, G.A.; Cruz, N.F. Aerobic glycolysis during brain acti-vation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J. Neurochem., 2016, 138(1), 14-52.
[http://dx.doi.org/10.1111/jnc.13630] [PMID: 27166428]
[89]
Prichard, J.; Rothman, D.; Novotny, E.; Petroff, O.; Ku-wabara, T.; Avison, M.; Howseman, A.; Hanstock, C.; Shul-man, R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5829-5831.
[http://dx.doi.org/10.1073/pnas.88.13.5829] [PMID: 2062861]
[90]
Wang, T.; Marquardt, C.; Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature, 1976, 261(5562), 702-705.
[http://dx.doi.org/10.1038/261702a0] [PMID: 934318]
[91]
Mohammad, M.A.; Haymond, M.W. Regulation of lipid syn-thesis genes and milk fat production in human mammary epi-thelial cells during secretory activation. Am. J. Physiol. Endocrinol. Metab., 2013, 305(6), E700-E716.
[http://dx.doi.org/10.1152/ajpendo.00052.2013] [PMID: 23880316]
[92]
Teuwen, L.A.; Geldhof, V.; Carmeliet, P. How glucose, gluta-mine and fatty acid metabolism shape blood and lymph ves-sel development. Dev. Biol., 2019, 447(1), 90-102.
[http://dx.doi.org/10.1016/j.ydbio.2017.12.001] [PMID: 29224892]
[93]
Griffiths, M.; Keast, D.; Patrick, G.; Crawford, M.; Palmer, T.N. The role of glutamine and glucose analogues in metabol-ic inhibition of human myeloid leukaemia in vitro. Int. J. Biochem., 1993, 25(12), 1749-1755.
[http://dx.doi.org/10.1016/0020-711X(88)90303-5] [PMID: 8138012]
[94]
Meijer, T.W.H.; Peeters, W.J.M.; Dubois, L.J.; van Gisbergen, M.W.; Biemans, R.; Venhuizen, J-H.; Span, P.N.; Bussink, J. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer, 2018, 126, 32-40.
[http://dx.doi.org/10.1016/j.lungcan.2018.10.016] [PMID: 30527190]
[95]
Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A.Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jack-son, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminol-ysis as a therapeutic strategy in the treatment of ovarian can-cer. Oncotarget, 2017, 8(38), 63551-63561.
[http://dx.doi.org/10.18632/oncotarget.18854] [PMID: 28969010]
[96]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[97]
Schlaepfer, I.R.; Glodé, L.M.; Hitz, C.A.; Pac, C.T.; Boyle, K.E.; Maroni, P.; Deep, G.; Agarwal, R.; Lucia, S.M.; Cramer, S.D.; Serkova, N.J.; Eckel, R.H. Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)f]fluoro-d-glucose uptake in prostate cancer mouse xen-ografts. Mol. Imaging Biol., 2015, 17(4), 529-538.
[http://dx.doi.org/10.1007/s11307-014-0814-4] [PMID: 25561013]
[98]
Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.024] [PMID: 25041845]
[99]
Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; So-corro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol. (Dordr.), 2021, 44(2), 385-403.
[http://dx.doi.org/10.1007/s13402-020-00575-9] [PMID: 33464483]
[100]
Sankaranarayanapillai, M.; Zhang, N.; Baggerly, K.A.; Gelo-vani, J.G. Metabolic shifts induced by fatty acid synthase in-hibitor orlistat in non-small cell lung carcinoma cells provide novel pharmacodynamic biomarkers for positron emission tomography and magnetic resonance spectroscopy. Mol. Imaging Biol., 2013, 15(2), 136-147.
[http://dx.doi.org/10.1007/s11307-012-0587-6] [PMID: 22886728]
[101]
Cervantes-Madrid, D.; Romero, Y.; Dueñas-González, A. Reviving lonidamine and 6-diazo-5-oxo-l-norleucine to be used in combination for metabolic cancer therapy. BioMed Res. Int., 2015, 2015, 690492.
[http://dx.doi.org/10.1155/2015/690492] [PMID: 26425550]
[102]
Cervantes-Madrid, D.; Dueñas-González, A. Antitumor ef-fects of a drug combination targeting glycolysis, glutaminoly-sis and de novo synthesis of fatty acids. Oncol. Rep., 2015, 34(3), 1533-1542.
[http://dx.doi.org/10.3892/or.2015.4077] [PMID: 26134042]
[103]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor ac-tivity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[104]
Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glu-taminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.5615] [PMID: 28454342]
[105]
Schcolnik-Cabrera, A.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Juarez, M.; Lai, D.; Hua, S.; Tovar, A.R.; Diaz-Chavez, J.; Duenas-Gonzalez, A. The combination of orlistat, lonidamine and 6-diazo-5-oxo-L-norleucine induces a quies-cent energetic phenotype and limits substrate flexibility in co-lon cancer cells. Oncol. Lett., 2020, 20(3), 3053-3060.
[http://dx.doi.org/10.3892/ol.2020.11838] [PMID: 32782623]
[106]
Schcolnik-Cabrera, A.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Juarez, M.; Vargas-Castillo, A.; Ponce-Toledo, R.I.; Lai, D.; Hua, S.; Tovar, A.R.; Torres, N.; Perez-Montiel, D.; Diaz-Chavez, J.; Duenas-Gonzalez, A. Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Sci. Rep., 2021, 11(1), 5222.
[http://dx.doi.org/10.1038/s41598-021-84538-6] [PMID: 33664364]
[107]
Häggström, L. Energetics of glutaminolysis- A theoretical evaluation. In:Spier, R.E.; Griffiths, J.B.; Meignier, B. Eds. Production of Biologicals from Animal Cells in Culture; But-terworth-Heinemann: Oxford, 1991, pp. 79-81.
[108]
Granchi, C.; Minutolo, F. Anticancer agents that counteract tumor glycolysis. ChemMedChem, 2012, 7(8), 1318-1350.
[http://dx.doi.org/10.1002/cmdc.201200176] [PMID: 22684868]
[109]
Shen, Y.A.; Chen, C.L.; Huang, Y.H.; Evans, E.E.; Cheng, C.C.; Chuang, Y.J.; Zhang, C.; Le, A. Inhibition of glutami-nolysis in combination with other therapies to improve cancer treatment. Curr. Opin. Chem. Biol., 2021, 62, 64-81.
[http://dx.doi.org/10.1016/j.cbpa.2021.01.006] [PMID: 33721588]
[110]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules, 2020, 25(17), 3935.
[http://dx.doi.org/10.3390/molecules25173935] [PMID: 32872164]
[111]
Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett., 2018, 435, 92-100.
[http://dx.doi.org/10.1016/j.canlet.2018.08.006] [PMID: 30102953]
[112]
Giacomini, I.; Gianfanti, F.; Desbats, M.A.; Orso, G.; Berretta, M.; Prayer-Galetti, T.; Ragazzi, E.; Cocetta, V. Cholesterol metabolic reprogramming in cancer and its pharmacological modulation as therapeutic strategy. Front. Oncol., 2021, 11, 682911.
[http://dx.doi.org/10.3389/fonc.2021.682911] [PMID: 34109128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy