Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Sulfonamide a Valid Scaffold for Antioxidant Drug Development

Author(s): Melford Chuka Egbujor*, Jorge Garrido, Fernanda Borges and Luciano Saso

Volume 20, Issue 2, 2023

Published on: 05 July, 2022

Page: [190 - 209] Pages: 20

DOI: 10.2174/1570193X19666220411134006

Price: $65

Abstract

Like the well-known sulfa drugs, Sulfonamides are ascribed to a myriad of biological activities, including antioxidant activity. In fact, several tertiary sulfonamides, particularly N, Ndisubstituted analogues, are recognized as antioxidants that can prevent or minimize oxidative damage associated with several oxidative-stress-related diseases. The structural diversity of this class of compounds paved the way for drug discovery programs aimed at finding therapeutic agents. Attributes such as low-cost synthetic procedures, easy accessibility of reagents, and a broad spectrum of biological activities made sulfonamides and derivatives excellent candidates for synthesizing chemical libraries with structural diversity. Sulfonamide-based drugs are most of the sulfur-containing drugs approved by the United States Food and Drug Administration (FDA). Although sulfonamide derivatives have been extensively exploited as antibacterial agents, their therapeutic potential as antioxidants is relatively underexplored despite the prevalence of oxidative stress-mediated diseases and the urgent need for new and more effective antioxidant drugs. Some sulfonamide derivatives were shown to activate the nuclear factor erythroid 2-related factor 2 (Nrf2), the main regulator of the endogenous antioxidant response, a critical process used by cells in response to oxidative stress. The antioxidant role of sulfonamides and derivatives as Nrf2 activators is also reviewed. The antioxidant mechanism of action of sulfonamides has not been fully clarified, but as they have antioxidant properties, it is a subject worthy of in-depth study. The present review is focused on sulfonamides and derivatives as potential antioxidants along the period 2013-2021 and intends to stimulate research in the area.

Keywords: Sulfonamides and derivatives, oxidative stress, antioxidant activity, Nrf2, drug discovery.

Graphical Abstract

[1]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[2]
Majumdar, K.C.; Mondal, S. Recent developments in the synthesis of fused sultams. Chem. Rev., 2011, 111(12), 7749-7773.
[http://dx.doi.org/10.1021/cr1003776] [PMID: 21894896]
[3]
Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: Is the tail more important than the ring? J. Med. Chem., 1999, 42(14), 2641-2650.
[http://dx.doi.org/10.1021/jm9900523] [PMID: 10411484]
[4]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[5]
Egbujor, M.C.; Nwobodo, D.C.; Egwuatu, P.I.; Abu, I.P.; Ezeagu, C.U. Sulphonamide drugs and pseudomonas aeruginosa resistance: A review. Int. J. Modern Pharm. Res., 2020, 4(1), 78-83.
[6]
Egbujor, M.C.; Okoro, U.C.; Okafor, S.N.; Egu, S.A.; Amasiatu, I.S.; Egwuatu, P.I.; Umeh, O.R.; Ibo, E.M. Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents. Res. Pharm. Sci., 2021, 17(1), 99-110.
[http://dx.doi.org/10.4103/1735-5362.329930] [PMID: 34909048]
[7]
Konda, S.; Raparthi, S.; Bhaskar, K.; Munaganti, R.K.; Guguloth, V.; Nagarapu, L.; Akkewar, D.M. Synthesis and antimicrobial activity of novel benzoxazine sulfonamide derivatives. Bioorg. Med. Chem. Lett., 2015, 25(7), 1643-1646.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.026] [PMID: 25754493]
[8]
Akurathi, V.; Dubois, L.; Celen, S.; Lieuwes, N.G.; Chitneni, S.K.; Cleynhens, B.J.; Innocenti, A.; Supuran, C.T.; Verbruggen, A.M.; Lambin, P.; Bormans, G.M. Development and biological evaluation of ⁹⁹mTc-sulfonamide derivatives for in vivo visualization of CA IX as surrogate tumor hypoxia markers. Eur. J. Med. Chem., 2014, 71, 374-384.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.027] [PMID: 24378650]
[9]
Gawin, R.; De Clercq, E.; Naesens, L. Koszytkowska-Stawińska, M. Synthesis and antiviral evaluation of acyclic azanucleosides developed from sulfanilamide as a lead structure. Bioorg. Med. Chem., 2008, 16(18), 8379-8389.
[http://dx.doi.org/10.1016/j.bmc.2008.08.041] [PMID: 18778942]
[10]
Boechat, N.; Pinheiro, L.C.S.; Santos-Filho, O.A.; Silva, I.C. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules, 2011, 16(9), 8083-8097.
[http://dx.doi.org/10.3390/molecules16098083] [PMID: 21934646]
[11]
Messerli, F.H.; Makani, H.; Benjo, A.; Romero, J.; Alviar, C.; Bangalore, S. Antihypertensive efficacy of hydrochlorothiazide as evaluated by ambulatory blood pressure monitoring: A meta-analysis of randomized trials. J. Am. Coll. Cardiol., 2011, 57(5), 590-600.
[http://dx.doi.org/10.1016/j.jacc.2010.07.053] [PMID: 21272751]
[12]
Chegaev, K.; Lazzarato, L.; Tamboli, Y.; Boschi, D.; Blangetti, M.; Scozzafava, A.; Carta, F.; Masini, E.; Fruttero, R.; Supuran, C.T.; Gasco, A. Furazan and furoxan sulfonamides are strong α-carbonic anhydrase inhibitors and potential antiglaucoma agents. Bioorg. Med. Chem., 2014, 22(15), 3913-3921.
[http://dx.doi.org/10.1016/j.bmc.2014.06.016] [PMID: 25022971]
[13]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[14]
Gan, L.; Johnson, J.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim. Biophys. Acta, 2014, 1842(8), 1208-1218.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.011] [PMID: 24382478]
[15]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[16]
Deepa, S.J.; Saravanan, R.E.; Praveen, T.K. An update on the role of Nrf2 and its activators in diseases associated with oxidative stress. Indian J. Pharm. Sci., 2020, 82(2), 1-10.
[17]
Devasagayam, T.P.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India, 2004, 52, 794-804.
[PMID: 15909857]
[18]
Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine, 4th ed; Clarendon Press: Oxford, UK, 2007.
[19]
Davies, K.J. Oxidative stress: The paradox of aerobic life. Biochem. Soc. Symp., 1995, 61, 1-31.
[http://dx.doi.org/10.1042/bss0610001] [PMID: 8660387]
[20]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[21]
Chen, Y.; Zhou, Z.; Min, W. Mitochondria, oxidative stress and innate immunity. Front. Physiol., 2018, 9(9), 1487.
[http://dx.doi.org/10.3389/fphys.2018.01487] [PMID: 30405440]
[22]
del Río, L.A.; Sandalio, L.M.; Corpas, F.J.; Palma, J.M.; Barroso, J.B. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol., 2006, 141(2), 330-335.
[http://dx.doi.org/10.1104/pp.106.078204] [PMID: 16760483]
[23]
Baker, A.; Graham, A.I. Plant peroxisomes: Biochemistry, cell biology and biotechnological applications; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2002.
[http://dx.doi.org/10.1007/978-94-015-9858-3]
[24]
Noctor, G.; Veljovic-Jovanovic, S.; Driscoll, S.; Novitskaya, L.; Foyer, C.H. Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? Ann. Bot. (Lond.), 2002, 89(Spec No), 841-850.
[http://dx.doi.org/10.1093/aob/mcf096] [PMID: 12102510]
[25]
Rodrigo-Moreno, A.; Poschenrieder, C.; Shabala, S. Transition metals: A double edge sward in ROS generation and signaling. Plant Signal. Behav., 2013, 8(3), e23425.
[http://dx.doi.org/10.4161/psb.23425] [PMID: 23333964]
[26]
Fry, S.C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J., 1998, 332(Pt 2), 507-515.
[http://dx.doi.org/10.1042/bj3320507] [PMID: 9601081]
[27]
Scandalios, J.G. Oxygen stress superoxide dismutase. Plant Physiol., 1993, 101(1), 7-12.
[http://dx.doi.org/10.1104/pp.101.1.7] [PMID: 12231660]
[28]
Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49, 249-279.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.249] [PMID: 15012235]
[29]
Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol., 2003, 17(6), 663-669.
[http://dx.doi.org/10.1046/j.1468-3083.2003.00751.x] [PMID: 14761133]
[30]
Black, H.S. ROS: A step closer to elucidating their role in the etiology of light-induced skin disorders. J. Invest. Dermatol., 2004, 122(6), xiii-xiv.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22625.x] [PMID: 15175053]
[31]
Datta, K.; Suman, S.; Kallakury, B.V.S.; Fornace, A.J., Jr Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One, 2012, 7(8), e42224.
[http://dx.doi.org/10.1371/journal.pone.0042224] [PMID: 22936983]
[32]
Fridovich, I. Free radicals in biology; Academic press: New York, 1976.
[33]
Zhou, Y.; Zheng, J.; Li, S.; Zhou, T.; Zhang, P.; Li, H.B. Alcoholic beverage consumption and chronic diseases. Int. J. Environ. Res. Public Health, 2016, 13(6), 522.
[http://dx.doi.org/10.3390/ijerph13060522] [PMID: 27231920]
[34]
Abdollahi, M.; Ranjbar, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticides and oxidative stress: A review. Med. Sci. Monit., 2004, 10(6), RA141-RA147.
[PMID: 15173684]
[35]
Mattill, H.A. Antioxidants. Annu. Rev. Biochem., 1947, 16, 177-192.
[http://dx.doi.org/10.1146/annurev.bi.16.070147.001141] [PMID: 20259061]
[36]
German, J.B. Food processing and lipid oxidation. Adv. Exp. Med. Biol., 1999, 459, 23-50.
[http://dx.doi.org/10.1007/978-1-4615-4853-9_3] [PMID: 10335367]
[37]
American Chemical society National Historic Chemical Landmarks Moses Gomberg and organic free radicals. 2000. Available from: http://www.acs.org/content/acs/en/education/whatischemistry
[38]
Moureu, C.; Dufraisse, C. Sur l’autoxydation: Les antioxygènes. Comptes Rendus des Séances et Mémories de la Société de Biologie, 1922, 86, 321-322. [in French]
[39]
Villines, Z. Antioxidants and free radicals., 2017. Available from:wwww.medicalnewstoday.com
[40]
Bacchetti, T.; Morresi, C.; Bellachioma, L.; Ferretti, G. Antioxidant and pro-oxidant properties of Carthamus Tinctorius, hydroxy safflor yellow A, and safflor yellow A. Antioxidants, 2020, 9(2), 119.
[http://dx.doi.org/10.3390/antiox9020119] [PMID: 32013224]
[41]
Roehrs, M.; Valentini, J.; Paniz, C.; Moro, A.; Charão, M.; Bulcão, R.; Freitas, F.; Brucker, N.; Duarte, M.; Leal, M.; Burg, G.; Grune, T.; Garcia, S.C. The relationships between exogenous and endogenous antioxidants with the lipid profile and oxidative damage in hemodialysis patients. BMC Nephrol., 2011, 12, 59.
[http://dx.doi.org/10.1186/1471-2369-12-59] [PMID: 22029620]
[42]
Kuciel-lewandowska, J.; Kasperczak, M.; Bogut, B.; Heider, R. laber, W.T.; laber, W.; Paprocka-Borowicz, M. The impact of health resort treatment on the non-enzymatic endogenous antioxidant system. Oxid. Med. Cell. Longev., 2020.
[43]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[44]
Jeeva, J.S.; Sunitha, J.; Ananthalakshmi, R.; Rajkumari, S.; Ramesh, M.; Krishnan, R. Enzymatic antioxidants and its role in oral diseases. J. Pharm. Bioallied Sci., 2015, 7(2)(Suppl. 2), S331-S333.
[PMID: 26538872]
[45]
Bovayed, J.; Bohn, T. Exogeneous antioxidants–double-edged swords in cellular redox state. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[46]
Romero, A.C.; Hernandez, E.G.O.; Ceron, T.F.; Chavez, A.A. The exogenous antioxidants, oxidative stress and chronic degenerative diseases- a role for antioxidants;Morales-González, J.A., Ed.; IntechOpen, , 2013.
[http://dx.doi.org/10.5772/52490]
[47]
Halliwell, B. Oxidative stress and cancer: Have we moved forward? Biochem. J., 2007, 401(1), 1-11.
[http://dx.doi.org/10.1042/BJ20061131] [PMID: 17150040]
[48]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[49]
Singh, N.; Dhalla, A.K.; Seneviratne, C.; Singal, P.K. Oxidative stress and heart failure. Mol. Cell. Biochem., 1995, 147(1-2), 77-81.
[http://dx.doi.org/10.1007/BF00944786] [PMID: 7494558]
[50]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[51]
Arican, O.; Kurutas, E.B. Oxidative stress in the blood of patients with active localized vitiligo. Acta Dermatovenerol. Alp. Panonica Adriat., 2008, 17(1), 12-16.
[PMID: 18454264]
[52]
James, S.J.; Cutler, P.; Melnyk, S.; Jernigan, S.; Janak, L.; Gaylor, D.W.; Neubrander, J.A. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr., 2004, 80(6), 1611-1617.
[http://dx.doi.org/10.1093/ajcn/80.6.1611] [PMID: 15585776]
[53]
Bonomini, F.; Tengattini, S.; Fabiano, A.; Bianchi, R.; Rezzani, R. Atherosclerosis and oxidative stress. Histol. Histopathol., 2008, 23(3), 381-390.
[PMID: 18072094]
[54]
de Almeida, A.J.P.O.; de Almeida Rezende, M.S.; Dantas, S.H.; de Lima Silva, S.; de Oliveira, J.C.P.L.; de Lourdes Assunção Araújo de Azevedo, F.; Alves, R.M.F.R.; de Menezes, G.M.S.; Dos Santos, P.F.; Gonçalves, T.A.F.; Schini-Kerth, V.B.; de Medeiros, I.A. Unveiling the role of inflammation and oxidative stress on age- related cardiovascular diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1954398.
[http://dx.doi.org/10.1155/2020/1954398] [PMID: 32454933]
[55]
Mehta, S.K.; Gowder, S.J.T. Members of antioxidant Machinery and their functions, Basic principles and chinical significance of oxidation stress, S.J.T. Gowder; IntechOpen, 2015.
[http://dx.doi.org/10.5772/61884]
[56]
Petkowski, J.J.; Bains, W.; Seager, S. Natural products containing a nitrogen-sulfur bond. J. Nat. Prod., 2018, 81(2), 423-446.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00921] [PMID: 29364663]
[57]
Porcheddu, A.; De Lucca, L. Microwave-assisted synthesis of sulfonamides. Future Science Book Series, Microwaves in drug discovery and development: Recent advances; John Spencer & Mark Bogley, Future Science, 2014.
[58]
Veisi, H. Convenient one-pot synthesis of sulfonamides from thiols and disulfides using 1,3-dichloro-5,5-dimethylhydantoin (DCH). Bull. Korean Chem. Soc., 2012, 33(2), 383-385.
[http://dx.doi.org/10.5012/bkcs.2012.33.2.383]
[59]
Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev., 2018, 118(10), 4981-5079.
[http://dx.doi.org/10.1021/acs.chemrev.7b00776] [PMID: 29658707]
[60]
Yotphan, S.; Sumunnee, L.; Beukeaw, D.; Buathongjan, C.; Reutrakul, V. Iodine-catalyzed expeditious synthesis of sulfonamides from sulfonyl hydrazides and amines. Org. Biomol. Chem., 2016, 14(2), 590-597.
[http://dx.doi.org/10.1039/C5OB02075A] [PMID: 26531097]
[61]
Daneshyar, A.; Nematollahi, D.; Bayat, M. Electrochemical synthesis of new sulfone and sulfonamide derivatives. A green method based on the electrolysis of 2-amino-5-nitrophenol. Electrochim. Acta, 2021, 395, 139223.
[http://dx.doi.org/10.1016/j.electacta.2021.139223]
[62]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[63]
Caddick, S.; Widen, J.D.; Bush, H.D.; Judd, D.B. Synthesis of functionalized sulfonamides via microwave assisted displacement of PFP-sulfonates with amines. QSAR Comb. Sci., 2004, 23(10), 902-905.
[http://dx.doi.org/10.1002/qsar.200420038]
[64]
Wilden, J.D.; Geldeard, L.; Lee, C.C.; Judd, D.B.; Caddick, S. Trichlorophenol (TCP) sulfonate esters: A selective alternative to pentafluorophenol (PFP) esters and sulfonyl chlorides for the preparation of sulfonamides. Chem. Commun. (Camb.), 2007, 10(10), 1074-1076.
[http://dx.doi.org/10.1039/B614604J] [PMID: 17325810]
[65]
De Luca, L.; Giacomelli, G. An easy microwave-assisted synthesis of sulfonamides directly from sulfonic acids. J. Org. Chem., 2008, 73(10), 3967-3969.
[http://dx.doi.org/10.1021/jo800424g] [PMID: 18393527]
[66]
Gul, H.I.; Yamali, C.; Yesilyurt, F.; Sakagami, H.; Kucukoglu, K.; Gulcin, I.; Gul, M.; Supuran, C.T. Microwave-assisted synthesis and bioevaluation of new sulfonamides. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 369-374.
[http://dx.doi.org/10.1080/14756366.2016.1254207] [PMID: 28260401]
[67]
Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[68]
Maleki, B.; Hemmati, S.; Tayebee, R.; Salemi, S.; Farokhzad, Y.; Bughayeri, M. One-pot synthesis of sulfonamides and sulfonyl azides from thiols using chloramine-T. Helv. Chim. Acta, 2013, 96(11), 2147-2151.
[http://dx.doi.org/10.1002/hlca.201200648]
[69]
Ruano, J.L.G.; Parra, A.; Marzo, L.; Yuste, F.; Mastranzo, V.M. One-pot synthesis of sulfonamides from methyl sulfinates using ultrasound. Tetrahedron, 2011, 67(16), 2905-2910.
[http://dx.doi.org/10.1016/j.tet.2011.02.060]
[70]
Hartwig, J.F. Organotransition metal chemistry: From bonding to catalysis; University Science Books, 2010.
[71]
Kim, J-G.; Jang, D.O. Mild and efficient indium metal catalyzed synthesis of sulfonamides and sulfonic esters. Synlett, 2007, 16, 2501-2504.
[72]
DeBergh, J.R.; Niljianskul, N.; Buchwald, S.L. Synthesis of aryl sulfonamides via palladium-catalyzed chlorosulfonylation of arylboronic acids. J. Am. Chem. Soc., 2013, 135(29), 10638-10641.
[http://dx.doi.org/10.1021/ja405949a] [PMID: 23837740]
[73]
Wang, X.; Yang, M.; Kuang, Y.; Liu, J-B.; Fan, X.; Wu, J. Copper-catalyzed synthesis of sulfonamides from nitroarenes via the insertion of sulfur dioxide. Chem. Commun. (Camb.), 2020, 56(23), 3437-3440.
[http://dx.doi.org/10.1039/D0CC00721H] [PMID: 32100803]
[74]
Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Wang, H. Metal-free direct construction of sulfonamides via iodine-mediated coupling reaction of sodium sulfinates and amines at room temperature. Adv. Synth. Catal., 2015, 357, 987-992.
[http://dx.doi.org/10.1002/adsc.201400801]
[75]
Wang, M.; Fan, Q.; Jiang, X. Metal-free construction of primary sulfonamides through three diverse salts. Green Chem., 2018, 20, 5469-5473.
[http://dx.doi.org/10.1039/C8GC03014F]
[76]
Govindaraju, G.V.; Wheeler, G.P.; Lee, D.; Choi, K-S. Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes. Chem. Mater., 2017, 29(1), 355-370.
[http://dx.doi.org/10.1021/acs.chemmater.6b03469]
[77]
Zhu, C.; Ang, N.W.J.; Meyer, T.H.; Qiu, Y.; Ackermann, L. Organic electrochemistry: Molecular synthesis with potential. ACS Cent. Sci., 2021, 7(3), 415-431.
[http://dx.doi.org/10.1021/acscentsci.0c01532] [PMID: 33791425]
[78]
Blanco, D.E.; Lee, B.; Modestino, M.A. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl. Acad. Sci. USA, 2019, 116(36), 17683-17689.
[http://dx.doi.org/10.1073/pnas.1909985116] [PMID: 31434786]
[79]
Goljani, H.; Tavakkoli, Z.; Sadatnabi, A.; Masoudi-Khoram, M.; Nematollahi, D. A new electrochemical strategy for the synthesis of a new type of sulfonamide derivatives. Sci. Rep., 2020, 10(1), 17904.
[http://dx.doi.org/10.1038/s41598-020-74733-2] [PMID: 33087774]
[80]
Torok, B.; Dransfield, T. Green Chemistry: An Inclusive Approach; Elsevier: Amsterdam, Netherlands, 2018.
[81]
Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S.; Browne, D.L.; Noël, T. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc., 2019, 141(14), 5664-5668.
[http://dx.doi.org/10.1021/jacs.9b02266] [PMID: 30905146]
[82]
Mokhtari, B.; Nematollahi, D.; Salehzadeh, H. A tunable pair electrochemical strategy for the synthesis of new benzenesulfonamide derivatives. Sci. Rep., 2019, 9(1), 4537.
[http://dx.doi.org/10.1038/s41598-019-38544-4] [PMID: 30872620]
[83]
Ning, X.; Guo, Y.; Ma, X.; Zhu, R.; Tian, C.; Zhang, Z.; Wang, X.; Ma, Z.; Liu, J. Design, synthesis and pharmacological evaluation of (E)-3,4-dihydroxy styryl sulfonamides derivatives as multifunctional neuroprotective agents against oxidative and inflammatory injury. Bioorg. Med. Chem., 2013, 21(17), 5589-5597.
[http://dx.doi.org/10.1016/j.bmc.2013.05.043] [PMID: 23870700]
[84]
Göçer, H. Akıncıoğlu, A.; Öztaşkın, N.; Göksu, S.; Gülçin, İ Synthesis, antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch. Pharm. (Weinheim), 2013, 346(11), 783-792.
[http://dx.doi.org/10.1002/ardp.201300228] [PMID: 24591156]
[85]
Saeedi, M.; Goli, F.; Mahdavi, M.; Dehghan, G.; Faramarzi, M.A.; Foroumadi, A.; Shafiee, A. Synthesis and biological investigation of some novel sulfonamide and amide derivatives containing coumarin moieties. Iran. J. Pharm. Res., 2014, 13(3), 881-892.
[PMID: 25276188]
[86]
Padmaja, A.; Pedamalakondaiah, D.; Sravya, G.; Reddy, G.M.; Kuma, M.V.J. Synthesis and antioxidant activity of a new class of sulfone/sulfonamide-linked bis(oxadiazoles), bis(thiadiazoles) and bis(triazoles). Med. Chem. Res., 2015, 24, 2021.
[http://dx.doi.org/10.1007/s00044-014-1301-9]
[87]
Kurt, B.Z.; Sönmez, F.; Bilen, Ç.; Ergun, A.; Gençer, N.; Arslan, O.; Kucukislamoglu, M. Synthesis, antioxidant and carbonic anhydrase I and II inhibitory activities of novel sulphonamide-substituted coumarylthiazole derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 991-998.
[http://dx.doi.org/10.3109/14756366.2015.1077823] [PMID: 26309156]
[88]
Rehman, H.; Quadir, A.; Ali, Z.; Nazir, S.; Zahra, A.; Shahzady, T.G. Synthesis and characterization of novel sulfonamide derivatives and their antimicrobial, antioxidant and cytotoxicity evaluation. Bull. Chem. Soc. Ethiop., 2017, 31(3), 391-398.
[89]
Askar, F.W.; Aldhalf, Y.A.; Jinzeel, N.A.; Nief, O.A. Synthesis and biological evaluation of new sulfonamide derivatives. Int. J. Chem. Sci., 2017, 15(3), 173.
[90]
Taslimi, P.; Sujayev, A.; Mamedova, S. Kalın, P.; Gulçin, İ Sadeghian, N.; Beydemir, S.; Kufrevioglu, O.I.; Alwasel, S.H.; Farzaliyev, V.; Mamedov, S. Synthesis and bioactivity of several new hetaryl sulfonamides. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 137-145.
[http://dx.doi.org/10.1080/14756366.2016.1238367] [PMID: 28100082]
[91]
Gouda, M.A.; Hussein, B.H.M. Synthesis and anti-oxidant evaluation of some novel sulfa drugs. Lett. Drug Des. Discov., 2017, 14, 1425-1432.
[http://dx.doi.org/10.2174/1570180814666170607144811]
[92]
Badgujar, J.R.; More, D.H.; Meshram, J.S. Synthesis, antimicrobial and antioxidant activity of pyrazole based sulfonamide derivatives. Indian J. Microbiol., 2018, 58(1), 93-99.
[http://dx.doi.org/10.1007/s12088-017-0689-6] [PMID: 29434402]
[93]
Al-Atbi, H.S.; Al-Salami, B.K.; Al-Assadi, I.J. New azoazomethine derivatives of sulfonamide: Synthesis, characterization, spectroscopic, antimicrobial and antioxidant activity study IOP Conf. Series: Journal of Physics: Conf. Series,, 2019, 1294, p. 052033.
[94]
Akocak, S.; Boga, M.; Lolak, N.; Tuneg, M.; Sanku, R.K.K. Design, synthesis and biological evaluation of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinestrase and butyrylcholinesterase inhibitors. J. Turkish Chem. Soc, 2019, 6(1), 63-70.
[95]
Egbujor, M.C.; Okoro, U.C.; Okafor, S. Design, synthesis, molecular docking, antimicrobial and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest. Med. Chem. Res., 2019, 28, 2118-2127.
[http://dx.doi.org/10.1007/s00044-019-02440-3]
[96]
Egbujor, M.C.; Okoro, U.C. New methionine-based p-toluenesulphonamoyl carboxamide derivatives as antimicrobial and antioxidant agents: Design, synthesis. J. Pharm. Res. Int., 2019, 28(1), 1-12.
[http://dx.doi.org/10.9734/jpri/2019/v28i130192]
[97]
Egbujor, M.C.; Okoro, U.C.; Okafor, S.; Nwankwo, N.E. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. J. Pharm. Sci., 2019, 06(06), 12232-12240.
[98]
Eze, F.U.; Okoro, U.C.; Ugwu, D.I.; Okafor, S.N. New carboxamides bearing benzenesulphonamides: Synthesis, molecular docking and pharmacological properties. Bioorg. Chem., 2019, 92, 103265.
[http://dx.doi.org/10.1016/j.bioorg.2019.103265] [PMID: 31525524]
[99]
Eze, F.U.; Okoro, U.C.; Ugwu, D.I.; Okafor, S.N. Biological activity evaluation of some new benzenesulfonamide derivatives. Front Chem., 2019, 7, 634.
[http://dx.doi.org/10.3389/fchem.2019.00634] [PMID: 31620427]
[100]
Durgun, M. Türkeş C.; Işık, M.; Demir, Y.; Saklı A.; Kuru, A.; Güzel, A.; Beydemir, Ş Akocak, S.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 950-962.
[http://dx.doi.org/10.1080/14756366.2020.1746784] [PMID: 32249705]
[101]
Egbujor, M.C.; Okoro, U.C.; Okafor, S. Novel alanine-based antimicrobial and antioxidant agents: Synthesis and molecular docking. Indian J. Sci. Technol., 2020, 13(9), 1003-1014.
[http://dx.doi.org/10.17485/ijst/2020/v013i09/146687]
[102]
Egbujor, M.C.; Okoro, U.C.; Nwobodo, D.C.; Ezeagu, C.U.; Amadi, U.B.; Okenwa-Ani, C.G.; Ugwu, J.I.; Okoye, I.G.; Abu, I.P.; Egwuatu, P.I. Design, synthesis, antimicrobial and antioxidant activities of novel threonine-based sulfonamide derivatives. J. Pharm. Res. Int., 2020, 32(8), 51-61.
[http://dx.doi.org/10.9734/jpri/2020/v32i830470]
[103]
Ezugwu, J.A.; Okoro, U.C.; Ezeokonkwo, M.A.; Bhimapaka, C.; Okafor, S.N.; Ugwu, D.I.; Ugwuja, D.I. Synthesis and biological evaluation of Val-Val dipeptide-sulfonamide conjugates. Arch. Pharm. (Weinheim), 2020, 353(7), e2000074.
[http://dx.doi.org/10.1002/ardp.202000074] [PMID: 32390214]
[104]
Egbujor, M.C.; Okoro, U.C.; Okafor, S.N.; Amasiatu, I.S.; Amadi, U.B.; Egwuatu, P.I. Synthesis, molecular docking and pharmacological evaluation of new 4-methylphenylsulphamoyl carboxylic acids analogs. Int. J. Res. Pharm. Sci, 2020, 11(4), 5357-5366.
[http://dx.doi.org/10.26452/ijrps.v11i4.3157]
[105]
Egbujor, M.C.; Okoro, U.C.; Egu, S.A.; Egwuatu, P.I.; Eze, F.U.; Amasiatu, I.S. Design, synthesis and biological evaluation of alanine-based sulphonamide derivatives. Int. J. Res. Pharm. Sci., 2020, 11(4), 6449-6458.
[http://dx.doi.org/10.26452/ijrps.v11i4.3440]
[106]
Peng, X.; Hu, T.; Zhang, Y.; Zhao, A.; Natarajan, B.; Wei, J.; Yan, H.; Chen, H.; Lin, C. Synthesis of caffeic acid sulphonamide derivatives and their protective effect against H2O2 induced oxidative damage in A549 cells. RSC Advances, 2020, 10, 9924-9933.
[http://dx.doi.org/10.1039/D0RA00227E]
[107]
de Oliveira, A.S.; de Souza, L.F.S.; Nunes, R.J.; Johann, S.; Palomino-Salcedo, D.L.; Ferreira, L.L.G.; Andricopulo, A.D. Antioxidant and antibacterial activity of sulfonamides derived from carvacrol: A structure-activity relationship study. Curr. Top. Med. Chem., 2020, 20(3), 173-181.
[http://dx.doi.org/10.2174/1568026619666191127144336] [PMID: 31775599]
[108]
Lolak, N.; Boga, M.; Tuneg, M.; Karakoc, G.; Akocak, S.; Supuran, C.T. Sulphonamides incorporating 1,3,5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 424-431.
[http://dx.doi.org/10.1080/14756366.2019.1707196] [PMID: 31899985]
[109]
Gök, N. Akıncıoğlu, A.; Erümit Binici, E.; Akıncıoğlu, H.; Kılınç, N.; Göksu, S. Synthesis of novel sulfonamides with anti-Alzheimer and antioxidant capacities. Arch. Pharm. (Weinheim), 2021, 354(7), e2000496.
[http://dx.doi.org/10.1002/ardp.202000496] [PMID: 33749025]
[110]
Raghunath, A.; Sundarraj, K.; Nagarajan, R.; Arfuso, F.; Bian, J.; Kumar, A.P.; Sethi, G.; Perumal, E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol., 2018, 17, 297-314.
[http://dx.doi.org/10.1016/j.redox.2018.05.002] [PMID: 29775961]
[111]
Sun, H.; Zhu, J.; Lin, H.; Gu, K.; Feng, F. Recent progress in the development of small molecule Nrf2 modulators: A patent review (2012-2016). Expert Opin. Ther. Pat., 2017, 27(7), 763-785.
[http://dx.doi.org/10.1080/13543776.2017.1325464] [PMID: 28454500]
[112]
Cuadrado, A.; Manda, G.; Hassan, A.; Alcaraz, M.J.; Barbas, C.; Daiber, A.; Ghezzi, P.; León, R.; López, M.G.; Oliva, B.; Pajares, M.; Rojo, A.I.; Robledinos-Antón, N.; Valverde, A.M.; Guney, E.; Schmidt, H.H.H.W. Transcription factor Nrf2 as a therapeutic target for chronic diseases: A systems medicine approach. Pharmacol. Rev., 2018, 70(2), 348-383.
[http://dx.doi.org/10.1124/pr.117.014753] [PMID: 29507103]
[113]
Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating Nrf2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 555-575.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021856] [PMID: 30256716]
[114]
Virág, L.; Jaén, R.I.; Regdon, Z.; Boscá, L.; Prieto, P. Self-defense of macrophages against oxidative injury: Fighting for their own survival. Redox Biol., 2019, 26, 101261.
[http://dx.doi.org/10.1016/j.redox.2019.101261] [PMID: 31279985]
[115]
Egbujor, M.C.; Saha, S.; Buttari, B.; Profumo, E.; Saso, L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Rev. Clin. Pharmacol., 2021, 14(4), 465-480.
[http://dx.doi.org/10.1080/17512433.2021.1901578] [PMID: 33691555]
[116]
Lu, M-C.; Shao, H-L.; Liu, T.; You, Q-D.; Jiang, Z-Y. Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur. J. Med. Chem., 2020, 207, 112734.
[http://dx.doi.org/10.1016/j.ejmech.2020.112734] [PMID: 32866756]
[117]
Jiang, Z-Y.; Lu, M-C.; Xu, L-L.; Yang, T-T.; Xi, M-Y.; Xu, X-L.; Guo, X-K.; Zhang, X-J.; You, Q-D.; Sun, H-P. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J. Med. Chem., 2014, 57(6), 2736-2745.
[http://dx.doi.org/10.1021/jm5000529] [PMID: 24512214]
[118]
Tomoyo, M.; Shinnosuke, M.; Yka, O. Nrf2-activating compound. WO/2021/002473, 2021.
[119]
Roy, K.; Kar, S. Das, RN Chapter 1.2: What is QSAR? Definitions and formulism A primer on QSAR/QSPR modelling: Fundamental concepts.Springer-Verlag Inc: New York, , 2015; pp. 2-6.
[120]
Guha, R. On exploring structure-activity relationships. Methods Mol. Biol., 2013, 993, 81-94.
[http://dx.doi.org/10.1007/978-1-62703-342-8_6] [PMID: 23568465]
[121]
Ghasemi, F.; Mehridehnavi, A.; Pérez-Garrido, A.; Pérez-Sánchez, H. Neural network and deep-learning algorithms used in QSAR studies: Merits and drawbacks. Drug Discov. Today, 2018, 23(10), 1784-1790.
[http://dx.doi.org/10.1016/j.drudis.2018.06.016] [PMID: 29936244]
[122]
Natasenamat, C.; Isarankura, N.; Ayudhya, C.; Naenna, T.; Prachayasi, V.A. Practical overview of quantitative structure activity relationship. EXCLI J., 2009, 8, 74-88.
[123]
Doungsoongnuen, S.; Worachartcheewan, A.; Pingaew, R.; Suksrichavalit, T.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Investigation on biological activities of anthranilic acid sulfonamide analogs. EXCLI J., 2011, 10, 155-161.
[PMID: 27857672]
[124]
Egbujor, M.C.; Okoro, U.C.; Okafor, S.; Nwankwo, N.E. Synthesis, characterization and in silico studies of novel alkanoylated 4-methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidant agents. Intern. J. Pharm. Phytopharm. Res, 2019, 9(3), 89-97.
[125]
Egbujor, M.C.; Egu, S.A.; Okonkwo, V.I.; Jacob, A.D.; Egwuatu, P.I.; Amasiatu, I.S. Antioxidant drug design: Historical and recent developments. J. Pharm. Res. Int., 2021, 32(41), 36-56.
[http://dx.doi.org/10.9734/jpri/2020/v32i4131042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy