Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Odyssey of Deep Eutectic Solvents as Sustainable Media for Multicomponent Reactions: An Update

Author(s): Ankita Chaudhary*

Volume 20, Issue 2, 2023

Published on: 08 June, 2022

Page: [156 - 189] Pages: 34

DOI: 10.2174/1570193X19666220331163403

Price: $65

Abstract

Deep eutectic solvents (DESs) are frequently defined as binary or ternary mixtures of compounds that are able to associate mainly via hydrogen bonds. As the interest in green sustainable solvent’s spread over the entire scientific community, DESs find applications as alternative solvents and/or catalysts for organic transformations. Advantages such as easy reproducible preparation, low cost, environmentally benign nature, wide liquid range, excellent thermal stability, negligible vapour pressure, recyclability, and tunable properties render DESs as a sustainable candidate of catalyst/solvent for futuristic transformations involving multicomponent strategy. In view of the escalating demand for green synthetic approaches, this paper retrospects the advances made in the application of DES in multicomponent reactions since 2018.

Keywords: Deep eutectic solvents, multicomponent reactions, green chemistry, catalysis, sustainable chemistry, organic transformations.

Graphical Abstract

[1]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, (1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[2]
Liu, P.; Hao, J-W.; Mo, L-P.; Zhang, Z-H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5(60), 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[3]
Ünlü, A.E. Arıkaya, A.; Takaç, S. Use of deep eutectic solvents as catalyst: A mini-review. Green Proc. Synthesis, 2019, 8(1), 355-372.
[http://dx.doi.org/10.1515/gps-2019-0003]
[4]
Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 245-286.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015]
[5]
Longo, L.S., Jr; Craveiro, M.V. Deep eutectic solvents as unconventional media for multicomponent reactions. J. Braz. Chem. Soc., 2018, 29, 1999-2025.
[http://dx.doi.org/10.21577/0103-5053.20180147]
[6]
Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem., 2016, 2016(4), 612-632.
[http://dx.doi.org/10.1002/ejoc.201501197]
[7]
Calvo-Flores, F.G.; Mingorance-Sánchez, C. Deep eutectic solvents and multicomponent reactions: Two convergent items to green chemistry strategies. ChemistryOpen, 2021, 10(8), 815-829.
[http://dx.doi.org/10.1002/open.202100137] [PMID: 34402596]
[8]
Alonso, D.A.; Burlingham, S-J.; Chinchilla, R.; Guillena, G.; Ramón, D.J.; Tiecco, M. Asymmetric organocatalysis in deep eutectic solvents. Eur. J. Org. Chem., 2021, 2021(29), 4065-4071.
[http://dx.doi.org/10.1002/ejoc.202100385]
[9]
Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Deep eutectic solvents (DESs) and their application in biosensor development. Sensors (Basel), 2021, 21(13), 4263.
[http://dx.doi.org/10.3390/s21134263] [PMID: 34206344]
[10]
Şahin, S.Tailor-designed deep eutectic liquids as a sustainable extraction media: An alternative to ionic liquids. J. Pharm. Biomed. Anal., 2019, 174, 324-329.
[http://dx.doi.org/10.1016/j.jpba.2019.05.059] [PMID: 31195320]
[11]
Jablonský, M.; Škulcová, A.; Šima, J. Use of deep eutectic solvents in polymer chemistry-A review. Molecules, 2019, 24(21), 3978.
[http://dx.doi.org/10.3390/molecules24213978] [PMID: 31684174]
[12]
Wu, J.; Liang, Q.; Yu, X.; Lü, Q-F.; Ma, L.; Qin, X.; Chen, G.; Li, B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater., 2021, 31(22), 2011102.
[http://dx.doi.org/10.1002/adfm.202011102]
[13]
Panic, M.; Bubalo, M.C. Redovniković I.R. Designing a biocatalytic process involving deep eutectic solvents. J. Chem. Technol. Biotechnol., 2021, 96(1), 14-30.
[http://dx.doi.org/10.1002/jctb.6545]
[14]
Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; Gurkan, B.; Maginn, E.J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T.A.; Baker, G.A.; Tuckerman, M.E.; Savinell, R.F.; Sangoro, J.R. Application of deep eutectic solvents in food analysis: A review. Chem. Rev., 2021, 121(3), 1232-1285.
[http://dx.doi.org/10.1021/acs.chemrev.0c00385] [PMID: 33315380]
[15]
Soltanmohammadi, F.; Jouyban, A.; Shayanfar, A. New aspects of deep eutectic solvents: Extraction, pharmaceutical applications, as catalyst and gas capture. Chem. Pap., 2020, 5, 439-453.
[16]
Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ., 2019, 5, 2-21.
[17]
El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett., 2021, 19(4), 3397-3408.
[http://dx.doi.org/10.1007/s10311-021-01225-8]
[18]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[19]
Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S-N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod., 2018, 81(3), 679-690.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00945] [PMID: 29513526]
[20]
Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry, 2007, 13(22), 6495-6501.
[http://dx.doi.org/10.1002/chem.200601738] [PMID: 17477454]
[21]
Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs. ionic liquids: Similarities and differences. Microchem. J., 2020, 159, 105539.
[http://dx.doi.org/10.1016/j.microc.2020.105539]
[22]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[23]
Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol., 2011, 156(4), 1701-1705.
[http://dx.doi.org/10.1104/pp.111.178426] [PMID: 21677097]
[24]
Zamani, P.; Ozdemir, J.; Ha, Y.; Benamara, M.; Kuchuk, A.; Wang, T.; Chen, J.; Khosropour, A.R.; Beyzavi, H. Magnetic nanoparticle anchored deep eutectic solvents as a catalyst for the etherification and amination of naphthols. Adv. Synth. Catal., 2018, 360(22), 4372-4380.
[http://dx.doi.org/10.1002/adsc.201800743]
[25]
El Achkar, T.; Moufawad, T.; Ruellan, S.; Landy, D.; Greige-Gerges, H.; Fourmentin, S. Cyclodextrins: From solute to solvent. Chem. Commun. (Camb.), 2020, 56(23), 3385-3388.
[http://dx.doi.org/10.1039/D0CC00460J] [PMID: 32100798]
[26]
Kumar, A.K.; Parikh, B.S.; Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. Int., 2016, 23(10), 9265-9275.
[http://dx.doi.org/10.1007/s11356-015-4780-4] [PMID: 26032452]
[27]
El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq., 2019, 288, 111028.
[http://dx.doi.org/10.1016/j.molliq.2019.111028]
[28]
Yiin, C.L.; Quitain, A.T.; Yusup, S.; Sasaki, M.; Uemura, Y.; Kida, T. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour. Technol., 2016, 199, 258-264.
[http://dx.doi.org/10.1016/j.biortech.2015.07.103] [PMID: 26253419]
[29]
Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem., 2016, 18(19), 5133-5141.
[http://dx.doi.org/10.1039/C6GC01007E]
[30]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[31]
Herrera, R.P. Marqués‐López, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; John Wiley & Sons, Inc., 2015.
[32]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[33]
John, S.E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front., 2021, 8(15), 4237-4287.
[http://dx.doi.org/10.1039/D0QO01480J]
[34]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[35]
Tietze, L.F.; Bsasche, C.; Gericke, K.M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925]
[36]
Weber, L.; Illgen, M.; Almstetter, M. Discovery of new multi component reactions with combinatorial methods. Synlett, 1999, 3(3), 366-374.
[http://dx.doi.org/10.1055/s-1999-2612]
[37]
Mirshafiee, S.; Salamatmanesh, A.; Heydari, A. A sustainable approach for efficient one‐pot synthesis of 1‐aryl 1,2,3‐triazoles using copper iodide supported on 3‐thionicotinyl‐urea‐modified magnetic nanoparticles in DES. Appl. Organomet. Chem., 2021, 35(7), e6255.
[http://dx.doi.org/10.1002/aoc.6255]
[38]
Mehdipour, M.; Khodabakhshi, M. 2-(Aminomethyl)benzimidazole/Cu2+ immobilized on Fe3O4@SiO2: A convenient magnetic nanocatalyst for click reaction of aryl iodide/benzyl halide, sodium azide and terminal alkyne. Curr. Chem. Lett, 2020, 9, 9-18.
[http://dx.doi.org/10.5267/j.ccl.2019.6.004]
[39]
Rizzi, L.; Gotti, C.; De Amici, M.; Dallanoce, C.; Matera, C. A small library of 1,2,3-triazole analogs of CAP-55: Synthesis and binding affinity at nicotinic acetylcholine receptors. Chem. Biodivers., 2018, 15(9), e1800210.
[http://dx.doi.org/10.1002/cbdv.201800210] [PMID: 29953725]
[40]
Hosseini, H.G.; Doustkhah, E.; Kirillova, M.V.; Rostamnia, S.; Mahmoudi, G.; Kirillov, A.M. Combining ethylenediamine and ionic liquid functionalities within SBA-15: A promising catalytic pair for tandem Cu–AAC reaction. Appl. Catal. A Gen., 2017, 548, 96-102.
[http://dx.doi.org/10.1016/j.apcata.2017.07.006]
[41]
Yedage, D.B.; Patil, D.V. Environmentally benign deep eutectic solvent for synthesis of 1,3-thiazolidin-4-ones. ChemistrySelect, 2018, 3(13), 3611-3614.
[http://dx.doi.org/10.1002/slct.201800157]
[42]
Pratap, U.R.; Jawale, D.V.; Bhosle, M.R.; Mane, R.A. Saccharomyces cerevisiae catalyzed one-pot three component synthesis of 2,3-diaryl-4-thiazolidinones. Tetrahedron Lett., 2011, 52(14), 1689-1691.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.143]
[43]
Thakare, M.P.; Kumar, P.; Kumar, N.; Pandey, S.K. Silica gel promoted environment-friendly synthesis of 2,3-disubstituted 4-thiazolidinones. Tetrahedron Lett., 2014, 55(15), 2463-2466.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.007]
[44]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: Enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15(10), 2872-2884.
[http://dx.doi.org/10.1039/c3gc41218k]
[45]
Azizi, N.; Qomi, M.; Asghari, M.; Farhadi, E. Deep eutectic solvent mediated rapid and selective one-pot synthesis of 5-alkylidene-Thiazolones. Sustain. Chem. Pharm., 2021, 22, 100457.
[http://dx.doi.org/10.1016/j.scp.2021.100457]
[46]
Anderluh, M. Jukič M.; Petrič R. Three-component one-pot synthetic route to 2-amino-5-alkylidene-thiazol-4-ones. Tetrahedron, 2009, 65(1), 344-350.
[http://dx.doi.org/10.1016/j.tet.2008.10.045]
[47]
Shariati, N.; Baharfar, R. An efficient one-pot synthesis of 2-amino-5-arylidenethiazol-4-ones catalyzed by MgO nanoparticles. J. Chin. Chem. Soc. (Taipei), 2013, 61(3), 337-340.
[http://dx.doi.org/10.1002/jccs.201300425]
[48]
Atharifar, H.; Keivanloo, A.; Maleki, B. Greener synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in a deep eutectic solvent. Org. Prep. Proced. Int., 2020, 52(6), 517-523.
[http://dx.doi.org/10.1080/00304948.2020.1799672]
[49]
Zhang, Y.Q.; Wang, C.; Zhang, M.Y.; Cui, P.L.; Li, Y.M.; Zhou, X.; Li, J.C. One-pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones. Youji Huaxue, 2008, 28, 914-917.
[50]
Liu, Q.; Hou, X. One-pot three-component synthesis of 3-methyl-4-arylmethylene- isoxazol-5(4h)-ones catalyzed by sodium sulfide. Phosphorus Sulfur Silicon Relat. Elem., 2012, 187(4), 448-453.
[http://dx.doi.org/10.1080/10426507.2011.621003]
[51]
Maddila, S.N.; Maddila, S.; Van Zyl, W.E.; Jonnalagadda, S.B. Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones. Res. Chem. Intermed., 2015, 42(3), 2553-2566.
[http://dx.doi.org/10.1007/s11164-015-2167-2]
[52]
Beyzaei, H.; Kamali Deljoo, M.; Aryan, R.; Ghasemi, B.; Zahedi, M.M.; Moghaddam-Manesh, M. Green multicomponent synthesis, antimicrobial and antioxidant evaluation of novel 5-amino-isoxazole-4-carbonitriles. Chem. Cent. J., 2018, 12(1), 114.
[http://dx.doi.org/10.1186/s13065-018-0488-0] [PMID: 30443685]
[53]
Thi, M-N.T.; Nguyen, X-T.T.; Nguyen, H.T.; Chau, D-K.N.; Tran, P.H. Deep eutectic solvent: An efficient and green catalyst for the three-component condensation of indoles, aromatic aldehydes, and activated methylene compounds. Tetrahedron Lett., 2020, 61(6), 151481.
[http://dx.doi.org/10.1016/j.tetlet.2019.151481]
[54]
Epifano, F.; Genovese, S.; Rosati, O.; Tagliapietra, S.; Pelucchini, C.; Curini, M. Ytterbium triflate catalyzed synthesis of β-functionalized indole derivatives. Tetrahedron Lett., 2011, 52(5), 568-571.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.128]
[55]
Renzetti, A.; Boffa, E.; Colazzo, M.; Gérard, S.; Sapi, J.; Chan, T-H.; Nakazawa, H.; Villani, C.; Fontana, A.; Fontana, A. Yonemitsu-type condensations catalysed by proline and Eu(OTf)3. RSC Advances, 2014, 4(89), 47992-47999.
[http://dx.doi.org/10.1039/C4RA08853K]
[56]
Qu, Y.; Ke, F.; Zhou, L.; Li, Z.; Xiang, H.; Wu, D.; Zhou, X. Synthesis of 3-indole derivatives by copper sulfonato Salen catalyzed three-component reactions in water. Chem. Commun. (Camb.), 2011, 47(13), 3912-3914.
[http://dx.doi.org/10.1039/c0cc05695b] [PMID: 21340052]
[57]
Rushell, E.; Tailor, Y.K.; Khandewal, S.; Verma, K.; Agarwala, M.; Kumar, M. Deep eutectic solvent promoted synthesis of structurally diverse hybrid molecules with privileged heterocyclic substructures. New J. Chem., 2019, 43(31), 12462-12467.
[http://dx.doi.org/10.1039/C9NJ02694K]
[58]
Azizi, N.; Dezfooli, S. Catalyst-free synthesis of imidazo[1,2-a]pyridines via Groebke multicomponent reaction. Environ. Chem. Lett., 2016, 14(2), 201-106.
[http://dx.doi.org/10.1007/s10311-015-0541-3]
[59]
Shaabani, A.; Soleimani, E.; Maleki, A. Moghimi‐Rad, J. Rapid Synthesis of 3‐Aminoimidazo[1,2‐a] Pyridines and Pyrazines. Synth. Commun., 2008, 38(7), 1090-1095.
[http://dx.doi.org/10.1080/00397910701862931]
[60]
Rostamnia, S.; Lamei, K.; Mohammadquli, M.; Sheykhan, M.; Heydari, A. Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): An efficient, fast, and reusable green catalyst for the Ugi-like Groebke-Blackburn-Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Lett., 2012, 53(39), 5257-5260.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.075]
[61]
Adib, M.; Mahdavi, M.; Noghani, M.A.; Mirzaei, P. Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett., 2007, 48(41), 7263-7265.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.049]
[62]
Salamatmanesh, A.; Heydari, A. Magnetic nanostructure-anchored mixed-donor ligand system based on carboxamide and N-heterocyclic thiones: An efficient support of CuI catalyst for synthesis of imidazo[1,2-a]pyridines in eutectic medium. Appl. Catal. A Gen., 2021, 624, 118306.
[http://dx.doi.org/10.1016/j.apcata.2021.118306]
[63]
Chernyak, N.; Gevorgyan, V. General and efficient copper-catalyzed three-component coupling reaction towards imidazoheterocycles: One-pot synthesis of alpidem and zolpidem. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2743-2746.
[http://dx.doi.org/10.1002/anie.200907291] [PMID: 20213787]
[64]
Mishra, S.; Ghosh, R. Mechanistic studies on a new catalyst system (CuI-NaHSO4×SiO2) leading to the one-pot synthesis of imidazo[1,2-a]pyridines from reactions of 2-aminopyridines, aldehydes, and terminal alkynes. Synthesis, 2011, 3463-3470.
[65]
Ochoa-Puentes, C.; Higuera, N.; Peña-Solórzano, D. Urea–zinc chloride eutectic mixture-mediated one-pot synthesis of imidazoles: Efficient and ecofriendly access to trifenagrel. Synlett, 2018, 30(2), 225-229.
[http://dx.doi.org/10.1055/s-0037-1610679]
[66]
Nguyen, T.T.; Le, N-P.T.; Nguyen, T.T.; Tran, H. An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Advances, 2019, 9(65), 38148-38153.
[http://dx.doi.org/10.1039/C9RA08074K]
[67]
Sharma, S.D.; Hazarika, P.; Konwar, D. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O. Tetrahedron Lett., 2008, 49(14), 2216-2220.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.053]
[68]
Shaterian, H.R.; Ranjbar, M.; Azizi, K. Efficient multi-component synthesis of highly substituted imidazoles utilizing P2O5/SiO2 as a reusable catalyst. Chin. J. Chem., 2011, 29(8), 1635-1645.
[http://dx.doi.org/10.1002/cjoc.201180293]
[69]
Safa, K.D.; Allahvirdinesbat, M.; Namazi, H.; Panahi, P.N. Synthesis of organosilyl compounds-containing 1, 2, 4, 5-tetraaryl imidazoles sonocatalyzed by M/SAPO-34 (M =Fe Co, Mn, and Cu) nanostructures. C. R. Chim., 2015, 18(8), 883-890.
[http://dx.doi.org/10.1016/j.crci.2015.04.008]
[70]
Kamble, S.S.; Shankarling, G.S. A unique blend of water, DES and ultrasound for one-pot knorr pyrazole synthesis and knoevenagel-michael addition reaction. ChemistrySelect, 2018, 3(7), 2032-2036.
[http://dx.doi.org/10.1002/slct.201702898]
[71]
Khaligh, N.G.; Hamid, S.B.A.; Titinchi, S.J.J. N-Methylimidazolium perchlorate as a new ionic liquid for the synthesis of bis(pyrazol-5-ol)s under solvent-free conditions. Chin. Chem. Lett., 2016, 27(1), 104-108.
[http://dx.doi.org/10.1016/j.cclet.2015.07.027]
[72]
Khaligh, N.G.; Mihankhah, T.; Gorjian, H.; Johan, M.R. Greener and facile synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s through a conventional heating procedure. Synth. Commun., 2020, 50(21), 3276-3286.
[http://dx.doi.org/10.1080/00397911.2020.1799014]
[73]
Filian, H.; Kohzadian, A.; Mohammadi, M.; Ghorbani-Choghamarani, A.; Karami, A. Pd(0)-Guanidine@MCM-41: A very effective catalyst for rapid production of bis(pyrazolyl)methanes. Appl. Organomet. Chem., 2020, 34(6), e5579.
[http://dx.doi.org/10.1002/aoc.5579]
[74]
Mirjalili, B.B.F.; Jalili Bahabadi, N.; Bamoniri, A. Triethanolamine–sodium acetate as a novel deep eutectic solvent for promotion of tetrahydrodipyrazolopyridines synthesis under microwave irradiation. J. Iran. Chem. Soc., 2021, 18, 2181-2187.
[http://dx.doi.org/10.1007/s13738-021-02178-z]
[75]
Vanegas, S.; Rodríguez, D. Ochoa‐Puentes, C. An efficient and eco‐friendly one‐pot synthesis of pyrazolopyridines mediated by choline chloride/urea eutectic mixture. ChemistrySelect, 2019, 4(11), 3131-3134.
[http://dx.doi.org/10.1002/slct.201900314]
[76]
Salehi, N.; Mirjalili, B.B.F. Nano-ovalbumin: A green biocatalyst for biomimetic synthesis of tetrahydrodipyrazolo pyridines in water. Res. Chem. Intermed., 2018, 44(11), 7065-7077.
[http://dx.doi.org/10.1007/s11164-018-3542-6]
[77]
Safaei-Ghomi, J.; Sadeghzadeh, R.; Shahbazi-Alavi, H. A pseudo six-component process for the synthesis of tetrahydrodipyrazolo pyridines using an ionic liquid immobilized on a FeNi3 nanocatalyst. RSC Advances, 2016, 6(40), 33676-33685.
[http://dx.doi.org/10.1039/C6RA02906J]
[78]
Dabiri, M.; Salehi, P.; Koohshari, M.; Hajizadeh, Z. MaGee, D.I. An efficient synthesis of tetrahydropyrazolopyridine derivatives by a one-pot tandem multi-component reaction in a green media. ARKIVOC, 2014, 204-214.
[79]
Tipale, M.R.; Khillare, L.D.; Deshmukh, A.R.; Bhosle, M.R. An efficient four component domino synthesis of pyrazolopyranopyrimidines using recyclable choline chloride:Urea deep eutectic solvent. J. Heterocycl. Chem., 2018, 55(3), 716-728.
[http://dx.doi.org/10.1002/jhet.3095]
[80]
Bhosle, M.R.; Khillare, L.D.; Dhumal, S.T.; Mane, R.A. A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles in deep eutectic solvent. Chin. Chem. Lett., 2016, 27(3), 370-374.
[http://dx.doi.org/10.1016/j.cclet.2015.12.005]
[81]
Nguyen, H.T.; Le, T.V.; Tran, P.H. AC-SO3H/[CholineCl][Urea]2 as a green catalytic system for the synthesis of pyrano[2,3-c]pyrazole scaffolds. J. Environ. Chem. Eng., 2021, 9(3), 105228.
[http://dx.doi.org/10.1016/j.jece.2021.105228]
[82]
Dehbalaei, M.G.; Foroughifar, N.; Pasdar, H.; Khajeh-Amiri, A.; Foroughifar, N.; Alikarami, M. Choline chloride based thiourea catalyzed highly efficient, eco-friendly synthesis and anti-bacterial evaluation of some new 6-amino-4-aryl-2,4-dihydro-3-phenyl pyrano[2,3-c] pyrazole-5-carbonitrile derivatives. Res. Chem. Intermed., 2017, 43(5), 3035-3051.
[http://dx.doi.org/10.1007/s11164-016-2810-6]
[83]
Patil, A.; Lohar, T.; Mane, A.; Kamat, S.; Salunkhe, R. Deep eutectic solvent an efficient reaction medium for the synthesis of chromeno pyrazolo and indazolo phthalazine derivatives. J. Heterocycl. Chem., 2019, 56(11), 3145-3151.
[http://dx.doi.org/10.1002/jhet.3713]
[84]
Shaibuna, M.; Abbas, A.; Kuniyil, M.J.K.; Sreekumar, K. Sustainable synthesis of 1,8-dioxooctahydroxanthenes in deep eutectic solvents (DESs). New J. Chem., 2021, 45(18), 8335-8344.
[http://dx.doi.org/10.1039/D1NJ00743B]
[85]
Kantevari, S.; Bantu, R.; Nagarapu, L. TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. ARKIVOC, 2006, 16, 136-148.
[86]
Mousavi, S.R.; Nodeh, H.R.; Afshari, E.Z.; Foroumadi, A. Graphene oxide incorporated strontium nanoparticles as a highly efficient and green acid catalyst for one-pot synthesis of tetramethyl-9-aryl-hexahydroxanthenes and 13-aryl-5h-dibenzo[b,i]xanthene-5,7,12,14(13h)-tetraones under solvent-free conditions. Catal. Lett., 2019, 149(4), 1075-1086.
[http://dx.doi.org/10.1007/s10562-019-02675-0]
[87]
Sadjadi, S.; Ghoreyshi Kahangi, F.; Dorraj, M.; Heravi, M.M. Ag Nanoparticles stabilized on cyclodextrin polymer decorated with multi-nitrogen atom containing polymer: An efficient catalyst for the synthesis of xanthenes. Molecules, 2020, 25(2), 241.
[http://dx.doi.org/10.3390/molecules25020241] [PMID: 31936059]
[88]
Ashtarian, J.; Heydari, R.; Maghsoodlou, M.; Yazdani-Elah-Abadi, A. Bronsted acidic ionic liquids (bails)-catalyzed synthesis of 1,8-dioxo-octahydroxanthene and 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives under eco-friendly conditions. Iran. J. Sci. Technol. Trans. A Sci., 2020, 44(1), 51-64.
[http://dx.doi.org/10.1007/s40995-019-00786-2]
[89]
Xiong, X.; Yi, C.; Liao, X.; Lai, S. An effective one-pot access to 2-amino-4h-benzo[b]pyrans and 1,4-dihydropyridines via γ-cyclodextrin-catalyzed multi-component tandem reactions in deep eutectic solvent. Catal. Lett., 2019, 149(6), 1690-1700.
[http://dx.doi.org/10.1007/s10562-019-02767-x]
[90]
Azimzadeh-Sadeghi, S.; Yavari, I. Choline chloride/pentaerythritol: A deep eutectic solvent for the synthesis of pyran and chromene derivatives. J Iran. Chem. Soc., 2021, 18(6), 1261-1267.
[http://dx.doi.org/10.1007/s13738-020-02108-5]
[91]
Biglari, M.; Shirini, F.; Mahmoodi, N.O.; Zabihzadeh, M.; Mashhadinezhad, M. A choline chloride-based deep eutectic solvent promoted three-component synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-d]pyrimidinone (thione) derivatives. J. Mol. Struct., 2020, 1205, 127652.
[http://dx.doi.org/10.1016/j.molstruc.2019.127652]
[92]
Biglari, M.; Shirini, F.; Mahmoodi, N.O.; Zabihzadeh, M.; Langarudi, M.S.N.; Khoshdel, M.A. Taurine/choline chloride deep eutectic solvent as a novel eco-compatible catalyst to facilitate the multicomponent synthesis of pyrano[2,3-d]pyrimidinone (thione), hexahydroquinoline, and biscoumarin derivatives. Polycycl. Aromat. Compd., 2020, 1-22.
[http://dx.doi.org/10.1080/10406638.2020.1781212]
[93]
Fekri, L.Z.; Nikpassand, M.; Mostaghim, S.; Marvi, O. Green catalyst-free multi-component synthesis of aminobenzochromenes in deep eutectic solvents. Org. Prep. Proced. Int., 2020, 52(2), 81-90.
[http://dx.doi.org/10.1080/00304948.2020.1714319]
[94]
Akbarian, M.; Sanchooli, E.; Oveisi, A.R.; Daliran, S. Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. J. Mol. Liq., 2021, 325, 115228.
[http://dx.doi.org/10.1016/j.molliq.2020.115228]
[95]
Shaikh, M.A.; Farooqui, M.; Abed, S. Novel task-specific ionic liquid [Et2NH(CH2)2CO2H][AcO] as a robust catalyst for the efficient synthesis of some pyran-annulated scaffolds under solvent-free conditions. Res. Chem. Intermed., 2019, 45(3), 1595-1617.
[http://dx.doi.org/10.1007/s11164-018-3696-2]
[96]
Albadi, J.; Mansournezhad, A.; Darvishi-Paduk, M. Poly(4-vinylpyridine): As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chin. Chem. Lett., 2013, 2013(24), 208-210.
[http://dx.doi.org/10.1016/j.cclet.2013.01.020]
[97]
Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R. Synthesis and characterization of a novel Fe3O4@SiO2-BenzIm-Fc[Cl]/BiOCl nano-composite and its efficient catalytic activity in the ultrasound-assisted synthesis of diverse chromene analogs. New J. Chem., 2019, 43(1), 135-145.
[http://dx.doi.org/10.1039/C8NJ04938F]
[98]
Tasqeeruddin, S.; Asiri, Y.I.; Shaheen, S. Rapid and efficient one-pot multicomponent synthesis of pyrano[3,2-c]chromene derivatives, catalyzed by a deep eutectic solvent. Russ. J. Org. Chem., 2021, 57(8), 1321-1329.
[http://dx.doi.org/10.1134/S1070428021080121]
[99]
Xie, Z.; Li, H.; Wang, B.; Wu, Z.; Le, Z. One‐pot rapid synthesis of 4 H‐1‐benzopyran derivatives in a deep eutectic solvent. J. Heterocycl. Chem., 2021, 58(8), 1588-1593.
[http://dx.doi.org/10.1002/jhet.4282]
[100]
Bhosle, M.R.; Nipte, D.; Gaikwad, J.; Shaikh, M.A.; Bondle, G.M.; Sangshetti, J.N. A rapid and green method for expedient multicomponent synthesis of N-substituted decahydroacridine-1,8-diones as potential antimicrobial agents. Res. Chem. Intermed., 2018, 44(11), 7047-7064.
[http://dx.doi.org/10.1007/s11164-018-3541-7]
[101]
Bhosle, M.R.; Shaikh, M.A.; Nipate, D.; Khillare, L.D.; Bondle, G.M.; Sangshetti, J.N. ChCl:2ZnCl2 Catalyzed efficient synthesis of new sulfonyl decahydroacridine-1,8-diones via one-pot multicomponent reactions to discover potent antimicrobial agents. Polycycl. Aromat. Compd., 2019, 45, 1175-1186.
[102]
Gholami, A.; Mokhtary, M.; Nikpassand, M. Choline chloride/Oxalic acid (ChCl/Oxa) catalyzed one-pot synthesis of novel azo and sulfonated pyrimido[4,5-b]quinoline derivatives. Dyes Pigments, 2020, 180, 108453.
[http://dx.doi.org/10.1016/j.dyepig.2020.108453]
[103]
Gómez, A.P.; Bejarano, O.R.; Kouznetsov, V.V.; Ochoa-Puentes, C. One-pot diastereoselective synthesis of tetrahydroquinolines from star anise oil in a choline chloride/zinc chloride eutectic mixture. ACS Sustain. Chem.& Eng., 2019, 7(22), 18630-18639.
[http://dx.doi.org/10.1021/acssuschemeng.9b05073]
[104]
Maleki, A.; Aghaei, M.; Kari, T. Facile synthesis of 7-aryl-benzo[h]tetrazolo[5,1-b]quinazoline-5,6-dione fused polycyclic compounds by using a novel magnetic polyurethane catalyst. Polycycl. Aromat. Compd., 2017, 39(3), 266-278.
[http://dx.doi.org/10.1080/10406638.2017.1325746]
[105]
Peña-Solórzano, D.; Guilombo, C.E.G.; Ochoa-Puentes, C. Rapid and eco-friendly high yield synthesis of dihydroquinazolinones mediated by urea/zinc chloride eutectic mixture. Sustain. Chem. Pharm., 2019, 14, 100167.
[http://dx.doi.org/10.1016/j.scp.2019.100167]
[106]
Singh, R.R.; Singh, T.P.; Devi, T.L.; Devi, T.J.; Singh, O.M. Synthesis of 2,4-disubstituted quinazolines promoted by deep eutectic solvent. Curr. Res. Green Sustain. Chem., 2021, 4, 100130.
[http://dx.doi.org/10.1016/j.crgsc.2021.100130]
[107]
Ma, C-T.; Liu, P.; Wu, W.; Zhang, Z-H. Low melting oxalic acid/proline mixture as dual solvent/catalyst for efficient synthesis of 13-aryl-13H-benzo[g]benzothiazolo[2,3-b]quinazoline-5,14-diones under microwave irradiation. J. Mol. Liq., 2017, 242, 606-611.
[http://dx.doi.org/10.1016/j.molliq.2017.07.060]
[108]
Wu, L.; Zhang, C.; Li, W. Synthesis and antiproliferative evaluation of 13-aryl-13H-benzo[g]benzothiazolo [2,3-b]quinazoline-5,14-diones. Bioorg. Med. Chem. Lett., 2014, 24(6), 1462-1465.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.018] [PMID: 24582982]
[109]
Kamble, S.; Shankarling, S. G. Amalgamation of CSR and DES: An energy efficient protocol for the one-pot synthesis of 2,4,6-triaryl pyridine derivatives. ChemistrySelect, 2018, 3, 10464-10467.
[http://dx.doi.org/10.1002/slct.201801690]
[110]
Gao, W.G. Liu, P.; Zhang, P.; Mo, W.; Zhang, L.; Zhanhui, Deep Eutectic solvent catalyzed one-pot synthesis of 4,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles. Youji Huaxue, 2018, 38(4), 846-854.
[http://dx.doi.org/10.6023/cjoc201711014]
[111]
Shaibuna, M.; Sreekumar, K. Dual solvent-catalyst role of deep eutectic solvents in Hantzsch dihydropyridine synthesis. Synth. Commun., 2021, 51, 1742-1753.
[112]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, S.P.N. Melamine trisulfonic acid as an efficient catalyst for the synthesis of 2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-diethyl/dimethylcarboxylate derivatives via Hantzsch reaction in solvent free condition. J. King Saud Univ. Sci., 2013, 25(3), 191-199.
[http://dx.doi.org/10.1016/j.jksus.2013.02.001]
[113]
Maheswari, R.; Srinivasan, V.V.; Ramanathan, A.; Pachamuthu, M.P.; Rajalakshmi, R.; Imran, G. Preparation and characterization of mesostructured Zr-SBA-16: Efficient Lewis acidic catalyst for Hantzsch reaction. J. Porous Mater., 2015, 22(3), 705-711.
[http://dx.doi.org/10.1007/s10934-015-9943-7]
[114]
Tan, J.; Liu, X.; Yao, N.; Hu, Y.L.; Li, X.H. Novel and effective strategy of multifunctional titanium incorporated mesoporous material supported ionic liquid mediated reusable hantzsch reaction. ChemistrySelect, 2019, 4(8), 2475-2479.
[http://dx.doi.org/10.1002/slct.201803739]
[115]
Cui, Y.; Li, C.; Bao, M. Deep eutectic solvents (DESs) as powerful and recyclable catalysts and solvents for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. Green Process. Synth., 2019, 8(1), 568-576.
[http://dx.doi.org/10.1515/gps-2019-0026]
[116]
Borse, B.N.; Borude, V.S.; Shukla, S.R. Synthesis of novel dihydropyrimidin-2(1H)-ones derivatives using lipase and their antimicrobial activity. Curr. Chem. Lett, 2012, 1, 59-68.
[http://dx.doi.org/10.5267/j.ccl.2012.3.001]
[117]
Gore, S.; Baskaran, S.; Koenig, B. Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid-urea mixtures. Green Chem., 2011, 13(4), 1009-1013.
[http://dx.doi.org/10.1039/c1gc00009h]
[118]
Mahdipour, M.; Khabazzadeh, H.; Kermani, E.T. Efficient synthesis of dihydropyrimidine and amidoalkyl naphthol derivatives using zinc chloride based deep eutectic systems as solvent & catalyst. J. Sci. I. R. Iran, 2016, 27, 119-127.
[119]
Riadi, Y. Green, rapid and efficient synthesis of new antibacterial pyridopyrimidinone mediated by eutectic mixture of Urea/CuCl2. Sustain. Chem. Pharm., 2020, 15, 100233.
[http://dx.doi.org/10.1016/j.scp.2020.100233]
[120]
Srivastava, S. Knoevenagel condensation and michael addition in bio‐renewable deep eutectic solvent: Facile synthesis of a library of bis‐enol derivatives. ChemistrySelect, 2020, 5(2), 799-803.
[http://dx.doi.org/10.1002/slct.201904806]
[121]
Patel, D.M.; Patel, H.J.; Padrón, J.M.; Patel, H.M. A novel substrate directed multicomponent reaction for the syntheses of tetrahydro-spiro[pyrazolo[4,3-f]quinoline]-8,5′-pyrimidines and tetrahydro-pyrazolo[4,3-f]pyrimido[4,5-b]quinolines via selective multiple C–C bond formation under metal-free conditions. RSC Advances, 2020, 10(33), 19600-19609.
[http://dx.doi.org/10.1039/D0RA02990D]
[122]
Zhang, W-H.; Chen, M-N.; Hao, Y.; Jiang, X.; Zhou, X-L.; Zhang, Z-H. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines J. Mol. Liq., 2019, 278, 124-129.
[http://dx.doi.org/10.1016/j.molliq.2019.01.065]
[123]
Devi, T.J.; Singh, T.P.; Singh, O.M. The one-pot four-component eco-friendly synthesis of spirooxindoles in deep eutectic solvent. J. Chem. Sci., 2020, 132(1), 28.
[http://dx.doi.org/10.1007/s12039-019-1730-6]
[124]
Nishtala, V.B.; Basavoju, S. ZnCl2+Urea, the deep eutectic solvent promoted synthesis of the spirooxindolopyrans and xanthenes through a pseudo-three-component approach. Synth. Commun., 2019, 49(18), 2342-2349.
[http://dx.doi.org/10.1080/00397911.2019.1620784]
[125]
Singh, R.; Saini, M.R.; Bhardwaj, D.; Singh, A. An expedient synthesis of new iminothiazolidinone grafted dispiro-pyrrolidineoxindole/indeno hybrids via a multicomponent [3+2] cycloaddition reaction in a deep eutectic solvent. New J. Chem., 2020, 44(19), 7923-7931.
[http://dx.doi.org/10.1039/D0NJ00801J]
[126]
Ling, X.; Zhang, W-H.; Cui, Z-S.; Zhang, Z-H. Choline chloride/glycerol promoted synthesis of 3,3-disubstituted indol- 2-ones. Curr. Organocatal., 2021, 8(2), 249-257.
[http://dx.doi.org/10.2174/2213337207999210104223005]
[127]
Zhang, M.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Supported molybdenum on graphene oxide/Fe 3 O 4  An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[128]
Bahrani, A.; Karimi-Jaberi, Z. A green one-pot synthesis of α-amino nitrile derivatives via Strecker reaction in deep eutectic solvents. Monatsh. Chem., 2018, 150(2), 303-304.
[http://dx.doi.org/10.1007/s00706-018-2313-9]
[129]
Antenucci, A.; Marra, F.; Dughera, S. Silica gel-mmobilised chiral 1,2-benzenedisulfonimide: A Brønsted acid heterogeneous catalyst for enantioselective multicomponent Passerini reaction. RSC Advances, 2021, 11(42), 26083-26092.
[http://dx.doi.org/10.1039/D1RA05297G]
[130]
Berjis, A.; Mirza, B.; Anaraki-Ardakani, H. Green and efficient synthesis of new β-amido-aroyl carbonyl derivatives catalyzed by choline chloride/urea as a deep eutectic solvent. J. Serb. Chem. Soc., 2021, 86(6), 547-553.
[http://dx.doi.org/10.2298/JSC200506019B]
[131]
Nguyen, V.T.; Hai Truong Nguyen, H.T.; Tran, P.H. One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: A green method and mechanistic insight. New J. Chem., 2021, 45(4), 2053-2059.
[http://dx.doi.org/10.1039/D0NJ05687A]
[132]
Azizi, N.; Farhadi, E. Straightforward and rapid Petasis multicomponent reactions in deep eutectic solvent. Curr. Res. Green Sustain. Chem., 2021, 4, 100220.
[http://dx.doi.org/10.1016/j.crgsc.2021.100220]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy