Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Perspective

Potential Clinical Role of Prokineticin 2 (PK2) in Neurodegenerative Diseases

Author(s): Daniela Maftei, Tommaso Schirinzi, Nicola B. Mercuri, Roberta Lattanzi and Cinzia Severini*

Volume 20, Issue 11, 2022

Published on: 18 August, 2022

Page: [2019 - 2023] Pages: 5

DOI: 10.2174/1570159X20666220411084612

Abstract

The role of the immune system in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) has become clear in recent decades, as evidenced by the presence of activated microglia and astrocytes and numerous soluble mediators in the brain and peripheral tissues of affected patients. Among inflammatory mediators, chemokines play a central role in neuroinflammation due to their dual function as chemoattractants for immune cells and molecular messengers in crosstalk among CNS-resident cells. The chemokine Bv8/Prokineticin 2 (PK2) has recently emerged as an important player in many age-related and chronic diseases that are either neurodegenerative or systemic. In this perspective paper, we briefly discuss the role that PK2 and its cognate receptors play in AD and PD animal models and in patients. Given the apparent changes in PK2 blood levels in both AD and PD patients, the potential clinical value of PK2 either as a disease biomarker or as a therapeutic target for these disorders is discussed.

Keywords: Prokyneticin 2, neuroinflammation, Alzheimer’s disease, Parkinson’s disease, therapeutic targets, clinical biomarkers.

[1]
Mortada, I.; Farah, R.; Nabha, S.; Ojcius, D.M.; Fares, Y.; Almawi, W.Y.; Sadier, N.S. Immunotherapies for Neurodegenerative Diseases. Front. Neurol., 2021, 12, 654739.
[http://dx.doi.org/10.3389/fneur.2021.654739] [PMID: 34163421]
[2]
Nimmo, J.T.; Kelly, L.; Verma, A.; Carare, R.O.; Nicoll, J.A.R.; Dodart, J.C. Amyloid-β and α-synuclein immunotherapy: From experimental studies to clinical trials. Front. Neurosci., 2021, 15, 733857.
[http://dx.doi.org/10.3389/fnins.2021.733857] [PMID: 34539340]
[3]
Yiannopoulou, K.G.; Anastasiou, A.I.; Zachariou, V.; Pelidou, S.H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines, 2019, 7(4), 97.
[http://dx.doi.org/10.3390/biomedicines7040097] [PMID: 31835422]
[4]
Krashia, P.; Cordella, A.; Nobili, A.; La Barbera, L.; Federici, M.; Leuti, A.; Campanelli, F.; Natale, G.; Marino, G.; Calabrese, V.; Vedele, F.; Ghiglieri, V.; Picconi, B.; Di Lazzaro, G.; Schirinzi, T.; Sancesario, G.; Casadei, N.; Riess, O.; Bernardini, S.; Pisani, A.; Calabresi, P.; Viscomi, M.T.; Serhan, C.N.; Chiurchiù, V.; D’Amelio, M.; Mercuri, N.B. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat. Commun., 2019, 10(1), 3945.
[http://dx.doi.org/10.1038/s41467-019-11928-w] [PMID: 31477726]
[5]
Petrillo, S.; Schirinzi, T.; Di Lazzaro, G.; D’Amico, J.; Colona, V.L.; Bertini, E.; Pierantozzi, M.; Mari, L.; Mercuri, N.B.; Piemonte, F.; Pisani, A. Systemic Activation of Nrf2 Pathway in Parkinson’s Disease. Mov. Disord., 2020, 35(1), 180-184.
[http://dx.doi.org/10.1002/mds.27878] [PMID: 31682033]
[6]
Schirinzi, T.; Maftei, D.; Ralli, M.; Greco, A.; Mercuri, N.B.; Lattanzi, R.; Severini, C. Serum Substance P Is Increased in Parkinson’s Disease and Correlates with Motor Impairment. Mov. Disord., 2022, 37(1), 228-230.
[http://dx.doi.org/10.1002/mds.28458] [PMID: 34623702]
[7]
Sancesario, G.M.; Di Lazzaro, G.; Grillo, P.; Biticchi, B.; Giannella, E.; Alwardat, M.; Pieri, M.; Bernardini, S.; Mercuri, N.B.; Pisani, A.; Schirinzi, T. Biofluids profile of α-Klotho in patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2021, 90, 62-64.
[http://dx.doi.org/10.1016/j.parkreldis.2021.08.004] [PMID: 34392132]
[8]
Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science, 2016, 353(6301), 777-783.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[9]
Severini, C.; Passeri, P.P.; Ciotti, M.; Florenzano, F.; Possenti, R.; Zona, C.; Di Matteo, A.; Guglielmotti, A.; Calissano, P.; Pachter, J.; Mercanti, D. Bindarit, inhibitor of CCL2 synthesis, protects neurons against amyloid-β-induced toxicity. J. Alzheimers Dis., 2013, 38(2), 281-293.
[http://dx.doi.org/10.3233/JAD-131070] [PMID: 23948942]
[10]
Severini, C.; Barbato, C.; Di Certo, M.G.; Gabanella, F.; Petrella, C.; Di Stadio, A.; de Vincentiis, M.; Polimeni, A.; Ralli, M.; Greco, A. Alzheimer’s Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr. Neuropharmacol., 2021, 19(4), 498-512.
[http://dx.doi.org/10.2174/1570159X18666200621204546] [PMID: 32564756]
[11]
Zuena, A.R.; Casolini, P.; Lattanzi, R.; Maftei, D. Chemokines in Alzheimer’s disease: New insights into prokineticins, chemokine-like proteins. Front. Pharmacol., 2019, 10, 622.
[http://dx.doi.org/10.3389/fphar.2019.00622] [PMID: 31231219]
[12]
Negri, L.; Ferrara, N. The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol. Rev., 2018, 98(2), 1055-1082.
[http://dx.doi.org/10.1152/physrev.00012.2017] [PMID: 29537336]
[13]
Désaubry, L.; Kanthasamy, A.G.; Nebigil, C.G. Prokineticin signaling in heart-brain developmental axis: Therapeutic options for heart and brain injuries. Pharmacol. Res., 2020, 160, 105190.
[http://dx.doi.org/10.1016/j.phrs.2020.105190] [PMID: 32937177]
[14]
Lattanzi, R.; Severini, C.; Maftei, D.; Saso, L.; Badiani, A. The Role of Prokineticin 2 in Oxidative Stress and in Neuropathological Processes. Front. Pharmacol., 2021, 12, 640441.
[http://dx.doi.org/10.3389/fphar.2021.640441] [PMID: 33732160]
[15]
Lattanzi, R.; Maftei, D.; Petrella, C.; Pieri, M.; Sancesario, G.; Schirinzi, T.; Bernardini, S.; Barbato, C.; Ralli, M.; Greco, A.; Possenti, R.; Sancesario, G.; Severini, C. Involvement of the chemokine prokineticin-2 (PROK2) in Alzheimer’s disease: From animal models to the human pathology. Cells, 2019, 8(11), 1430.
[http://dx.doi.org/10.3390/cells8111430] [PMID: 31766244]
[16]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[17]
Johnstone, M.; Gearing, A.J.H.; Miller, K.M. A central role for astrocytes in the inflammatory response to β-amyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol., 1999, 93(1-2), 182-193.
[http://dx.doi.org/10.1016/S0165-5728(98)00226-4] [PMID: 10378882]
[18]
Severini, C.; Lattanzi, R.; Maftei, D.; Marconi, V.; Ciotti, M.T.; Petrocchi Passeri, P.; Florenzano, F.; Del Duca, E.; Caioli, S.; Zona, C.; Balboni, G.; Salvadori, S.; Nisticò, R.; Negri, L. Bv8/prokineticin 2 is involved in Aβ-induced neurotoxicity. Sci. Rep., 2015, 5(1), 15301.
[http://dx.doi.org/10.1038/srep15301] [PMID: 26477583]
[19]
Caioli, S.; Severini, C.; Ciotti, T.; Florenzano, F.; Pimpinella, D.; Petrocchi Passeri, P.; Balboni, G.; Polisca, P.; Lattanzi, R.; Nisticò, R.; Negri, L.; Zona, C. Prokineticin system modulation as a new target to counteract the amyloid beta toxicity induced by glutamatergic alterations in an in vitro model of Alzheimer’s disease. Neuropharmacology, 2017, 116, 82-97.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.012] [PMID: 27989680]
[20]
Maftei, D.; Ratano, P.; Fusco, I.; Marconi, V.; Squillace, S.; Negri, L.; Severini, C.; Balboni, G.; Steardo, L.; Bronzuoli, M.R.; Scuderi, C.; Campolongo, P.; Lattanzi, R. The prokineticin receptor antagonist PC1 rescues memory impairment induced by β amyloid administration through the modulation of prokineticin system. Neuropharmacology, 2019, 158, 107739.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107739] [PMID: 31408628]
[21]
Schirinzi, T.; Sancesario, G.M.; Di Lazzaro, G.; Biticchi, B.; Colona, V.L.; Mercuri, N.B.; Bernardini, S.; Pisani, A. CSF α-synuclein inversely correlates with non-motor symptoms in a cohort of PD patients. Parkinsonism Relat. Disord., 2019, 61, 203-206.
[http://dx.doi.org/10.1016/j.parkreldis.2018.10.018] [PMID: 30348495]
[22]
Gordon, R.; Neal, M.L.; Luo, J.; Langley, M.R.; Harischandra, D.S.; Panicker, N.; Charli, A.; Jin, H.; Anantharam, V.; Woodruff, T.M.; Zhou, Q.Y.; Kanthasamy, A.G.; Kanthasamy, A. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat. Commun., 2016, 7(1), 12932.
[http://dx.doi.org/10.1038/ncomms12932] [PMID: 27703142]
[23]
Schirinzi, T.; Maftei, D.; Pieri, M.; Bernardini, S.; Mercuri, N.B.; Lattanzi, R.; Severini, C. Increase of prokineticin‐2 in serum of patients with Parkinson’s disease. Mov. Disord., 2021, 36(4), 1031-1033.
[http://dx.doi.org/10.1002/mds.28458]
[24]
Ng, K.L.; Li, J.D.; Cheng, M.Y.; Leslie, F.M.; Lee, A.G.; Zhou, Q.Y. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science, 2005, 308(5730), 1923-1927.
[http://dx.doi.org/10.1126/science.1112103] [PMID: 15976302]
[25]
Fullard, M.E.; Morley, J.F.; Duda, J.E. Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neurosci. Bull., 2017, 33(5), 515-525.
[http://dx.doi.org/10.1007/s12264-017-0170-x] [PMID: 28831680]
[26]
Watson, R.P.; Lilley, E.; Panesar, M.; Bhalay, G.; Langridge, S.; Tian, S.S.; McClenaghan, C.; Ropenga, A.; Zeng, F.; Nash, M.S. Increased prokineticin 2 expression in gut inflammation: Role in visceral pain and intestinal ion transport. Neurogastroenterol. Motil., 2012, 24(1), 65-e12-e12.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01804.x] [PMID: 22050240]
[27]
Horsager, J.; Andersen, K.B.; Knudsen, K.; Skjærbæk, C.; Fedorova, T.D.; Okkels, N.; Schaeffer, E.; Bonkat, S.K.; Geday, J.; Otto, M.; Sommerauer, M.; Danielsen, E.H.; Bech, E.; Kraft, J.; Munk, O.L.; Hansen, S.D.; Pavese, N.; Göder, R.; Brooks, D.J.; Berg, D.; Borghammer, P. Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study. Brain, 2020, 143(10), 3077-3088.
[http://dx.doi.org/10.1093/brain/awaa238] [PMID: 32830221]
[28]
Imbriani, P.; D’Angelo, V.; Platania, P.; Di Lazzaro, G.; Scalise, S.; Salimei, C.; El Atiallah, I.; Colona, V.L.; Mercuri, N.B.; Bonsi, P.; Pisani, A.; Schirinzi, T.; Martella, G. Ischemic injury precipitates neuronal vulnerability in Parkinson’s disease: Insights from PINK1 mouse model study and clinical retrospective data. Parkinsonism Relat. Disord., 2020, 74, 57-63.
[http://dx.doi.org/10.1016/j.parkreldis.2020.04.004] [PMID: 32335490]
[29]
Schirinzi, T.; Grillo, P.; Di Lazzaro, G.; Zenuni, H.; Salimei, C.; Dams-O’Connor, K.; Sancesario, G.M.; Mercuri, N.B.; Pisani, A. Effects of head trauma and sport participation in young-onset Parkinson’s disease. J. Neural Transm. (Vienna), 2021, 128(8), 1185-1193.
[http://dx.doi.org/10.1007/s00702-021-02370-8] [PMID: 34263354]
[30]
Yang, Z.; Wang, M.; Zhang, Y.; Cai, F.; Jiang, B.; Zha, W.; Yu, W. Metformin ameliorates diabetic cardiomyopathy by activating the PK2/PKR pathway. Front. Physiol., 2020, 11, 425.
[http://dx.doi.org/10.3389/fphys.2020.00425] [PMID: 32508669]
[31]
Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Shaikh, M.F.; Othman, I. Emerging neuroprotective effect of metformin in Parkinson’s disease: A molecular crosstalk. Pharmacol. Res., 2020, 152, 104593.
[http://dx.doi.org/10.1016/j.phrs.2019.104593] [PMID: 31843673]
[32]
Magnusen, A.F.; Hatton, S.L.; Rani, R.; Pandey, M.K. Genetic defects and pro-inflammatory cytokines in Parkinson’s disease. Front. Neurol., 2021, 12, 636139.
[http://dx.doi.org/10.3389/fneur.2021.636139] [PMID: 34239490]

© 2024 Bentham Science Publishers | Privacy Policy