[1]
Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The central nervous system and the gut microbiome. Cell, 2016, 167, 915-932.
[http://dx.doi.org/10.1016/j.cell.2016.10.027]
[http://dx.doi.org/10.1016/j.cell.2016.10.027]
[2]
Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[3]
Divyashri, G.; Krishna, G. Muralidhara; Prapulla, S.G. Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: in vitro and in vivo evidence. J. Med. Microbiol., 2015, 64(12), 1527-1540.
[http://dx.doi.org/10.1099/jmm.0.000184]
[http://dx.doi.org/10.1099/jmm.0.000184]
[4]
Athari Nik Azm, S.; Djazayeri, A.; Safa, M.; Azami, K.; Ahmadvand, B.; Sabbaghziarani, F.; Sharifzadeh, M.; Vafa, M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab., 2018, 43(7), 718-726.
[http://dx.doi.org/10.1139/apnm-2017-0648]
[http://dx.doi.org/10.1139/apnm-2017-0648]
[5]
Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep., 2017, 7(1), 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[6]
Sampson, T.R. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.
[http://dx.doi.org/10.1016/j.cell.2016.11.018]
[http://dx.doi.org/10.1016/j.cell.2016.11.018]
[7]
Keshavarzian, A.; Engen, P.; Bonvegna, S.; Cilia, R. The gut microbiome in Parkinson’s disease: A culprit or a bystander?Prog Brain Res; , 2020, p. 252, 357-450.
[http://dx.doi.org/10.1016/bs.pbr.2020.01.004]
[http://dx.doi.org/10.1016/bs.pbr.2020.01.004]
[8]
Wasser, C.I.; Mercieca, E.C.; Kong, G.; Hannan, A.J.; McKeown, S.J.; Glikmann-Johnston, Y.; Stout, J.C. Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun., 2020, 2(2), fcaa110.
[http://dx.doi.org/10.1093/braincomms/fcaa110]
[http://dx.doi.org/10.1093/braincomms/fcaa110]
[9]
Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M.; Zaba-ri, M.; Brik, R.B.; Kviatcovsky, D.; Zmora, N.; Cohen, Y.; Bar, N.; Levi, I.; Amar, N.; Mehlman, T.; Brandis, A.; Biton, I.; Kuperman, Y.; Tsoory, M.; Alfahel, L.; Harmelin, A.; Schwartz, M.; Israelson, A.; Arike, L.; Johansson, M.E.V.; Hansson, G.C.; Gotkine, M.; Segal, E.; Elinav, E. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019, 572(7770), 474-480.
[http://dx.doi.org/10.1038/s41586-019-1443-5] [PMID: 31330533]
[http://dx.doi.org/10.1038/s41586-019-1443-5] [PMID: 31330533]
[10]
Duscha, A. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell, 2020, 180(6), 1067-1080.
[http://dx.doi.org/10.1016/j.cell.2020.02.035]
[http://dx.doi.org/10.1016/j.cell.2020.02.035]
[11]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr., 2018, 9(1), 21-29.
[http://dx.doi.org/10.1093/advances/nmx009] [PMID: 29438462]
[http://dx.doi.org/10.1093/advances/nmx009] [PMID: 29438462]
[12]
Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112(Pt B), 399-412.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.002] [PMID: 27392632]
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.002] [PMID: 27392632]
[13]
Ostapiuk, A.; Urbanska, E.M. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci. Ther., 2022, 28(1), 19-35.
[http://dx.doi.org/10.1111/cns.13768] [PMID: 34862742]
[http://dx.doi.org/10.1111/cns.13768] [PMID: 34862742]
[14]
Xiao, J.; Wang, T.; Xu, Y.; Gu, X.; Li, D.; Niu, K.; Wang, T.; Zhao, J.; Zhou, R.; Wang, H.L. Long-term probiotic intervention mitigates memory dysfunction through a novel H3K27me3-based mechanism in lead-exposed rats. Transl. Psychiatry, 2020, 10(1), 25.
[http://dx.doi.org/10.1038/s41398-020-0719-8] [PMID: 32066679]
[http://dx.doi.org/10.1038/s41398-020-0719-8] [PMID: 32066679]
[15]
Boehme, M.; van de Wouw, M.; Bastiaanssen, T.F.S.; Olavarría-Ramírez, L.; Lyons, K.; Fouhy, F.; Golubeva, A.V.; Moloney, G.M.; Minuto, C.; Sandhu, K.V.; Scott, K.A.; Clarke, G.; Stanton, C.; Dinan, T.G.; Schellekens, H.; Cryan, J.F. Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Mol. Psychiatry, 2020, 25(10), 2567-2583.
[http://dx.doi.org/10.1038/s41380-019-0425-1] [PMID: 31092898]
[http://dx.doi.org/10.1038/s41380-019-0425-1] [PMID: 31092898]
[16]
Ferreira, F.S.; Biasibetti-Brendler, H.; Pierozan, P.; Schmitz, F.; Bertó, C.G.; Prezzi, C.A.; Manfredini, V.; Wyse, A.T.S. Kynurenic acid restores Nrf2 levels and prevents quinolinic acid-induced toxicity in rat striatal slices. Mol. Neurobiol., 2018, 55(11), 8538-8549.
[http://dx.doi.org/10.1007/s12035-018-1003-2] [PMID: 29564809]
[http://dx.doi.org/10.1007/s12035-018-1003-2] [PMID: 29564809]
[17]
Garber, K. First microbiome-based drug clears phase III, in clinical trial turnaround. Nat. Rev. Drug Discov., 2020, 19(10), 655-656.
[http://dx.doi.org/10.1038/d41573-020-00163-4]
[http://dx.doi.org/10.1038/d41573-020-00163-4]
[18]
Ahmed, S.; Busetti, A.; Fotiadou, P.; Vincy Jose, N.; Reid, S.; Georgieva, M.; Brown, S.; Dunbar, H.; Beurket-Ascencio, G.; Delday, M.I.; Ettorre, A.; Mulder, I.E. In vitro characterization of gut microbiota-derived bacterial strains with neuroprotective properties. Front. Cell. Neurosci., 2019, 13, 402.
[http://dx.doi.org/10.3389/fncel.2019.00402] [PMID: 31619962]
[http://dx.doi.org/10.3389/fncel.2019.00402] [PMID: 31619962]
[19]
Richard, P.; Kozlowski, L.; Guillorit, H.; Garnier, P.; McKnight, N.C.; Danchin, A.; Manière, X. Queuine, a bacterial-derived hypermodi-fied nucleobase, shows protection in in vitro models of neurodegeneration. PLoS One, 2021, 16(8), e0253216.
[http://dx.doi.org/10.1371/journal.pone.0253216]
[http://dx.doi.org/10.1371/journal.pone.0253216]
[20]
Chinna, M.A.; Milev, R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depression and/or generalized anxiety disorder: protocol for a phase 1, open-label study. JMIR Res. Protoc., 2020, 9(6), e17223-e17223.
[http://dx.doi.org/10.2196/17223]
[http://dx.doi.org/10.2196/17223]
[21]
Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci., 2016, 8(256)
[http://dx.doi.org/10.3389/fnagi.2016.00256]
[http://dx.doi.org/10.3389/fnagi.2016.00256]
[22]
Tamtaji, O.R.; Heidari-Soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575.
[http://dx.doi.org/10.1016/j.clnu.2018.11.034]
[http://dx.doi.org/10.1016/j.clnu.2018.11.034]
[23]
Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra, E.O.T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; Vasquez, E.C. Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid. Med. Cell. Longev., 2020, 13(2638703)
[http://dx.doi.org/10.1155/2020/2638703]
[http://dx.doi.org/10.1155/2020/2638703]
[24]
Barichella, M.; Pacchetti, C.; Bolliri, C.; Cassani, E.; Iorio, L.; Pusani, C.; Pinelli, G.; Privitera, G.; Cesari, I.; Faierman, S.A.; Caccialanza, R.; Pezzoli, G.; Cereda, E. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT. Neurology, 2016, 87(12), 1274-1280.
[http://dx.doi.org/ 10.1212/WNL.0000000000003127]
[http://dx.doi.org/ 10.1212/WNL.0000000000003127]
[25]
Borzabadi, S.; Oryan, S.; Eidi, A.; Aghadavod, E.; Daneshvar Kakhaki, R.; Tamtaji, O.R.; Taghizadeh, M.; Asemi, Z. The effects of probi-otic supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: A randomized, double-blind, placebocontrolled trial. Arch. Iran Med., 2018, 21(7), 289-295.
[PMID: 30041526]
[PMID: 30041526]
[26]
Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(3), 1031-1035.
[http://dx.doi.org/10.1016/j.clnu.2018.05.018]
[http://dx.doi.org/10.1016/j.clnu.2018.05.018]