Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Stem Cells in Bone Repair and Regeneration

Author(s): Mohamed Berika and Ahmed H.K. El-Hashash*

Volume 18, Issue 4, 2023

Published on: 21 September, 2022

Page: [460 - 469] Pages: 10

DOI: 10.2174/1574888X17666220410215357

Price: $65

Abstract

Bones normally function to provide both mechanical and locomotion supports in the body. They are highly specialized connective tissues that are characterized by mineralized extracellular components, which provide both rigidity and strength to bones. Stem cells hold great potentials for both the repair and regeneration of different tissue types, including bone tissues. The future use of stem cell therapy is promising for developing regenerative medicine approaches to treat disorders and diseases in a wide range of tissues such as cartilages and bones. Data have been accumulated recently on the application of different stem cell types in bone repair, regeneration, and disorders. In this article, we briefly describe the bone structure and review research progress and recently accumulated data on stem cell differentiation into osteoblasts as well as discuss the contributions of stem cell types to bone and cartilage repair, regeneration, and disease.

Keywords: Bone repair, bone regeneration, tissue engineering, stem cells, progenitor cells, cell proliferation.

[1]
Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441(7097): 1068-74.
[http://dx.doi.org/10.1038/nature04956] [PMID: 16810241]
[2]
Berika M, Elgayyar ME, El-Hashash AH. Asymmetric cell division of stem cells in the lung and other systems. Front Cell Dev Biol 2014; 2: 33.
[http://dx.doi.org/10.3389/fcell.2014.00033] [PMID: 25364740]
[3]
El-Hashash A. Asymmetric Cell Divisions of Stem/Progenitor Cells.Stem Cells, Tissue Engineering and Regenerative Medicine. London: World Scientific Publishing Co. 2015; pp. 21-32.
[http://dx.doi.org/10.1142/9789814612784_0003]
[4]
Elshahawy S, Ibrahim A, El-Hashash AH. Behavior and asymmetric cell divisions of stem cellsDevelopmental and Stem Cell Biology in Health and Disease Potomac, MD, USA:. Bentham Science Publisher 2016; pp. 81-104.
[http://dx.doi.org/10.2174/9781681082196116010007]
[5]
El-Hashash AH. Lung Stem Cell Behavior Springer Science Publisher. Berlin, Germany Springer-Nature 2018.
[http://dx.doi.org/10.1007/978-3-319-95279-6]
[6]
He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 2009; 25: 377-406.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113248] [PMID: 19575646]
[7]
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36(4): 1111-26.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.011] [PMID: 29563048]
[8]
Zakrzewski W. Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[9]
Hosoya A, Shalehin N, Takebe H, et al. Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci/JAOB, Jpn Assoc Oral Biol 2020; 62(4): 299-305.
[http://dx.doi.org/10.1016/j.job.2020.08.002] [PMID: 32882366]
[10]
Mimeault M, Batra SK. Concise review: Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24(11): 2319-45.
[http://dx.doi.org/10.1634/stemcells.2006-0066] [PMID: 16794264]
[11]
Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213(2): 341-7.
[http://dx.doi.org/10.1002/jcp.21200] [PMID: 17620285]
[12]
Montagnani S, Rueger MA, Hosoda T, Nurzynska D. Adult stem cells in tissue maintenance and regeneration. Stem Cells Int 2016; 2016: 7362879.
[http://dx.doi.org/10.1155/2016/7362879] [PMID: 26949400]
[13]
Prentice DA. Adult stem cells. Circ Res 2019; 124(6): 837-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313664] [PMID: 30870122]
[14]
Weatherholt AM, Fuchs RK, Warden SJ. Specialized connective tissue: Bone, the structural framework of the upper extremity. J Hand Ther 2012; 25(2): 123-31.
[http://dx.doi.org/10.1016/j.jht.2011.08.003] [PMID: 22047807]
[15]
de Baat P, Heijboer MP, de Baat C. Development, physiology, and cell activity of bone. Ned Tijdschr Tandheelkd 2005; 112(7): 258-63.
[PMID: 16047964]
[16]
Bayliss L, Mahoney DJ, Monk P. Normal bone physiology, remodelling and its hormonal regulation. Surgery 2012; 30: 47-53.
[17]
Marieb EN. Human Anatomy & Physiology. (4th ed.), California Benjamin/Cummings Science Publishing 1998.
[18]
Gdyczynski CM, Manbachi A, Hashemi S, Lashkari B, Cobbold RS. On estimating the directionality distribution in pedicle trabecular bone from micro-CT images. Physiol Meas 2014; 35(12): 2415-28.
[http://dx.doi.org/10.1088/0967-3334/35/12/2415] [PMID: 25391037]
[19]
Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 2004; 228(1-2): 79-102.
[http://dx.doi.org/10.1016/j.mce.2003.06.002] [PMID: 15541574]
[20]
Oryan A, Kamali A, Moshiri A, Baghaban Eslaminejad M. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs 2017; 204(2): 59-83.
[http://dx.doi.org/10.1159/000469704] [PMID: 28647733]
[21]
Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int 2017; 2017: 2374161.
[http://dx.doi.org/10.1155/2017/2374161] [PMID: 29230248]
[22]
Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001; 344(5): 385-6.
[http://dx.doi.org/10.1056/NEJM200102013440516] [PMID: 11195802]
[23]
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21(11): 696-711.
[http://dx.doi.org/10.1038/s41580-020-00279-w] [PMID: 32901139]
[24]
Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med 2004; 351(27): 2839-49.
[http://dx.doi.org/10.1056/NEJMra040952] [PMID: 15625335]
[25]
Arias CF, Herrero MA, Echeverri LF, Oleaga GE, López JM. Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms. PLoS One 2018; 13(9): e0204171.
[http://dx.doi.org/10.1371/journal.pone.0204171] [PMID: 30231062]
[26]
Kular J, Tickner J, Chim SM, Xu J. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 2012; 45(12): 863-73.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.03.021] [PMID: 22465238]
[27]
Gillespie MT. Impact of cytokines and T lymphocytes upon osteoclast differentiation and function. Arthritis Res Ther 2007; 9(2): 103.
[http://dx.doi.org/10.1186/ar2141] [PMID: 17381830]
[28]
Horowitz MC, Lorenzo JA. B lymphocytes and the skeleton. Ann N Y Acad Sci 2007; 1117: 82-93.
[http://dx.doi.org/10.1196/annals.1402.045] [PMID: 17872391]
[29]
Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 2008; 473(2): 231-6.
[http://dx.doi.org/10.1016/j.abb.2008.03.016] [PMID: 18410742]
[30]
Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: Changes with age. Calcif Tissue Res 1978; 26(1): 13-7.
[http://dx.doi.org/10.1007/BF02013227] [PMID: 737547]
[31]
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285(33): 25103-8.
[http://dx.doi.org/10.1074/jbc.R109.041087] [PMID: 20501658]
[32]
Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13(18): 2412-24.
[http://dx.doi.org/10.1101/gad.13.18.2412] [PMID: 10500098]
[33]
Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol 2002; 169(6): 3353-62.
[http://dx.doi.org/10.4049/jimmunol.169.6.3353] [PMID: 12218157]
[34]
Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999; 190(12): 1741-54.
[http://dx.doi.org/10.1084/jem.190.12.1741] [PMID: 10601350]
[35]
Parfitt AM. Targeted and nontargeted bone remodeling: Relationship to basic multicellular unit origination and progression. Bone 2002; 30(1): 5-7.
[http://dx.doi.org/10.1016/S8756-3282(01)00642-1] [PMID: 11792557]
[36]
Lee SH, Rho J, Jeong D, et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 2006; 12(12): 1403-9.
[http://dx.doi.org/10.1038/nm1514] [PMID: 17128270]
[37]
Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 2007; 5(6): 464-75.
[http://dx.doi.org/10.1016/j.cmet.2007.05.001] [PMID: 17550781]
[38]
Abdel Meguid E, Ke Y, Ji J, El-Hashash AHK. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes. J Cell Physiol 2018; 233(3): 1825-35.
[http://dx.doi.org/10.1002/jcp.25940] [PMID: 28369866]
[39]
Brown JP, Albert C, Nassar BA, et al. Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem 2009; 42(10-11): 929-42.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.04.001] [PMID: 19362543]
[40]
Garnero P, Delmas PD. Bone turnover markers Encyclopedia of Endocrine Dis. 2004; 1: pp. 401-13.
[http://dx.doi.org/10.1016/B0-12-475570-4/00218-3]
[41]
Cai H, Zou J, Wang W, Yang A. BMP2 induces hMSC osteogenesis and matrix remodeling. Mol Med Rep 2021; 23(2): 125.
[http://dx.doi.org/10.3892/mmr.2020.11764] [PMID: 33300084]
[42]
Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA. Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg 2017; 9(1): 13-9.
[http://dx.doi.org/10.1111/os.12304] [PMID: 28276640]
[43]
Wang J, Chen Z, Sun M, et al. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 2020; 64: 101330.
[http://dx.doi.org/10.1016/j.tice.2020.101330] [PMID: 32473704]
[44]
Tognarini I, Sorace S, Zonefrati R, et al. In vitro differentiation of human mesenchymal stem cells on Ti6Al4V surfaces. Biomaterials 2008; 29(7): 809-24.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.043] [PMID: 18022689]
[45]
Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 2018; 19(2): 360.
[http://dx.doi.org/10.3390/ijms19020360] [PMID: 29370110]
[46]
Marini F, Luzi E, Fabbri S, et al. Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on nanostructured Ti6Al4V and Ti13Nb13Zr. Clin Cases Miner Bone Metab 2015; 12(3): 224-37.
[http://dx.doi.org/10.11138/ccmbm/2015.12.3.224] [PMID: 26811701]
[47]
Olivares-Navarrete R, Hyzy SL, Hutton DL, et al. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials 2010; 31(10): 2728-35.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.029] [PMID: 20053436]
[48]
Gothard D, Cheung K, Kanczler JM, Wilson DI, Oreffo RO. Regionally-derived cell populations and skeletal stem cells from human foetal femora exhibit specific osteochondral and multi-lineage differentiation capacity in vitro and ex vivo. Stem Cell Res Ther 2015; 6: 251.
[http://dx.doi.org/10.1186/s13287-015-0247-2] [PMID: 26684339]
[49]
Hanna H, Mir LM, Andre FM. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Res Ther 2018; 9(1): 203-13.
[http://dx.doi.org/10.1186/s13287-018-0942-x] [PMID: 30053888]
[50]
Wang Z, Han L, Sun T, Wang W, Li X, Wu B. Construction of tissue-engineered bone with differentiated osteoblasts from adipose-derived stem cell and coral scaffolds at an ectopic site. Br J Oral Maxillofac Surg 2021; 59(1): 46-51.
[http://dx.doi.org/10.1016/j.bjoms.2020.07.006] [PMID: 32811732]
[51]
Ruan Y, Kato H, Taguchi Y, Yamauchi N, Umeda M. Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway. Lasers Med Sci 2021; 36(1): 55-65.
[http://dx.doi.org/10.1007/s10103-020-03002-5] [PMID: 32588268]
[52]
Maung WM, Nakata H, Miura M, et al. Low-Intensity Pulsed ultrasound stimulates osteogenic differentiation of periosteal cells in vitro. Tissue Eng Part A 2021; 27(1-2): 63-73.
[http://dx.doi.org/10.1089/ten.tea.2019.0331] [PMID: 32164486]
[53]
Rux DR, Wellik DM. Hox genes in the adult skeleton: Novel functions beyond embryonic development. Dev Dyn 2017; 246(4): 310-7.
[http://dx.doi.org/10.1002/dvdy.24482] [PMID: 28026082]
[54]
Ruhl T, Schneider PA, Kim BS, Beier JP. Endocannabinoids increase human adipose stem cell differentiation and growth factor secretion in vitro. J Tissue Eng Regen Med 2021; 15(1): 88-98.
[http://dx.doi.org/10.1002/term.3152] [PMID: 33459498]
[55]
Tang Y, Weiss SJ. Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation. Cell Cycle 2017; 16(5): 399-405.
[http://dx.doi.org/10.1080/15384101.2017.1280643] [PMID: 28112996]
[56]
Haschtmann D, Ferguson SJ, Stoyanov JV. BMP-2 and TGF-β3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. Eur Spine J 2012; 21(9): 1724-33.
[http://dx.doi.org/10.1007/s00586-012-2371-3] [PMID: 22639297]
[57]
Wang Y, He T, Liu J, et al. Synergistic effects of overexpression of BMP 2 and TGF β3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep 2016; 14(6): 5514-20.
[http://dx.doi.org/10.3892/mmr.2016.5961] [PMID: 27878265]
[58]
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. Mater Sci Eng C 2021; 120: 111748.
[http://dx.doi.org/10.1016/j.msec.2020.111748] [PMID: 33545890]
[59]
Polini A, Wang J, Bai H, Zhu Y, Tomsia AP, Mao C. Stable biofunctionalization of hydroxyapatite (HA) surfaces by HA-binding/osteogenic modular peptides for inducing osteogenic differentiation of mesenchymal stem cells. Biomater Sci 2014; 2: 1779-86.
[http://dx.doi.org/10.1039/C4BM00164H] [PMID: 25642327]
[60]
Li Y, Yue J, Liu Y, et al. Strontium regulates stem cell fate during osteogenic differentiation through asymmetric cell division. Acta Biomater 2021; 119: 432-43.
[http://dx.doi.org/10.1016/j.actbio.2020.10.030] [PMID: 33148429]
[61]
Okuchi Y, Reeves J, Ng SS, et al. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. Nat Mater 2021; 20(1): 108-18.
[http://dx.doi.org/10.1038/s41563-020-0786-5] [PMID: 32958876]
[62]
Ansari M. Bone tissue regeneration: Biology, strategies and interface studies. Prog Biomater 2019; 8(4): 223-37.
[http://dx.doi.org/10.1007/s40204-019-00125-z] [PMID: 31768895]
[63]
Luby AO, Ranganathan K, Lynn JV, Nelson NS, Donneys A, Buchman SR. Stem cells for bone regeneration: Current state and future directions. J Craniofac Surg 2019; 30(3): 730-5.
[http://dx.doi.org/10.1097/SCS.0000000000005250] [PMID: 30817525]
[64]
Owston H, Giannoudis PV, Jones E. Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review. Injury 2016; 47 (Suppl. 6): S3-S15.
[http://dx.doi.org/10.1016/S0020-1383(16)30834-8] [PMID: 28040084]
[65]
Islam I, Sriram G, Li M, et al. In vitro osteogenic potential of green fluorescent protein labelled human embryonic stem cell-derived osteoprogenitors. Stem Cells Int 2016; 2016: 1659275.
[http://dx.doi.org/10.1155/2016/1659275] [PMID: 28003831]
[66]
Favreau H, Pijnenburg L, Seitlinger J, et al. Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids. Nanomedicine 2020; 29: 102253.
[http://dx.doi.org/10.1016/j.nano.2020.102253] [PMID: 32619705]
[67]
Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99(13): 8932-7.
[http://dx.doi.org/10.1073/pnas.132252399] [PMID: 12084934]
[68]
Chen W, Liu X, Chen Q, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell coculture with hBMSCs, hUCMSCs, hiPSC-MSCs and hESC-MSCs. J Tissue Eng Regen Med 2018; 12(1): 191-203.
[http://dx.doi.org/10.1002/term.2395] [PMID: 28098961]
[69]
Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int J Oral Sci 2019; 11(3): 23.
[http://dx.doi.org/10.1038/s41368-019-0060-3] [PMID: 31423011]
[70]
Dufrane D. Impact of age on human adipose stem cells for bone tissue engineering. Cell Transplant 2017; 26(9): 1496-504.
[http://dx.doi.org/10.1177/0963689717721203] [PMID: 29113460]
[71]
Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics 2020; 10(1): 426-36.
[http://dx.doi.org/10.7150/thno.34126] [PMID: 31903130]
[72]
Qiu G, Shi Z, Xu H, et al. Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous BMSCs and platelet-rich plasma. J Tissue Eng Regen Med 2018; 12(2): e937-48.
[http://dx.doi.org/10.1002/term.2416] [PMID: 28102000]
[73]
Qi Y, Niu L, Zhao T, et al. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: A novel strategy to promote bone regeneration. Stem Cell Res Ther 2015; 6: 256.
[http://dx.doi.org/10.1186/s13287-015-0256-1] [PMID: 26689714]
[74]
Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019; 203: 96-110.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.026] [PMID: 29980291]
[75]
Zhang L, Jiao G, Ren S, et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther 2020; 11(1): 38.
[http://dx.doi.org/10.1186/s13287-020-1562-9] [PMID: 31992369]
[76]
Yu H, Cheng J, Shi W, et al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater 2020; 106: 328-41.
[http://dx.doi.org/10.1016/j.actbio.2020.01.051] [PMID: 32027991]
[77]
Zhao AG, Shah K, Cromer B, Sumer H. Mesenchymal Stem Cell-derived Extracellular Vesicles and their Therapeutic Potential. Stem Cells Int 2020; 2020: 8825771.
[http://dx.doi.org/10.1155/2020/8825771] [PMID: 32908543]
[78]
Lv L, Sheng C, Zhou Y. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation. J Oral Rehabil 2020; 47 (Suppl. 1): 29-54.
[http://dx.doi.org/10.1111/joor.12885] [PMID: 31520537]
[79]
Joo MW, Chung SJ, Shin SH, Chung YG. The Effect of Autologous Platelet-rich Plasma on Bone Regeneration by Autologous Mesenchymal Stem Cells Loaded onto Allogeneic Cancellous Bone Granules. Cells Tissues Organs 2017; 203(6): 327-38.
[http://dx.doi.org/10.1159/000454915] [PMID: 28118635]
[80]
McDermott AM, Herberg S, Mason DE, et al. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med 2019; 11(495): eaav7756.
[http://dx.doi.org/10.1126/scitranslmed.aav7756] [PMID: 31167930]
[81]
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 2019; 196: 80-9.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.025] [PMID: 29329642]
[82]
Seppänen R, Miettinen S. Bone to the chin from adipose-derived stem cells. Duodecim 2014; 130(19): 2009-16.
[PMID: 25558622]
[83]
Maiti SK, Ninu AR, Sangeetha P, et al. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit. J Stem Cells Regen Med 2016; 12(2): 87-99.
[http://dx.doi.org/10.46582/jsrm.1202013] [PMID: 28096633]
[84]
Shi A, Heinayati A, Bao D, et al. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res Ther 2019; 10(1): 172.
[http://dx.doi.org/10.1186/s13287-019-1281-2] [PMID: 31196174]
[85]
Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci 2020; 21(24): 9759.
[http://dx.doi.org/10.3390/ijms21249759] [PMID: 33371306]
[86]
Norouzi-Barough L, Shirian S, Gorji A, Sadeghi M. Therapeutic potential of mesenchymal stem cell-derived exosomes as a cell-free therapy approach for the treatment of skin, bone, and cartilage defects. Connect Tissue Res 2021; 23: 1-14.
[PMID: 33563070]
[87]
Doyle EC, Wragg NM, Wilson SL. Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2020; 28(12): 3827-42.
[http://dx.doi.org/10.1007/s00167-020-05859-z] [PMID: 32006075]
[88]
Chen M, Xu Y, Zhang T, et al. Mesenchymal stem cell sheets: A new cell-based strategy for bone repair and regeneration. Biotechnol Lett 2019; 41(3): 305-18.
[http://dx.doi.org/10.1007/s10529-019-02649-7] [PMID: 30680496]
[89]
Wang M, Wu H, Li Q, et al. Novel Aptamer-functionalized Nanoparticles Enhances Bone Defect Repair by Improving Stem Cell Recruitment. Int J Nanomedicine 2019; 14: 8707-24.
[http://dx.doi.org/10.2147/IJN.S223164] [PMID: 31806966]
[90]
Hao P-J, Wang Z-G, Xu Q-C, et al. Effect of umbilical cord mesenchymal stem cell in peri-implant bone defect after immediate implant: An experiment study in beagle dogs. Int J Clin Exp Med 2014; 7(11): 4131-8.
[PMID: 25550923]
[91]
Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif 2021; 54(1): e12956.
[http://dx.doi.org/10.1111/cpr.12956] [PMID: 33210341]
[92]
Wang M, Li H, Si J, et al. Amniotic fluid-derived stem cells mixed with platelet rich plasma for restoration of rat alveolar bone defect. Acta Biochim Biophys Sin (Shanghai) 2017; 49(3): 197-207.
[http://dx.doi.org/10.1093/abbs/gmw133] [PMID: 28104582]
[93]
Duan P, Pan Z, Cao L, et al. Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Translat 2019; 19: 68-80.
[http://dx.doi.org/10.1016/j.jot.2019.04.006] [PMID: 31844615]
[94]
Bou Assaf R, Zibara K, Fayyad-Kazan M, et al. Healing of bone defects in pig’s femur using mesenchymal cells originated from the sinus membrane with different scaffolds. Stem Cells Int 2019; 2019: 4185942.
[http://dx.doi.org/10.1155/2019/4185942] [PMID: 31662765]
[95]
Liu X, Wei Y, Xuan C, et al. A Biomimetic biphasic osteochondral scaffold with layer-specific release of stem cell differentiation inducers for the reconstruction of osteochondral defects Adv Healthc Mater 2020; 9(23)E2000076: 1-11.
[96]
Krasnov MS, Shaikhaliev AI, Korshakov EV, et al. Induction of osteogenesis in rat bone tissue using cryogenically structured porous 3D materials containing a bioregulator. Bull Exp Biol Med 2019; 168(1): 99-103.
[http://dx.doi.org/10.1007/s10517-019-04657-z] [PMID: 31758378]
[97]
Chu W, Liu Z, Gan Y, et al. Use of a novel Screen-Enrich-Combine(-biomaterials) Circulating System to fill a 3D-printed open Ti6Al4V frame with mesenchymal stem cells/β-tricalcium phosphate to repair complex anatomical bone defects in load-bearing areas. Ann Transl Med 2021; 9(6): 454.
[http://dx.doi.org/10.21037/atm-20-6689] [PMID: 33850851]
[98]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[99]
Tritz-Schiavi J, Charif N, Henrionnet C, et al. Original approach for cartilage tissue engineering with mesenchymal stem cells. Biomed Mater Eng 2010; 20(3): 167-74.
[http://dx.doi.org/10.3233/BME-2010-0628] [PMID: 20930324]
[100]
Zaim M, Karaman S, Cetin G, Isik S. Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 2012; 91(8): 1175-86.
[http://dx.doi.org/10.1007/s00277-012-1438-x] [PMID: 22395436]
[101]
Fossett E, Khan WS, Pastides P, Adesida AB. The effects of ageing on proliferation potential, differentiation potential and cell surface characterisation of human mesenchymal stem cells. Curr Stem Cell Res Ther 2012; 7(4): 282-6.
[http://dx.doi.org/10.2174/157488812800793027] [PMID: 22563664]
[102]
Georgi N, van Blitterswijk C, Karperien M. Mesenchymal stromal/stem cell-or chondrocyte-seeded microcarriers as building blocks for cartilage tissue engineering. Tissue Eng Part A 2014; 20(17-18): 2513-23.
[http://dx.doi.org/10.1089/ten.tea.2013.0681] [PMID: 24621188]
[103]
Reppel L, Schiavi J, Charif N, et al. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton’s jelly embedded in alginate hydrogel and without added growth factor: An alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther 2015; 6: 260.
[http://dx.doi.org/10.1186/s13287-015-0263-2] [PMID: 26718750]
[104]
Rana D, Kumar S, Webster TJ, Ramalingam M. Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration. Curr Osteoporos Rep 2019; 17(4): 226-34.
[http://dx.doi.org/10.1007/s11914-019-00519-9] [PMID: 31256323]
[105]
Nam Y, Rim YA, Jung SM, Ju JH. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther 2017; 8(1): 16.
[http://dx.doi.org/10.1186/s13287-017-0477-6] [PMID: 28129782]
[106]
Yang G, Shao J, Lin J, et al. Transplantation of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells Improves Cartilage Repair in a Rabbit Model. BioMed Res Int 2021; 2021: 6380141.
[http://dx.doi.org/10.1155/2021/6380141] [PMID: 33708990]
[107]
Paspaliaris V, Kolios G. Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches Stem Cells International 2019. 2019>: 1730978
[108]
Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med 2019; 51(5): 1-8.
[http://dx.doi.org/10.1038/s12276-019-0251-1] [PMID: 31073120]
[109]
Eldridge SE, Barawi A, Wang H, et al. Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Sci Transl Med 2020; 12(559): eaax9086.
[http://dx.doi.org/10.1126/scitranslmed.aax9086] [PMID: 32878982]
[110]
Hu X, Xu J, Li W, et al. Therapeutic “Tool” in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2020; 191(2): 785-809.
[http://dx.doi.org/10.1007/s12010-019-03214-8] [PMID: 31863349]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy