Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

A Review on Exploring the Opportunities of Polymer Drug Conjugated Systems for Targeted Cancer Treatment

Author(s): Chandan Gupta, Isha Naik, Mala Menon, Premlata Ambre* and Evans Coutinho

Volume 20, Issue 1, 2023

Published on: 22 June, 2022

Page: [8 - 30] Pages: 23

DOI: 10.2174/1567201819666220408095510

Price: $65

Abstract

Polymeric drug conjugates (PDCs) for cancer therapy have been a hot research topic for the past three decades. Successful examples of PDC conjugates have demonstrated sustained drug release action with decreased systemic toxicity and enhanced tumor retention effect (EPR) via active as well as passive targeting mechanisms. Therefore, the PDC approach has now become a keystone of the drug delivery system for cancer and other diseases. In recent years, several PDCs have successfully made up to the clinical trials. The approach aids targeted delivery of the anticancer drugs to the tumor site without disturbing the healthy cells. The selection of the over-expressed receptor and the receptor-ligand plays a vital role in designing the receptor-targeting PDC so that it is able to distinguish between the healthy cell and the tumor cell. Continuous efforts are being made in research and development toward an active targeted PDC delivery system to revolutionize cancer treatment despite the controversy built due to heterogeneity in tumor models. This review highlights the chemistry aspects involved in the preparation of PDCs that deal with novel molecular tumor targets and strategies used for the development of targeted PDCs for delivering the drug payload via active or passive targeting. Furthermore, it sheds light on the challenges faced by targeted PDCs as novel drug delivery systems.

Keywords: Cancer, anticancer drug, polymer-drug conjugates, active targeting, passive targeting, drug delivery system.

Graphical Abstract

[1]
Cooperberg, M.R.; Vickers, A.J.; Broering, J.M.; Carroll, P.R. Comparative risk-adjusted mortality outcomes after primary surgery, radiotherapy, or androgen-deprivation therapy for localized prostate cancer. Cancer, 2010, 116(22), 5226-5234.
[http://dx.doi.org/10.1002/cncr.25456] [PMID: 20690197]
[2]
Murphy, C.C.; Bartholomew, L.K.; Carpentier, M.Y.; Bluethmann, S.M.; Vernon, S.W. Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: A systematic review. Breast Cancer Res. Treat., 2012, 134(2), 459-478.
[http://dx.doi.org/10.1007/s10549-012-2114-5] [PMID: 22689091]
[3]
You, F.; Gao, C. Topoisomerase inhibitors and targeted delivery in cancer therapy. Curr. Top. Med. Chem., 2019, 19(9), 713-729.
[http://dx.doi.org/10.2174/1568026619666190401112948] [PMID: 30931860]
[4]
Overbeek, A.; van den Berg, M.H.; van Leeuwen, F.E.; Kaspers, G.J.; Lambalk, C.B.; van Dulmen-den Broeder, E. Chemotherapy-related late adverse effects on ovarian function in female survivors of childhood and young adult cancer: A systematic review. Cancer Treat. Rev., 2017, 53, 10-24.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.006] [PMID: 28056411]
[5]
Kushwaha, V.S.; Gupta, S.; Husain, N.; Khan, H.; Negi, M.P.; Jamal, N.; Ghatak, A. Gefitinib, methotrexate and methotrexate plus 5-fluorouracil as palliative treatment in recurrent head and neck squamous cell carcinoma. Cancer Biol. Ther., 2015, 16(2), 346-351.
[http://dx.doi.org/10.4161/15384047.2014.961881] [PMID: 25756517]
[6]
Huseman, E.D.; Byl, J.A.W.; Chapp, S.M.; Schley, N.D.; Osheroff, N.; Townsend, S.D. Synthesis and cytotoxic evaluation of arimetamycin A and its daunorubicin and doxorubicin hybrids. ACS Cent. Sci., 2021, 7(8), 1327-1337.
[http://dx.doi.org/10.1021/acscentsci.1c00040] [PMID: 34471677]
[7]
Reck, M.; von Pawel, J.; Macha, H-N.; Kaukel, E.; Deppermann, K-M.; Bonnet, R.; Ulm, K.; Hessler, S.; Gatzemeier, U. Randomized phase III trial of paclitaxel, etoposide, and carboplatin versus carboplatin, etoposide, and vincristine in patients with small-cell lung cancer. J. Natl. Cancer Inst., 2003, 95(15), 1118-1127.
[http://dx.doi.org/10.1093/jnci/djg017] [PMID: 12902441]
[8]
González, V.; Salgueiro, E.; Jimeno, F.J.; Hidalgo, A.; Rubio, T.; Manso, G. Post-marketing safety of antineoplasic monoclonal antibodies: Rituximab and trastuzumab. Pharmacoepidemiol. Drug Saf., 2008, 17(7), 714-721.
[http://dx.doi.org/10.1002/pds.1587] [PMID: 18340626]
[9]
Shao, W.; Liu, X.; Sun, G.; Hu, X-Y.; Zhu, J-J.; Wang, L. Construction of drug-drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy. Chem. Commun. (Camb.), 2018, 54(68), 9462-9465.
[http://dx.doi.org/10.1039/C8CC05180A] [PMID: 30083687]
[10]
Liu, B.; Ezeogu, L.; Zellmer, L.; Yu, B.; Xu, N.; Joshua Liao, D. Protecting the normal in order to better kill the cancer. Cancer Med., 2015, 4(9), 1394-1403.
[http://dx.doi.org/10.1002/cam4.488] [PMID: 26177855]
[11]
Kunnumakkara, A.B.; Bordoloi, D.; Sailo, B.L.; Roy, N.K.; Thakur, K.K.; Banik, K.; Shakibaei, M.; Gupta, S.C.; Aggarwal, B.B. Cancer drug development: The missing links. Exp. Biol. Med. (Maywood), 2019, 244(8), 663-689.
[http://dx.doi.org/10.1177/1535370219839163] [PMID: 30961357]
[12]
Satchi-Fainaro, R.; Duncan, R.; Barnes, C.M. Polymer therapeutics for cancer: Current status and future challenges.Polymer therapeutics II; Springer, 2006, pp. 1-65.
[http://dx.doi.org/10.1007/12_024]
[13]
Pasut, G.; Veronese, F. Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci., 2007, 32(8-9), 933-961.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.008]
[14]
Dey, P.; Kundu, A.; Chakraborty, H.J.; Kar, B.; Choi, W.S.; Lee, B.M.; Bhakta, T.; Atanasov, A.G.; Kim, H.S. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. Int. J. Cancer, 2019, 145(7), 1731-1744.
[http://dx.doi.org/10.1002/ijc.31965] [PMID: 30387881]
[15]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[PMID: 25678788]
[16]
Palazzolo, S.; Bayda, S.; Hadla, M.; Caligiuri, I.; Corona, G.; Toffoli, G.; Rizzolio, F. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem., 2018, 25(34), 4224-4268.
[http://dx.doi.org/10.2174/0929867324666170830113755] [PMID: 28875844]
[17]
Khandare, J.; Minko, T. Polymer–drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci., 2006, 31(4), 359-397.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.09.004]
[18]
Seifu, M. F.; Nath, L. K. Polymer-drug conjugates: Novel carriers for cancer chemotherapy. Polymer-plastics technology and materials, 2019, 58(2), 158-171.
[19]
Jovanović, M.V.; Savić, J.; Kovačević, R.; Tasić, V.; Todorović, Ž.; Stevanović, S.; Manojlović, D.; Jovašević-Stojanović, M. Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. Sci. Total Environ., 2020, 708, 135209.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135209] [PMID: 31810686]
[20]
Thakor, P.; Bhavana, V.; Sharma, R.; Srivastava, S.; Singh, S.B.; Mehra, N.K. Polymer-drug conjugates: Recent advances and future perspectives. Drug Discov. Today, 2020, 25(9), 1718-1726.
[http://dx.doi.org/10.1016/j.drudis.2020.06.028] [PMID: 32629170]
[21]
Vogus, D.R.; Krishnan, V.; Mitragotri, S. A review on engineering polymer drug conjugates to improve combination chemotherapy. Curr. Opin. Colloid Interface Sci., 2017, 31, 75-85.
[http://dx.doi.org/10.1016/j.cocis.2017.08.002]
[22]
Greco, F.; Vicent, M.J. Polymer-drug conjugates: Current status and future trends. Front. Biosci., 2008, 13(1), 2744-2756.
[http://dx.doi.org/10.2741/2882] [PMID: 17981750]
[23]
Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics, 2020, 12(5), 406.
[http://dx.doi.org/10.3390/pharmaceutics12050406] [PMID: 32365495]
[24]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[25]
Arranja, A.G.; Pathak, V.; Lammers, T.; Shi, Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol. Res., 2017, 115, 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[26]
Girase, M.L.; Patil, P.G.; Ige, P.P. Polymer-drug conjugates as nanomedicine: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69(15), 990-1014.
[http://dx.doi.org/10.1080/00914037.2019.1655745]
[27]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[28]
Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y. Bio-responsive smart polymers and biomedical applications. Journal of Physics: Materials, 2019, 2(3), 032004.
[29]
Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci., 2019, 20(4), 840.
[http://dx.doi.org/10.3390/ijms20040840] [PMID: 30781344]
[30]
Sun, Y.; Liu, W-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptors and Signal Transduction, 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[31]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[32]
Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348.
[http://dx.doi.org/10.1038/35077213] [PMID: 11357141]
[33]
Wang, Y.; Xiao, H.; Wang, C.; Wu, H.; He, H.; Yao, C.; Cui, J.; Li, W. M-phase phosphoprotein 8 promotes gastric cancer growth and metastasis via p53/Bcl-2 and EMT-related signaling pathways. J. Cell. Biochem., 2020, 121(3), 2330-2342.
[http://dx.doi.org/10.1002/jcb.29456] [PMID: 31692032]
[34]
Vogler, M. Targeting BCL2-proteins for the treatment of solid tumours. Adv Med, 2014, 2014
[http://dx.doi.org/10.1155/2014/943648]
[35]
Oman, M.; Liu, J.; Chen, J.; Durrant, D.; Yang, H-S.; He, Y.; Kopecková, P.; Kopecek, J.; Lee, R.M.; Using, N. Using N-(2-hydroxypropyl) methacrylamide copolymer drug bioconjugate as a novel approach to deliver a Bcl-2-targeting compound HA14-1 in vivo. Gene Ther. Mol. Biol., 2006, 10, 113-122.
[36]
Miller, J.D.; Weber, D.A.; Ibegbu, C.; Pohl, J.; Altman, J.D.; Jensen, P.E. Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. J. Immunol., 2003, 171(3), 1369-1375.
[http://dx.doi.org/10.4049/jimmunol.171.3.1369] [PMID: 12874227]
[37]
Chittasupho, C.; Kengtrong, K.; Chalermnithiwong, S.; Sarisuta, N. Anti-angiogenesis by dual action of R5K peptide conjugated itraconazole nanoparticles. AAPS PharmSciTech, 2020, 21(3), 74.
[http://dx.doi.org/10.1208/s12249-019-1568-8] [PMID: 31965399]
[38]
Karnoub, A.E.; Weinberg, R.A. Ras oncogenes: Split personalities. Nat. Rev. Mol. Cell Biol., 2008, 9(7), 517-531.
[http://dx.doi.org/10.1038/nrm2438] [PMID: 18568040]
[39]
Stalnecker, C.A.; Der, C.J. RAS, wanted dead or alive: Advances in targeting RAS mutant cancers. Sci. Signal., 2020, 13(624), eaay6013.
[http://dx.doi.org/10.1126/scisignal.aay6013] [PMID: 32209699]
[40]
Zhang, Y.; Turkson, J.; Carter-Su, C.; Smithgall, T.; Levitzki, A.; Kraker, A.; Krolewski, J.J.; Medveczky, P.; Jove, R. Activation of Stat3 in v-Src-transformed fibroblasts requires cooperation of Jak1 kinase activity. J. Biol. Chem., 2000, 275(32), 24935-24944.
[http://dx.doi.org/10.1074/jbc.M002383200] [PMID: 10823829]
[41]
Toh, T.B.; Lim, J.J.; Hooi, L.; Rashid, M.B.M.A.; Chow, E.K-H. Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J. Hepatol., 2020, 72(1), 104-118.
[http://dx.doi.org/10.1016/j.jhep.2019.08.035] [PMID: 31541681]
[42]
Turkson, J.; Kim, J.S.; Zhang, S.; Yuan, J.; Huang, M.; Glenn, M.; Haura, E.; Sebti, S.; Hamilton, A.D.; Jove, R. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol. Cancer Ther., 2004, 3(3), 261-269.
[PMID: 15026546]
[43]
Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol., 2015, 137(1), 173-179.
[http://dx.doi.org/10.1016/j.ygyno.2015.02.003] [PMID: 25677064]
[44]
Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Kempf, R.C.; Long, J.; Laidler, P.; Mijatovic, S.; Maksimovic-Ivanic, D.; Stivala, F.; Mazzarino, M.C.; Donia, M.; Fagone, P.; Malaponte, G.; Nicoletti, F.; Libra, M.; Milella, M.; Tafuri, A.; Bonati, A.; Bäsecke, J.; Cocco, L.; Evangelisti, C.; Martelli, A.M.; Montalto, G.; Cervello, M.; McCubrey, J.A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY), 2011, 3(3), 192-222.
[http://dx.doi.org/10.18632/aging.100296] [PMID: 21422497]
[45]
Eliaz, R.E.; Szoka, F.C. Jr Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. Cancer Res., 2001, 61(6), 2592-2601.
[PMID: 11289136]
[46]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2017, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[47]
Mertz, J.A.; Conery, A.R.; Bryant, B.M.; Sandy, P.; Balasubramanian, S.; Mele, D.A.; Bergeron, L.; Sims, R.J. III Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA, 2011, 108(40), 16669-16674.
[http://dx.doi.org/10.1073/pnas.1108190108] [PMID: 21949397]
[48]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[49]
Pirollo, K.F.; Nemunaitis, J.; Leung, P.K.; Nunan, R.; Adams, J.; Chang, E.H. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: A phase 1b study. Mol. Ther., 2016, 24(9), 1697-1706.
[http://dx.doi.org/10.1038/mt.2016.135] [PMID: 27357628]
[50]
Zhou, M.; Zhao, Y.; Ding, Y.; Liu, H.; Liu, Z.; Fodstad, O.; Riker, A.I.; Kamarajugadda, S.; Lu, J.; Owen, L.B.; Ledoux, S.P.; Tan, M. Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer, 2010, 9(1), 33.
[http://dx.doi.org/10.1186/1476-4598-9-33] [PMID: 20144215]
[51]
Ichihara, H.; Motomura, M.; Matsumoto, Y. Negatively charged cell membranes-targeted highly selective chemotherapy with cationic hybrid liposomes against colorectal cancer in vitro and in vivo. J. Mutagen, 2016, 7, 3.
[52]
Ueno, S.; Mojic, M.; Ohashi, Y.; Higashi, N.; Hayakawa, Y.; Irimura, T. Asialoglycoprotein receptor promotes cancer metastasis by activating the EGFR-ERK pathway. Cancer Res., 2011, 71(20), 6419-6427.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1773] [PMID: 21868757]
[53]
Koliopanos, A.; Friess, H.; Kleeff, J.; Shi, X.; Liao, Q.; Pecker, I.; Vlodavsky, I.; Zimmermann, A.; Büchler, M.W. Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res., 2001, 61(12), 4655-4659.
[PMID: 11406531]
[54]
Shamay, Y.; Elkabets, M.; Li, H.; Shah, J.; Brook, S.; Wang, F.; Adler, K.; Baut, E.; Scaltriti, M.; Jena, P. V. P-selectin is a nano therapeutic delivery target in the tumor microenvironment. Sci. Trans. Med., 2016, 8(345), 345ra87-345ra87.
[http://dx.doi.org/10.1126/scitranslmed.aaf7374]
[55]
Koivunen, J.; Aaltonen, V.; Peltonen, J. Protein kinase C (PKC) family in cancer progression. Cancer Lett., 2006, 235(1), 1-10.
[http://dx.doi.org/10.1016/j.canlet.2005.03.033] [PMID: 15907369]
[56]
Ab, O.; Whiteman, K.R.; Bartle, L.M.; Sun, X.; Singh, R.; Tavares, D.; LaBelle, A.; Payne, G.; Lutz, R.J.; Pinkas, J.; Goldmacher, V.S.; Chittenden, T.; Lambert, J.M. IMGN853, a folate receptor-α (FRα)–targeting antibody–drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol. Cancer Ther., 2015, 14(7), 1605-1613.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1095] [PMID: 25904506]
[57]
Shen, Y.; Li, X.; Dong, D.; Zhang, B.; Xue, Y.; Shang, P. Transferrin receptor 1 in cancer: A new sight for cancer therapy. Am. J. Cancer Res., 2018, 8(6), 916-931.
[PMID: 30034931]
[58]
Kumar, U.; Grigorakis, S.I.; Watt, H.L.; Sasi, R.; Snell, L.; Watson, P.; Chaudhari, S. Somatostatin receptors in primary human breast cancer: Quantitative analysis of mRNA for subtypes 1--5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat., 2005, 92(2), 175-186.
[http://dx.doi.org/10.1007/s10549-005-2414-0] [PMID: 15986128]
[59]
Reardon, D.A.; Neyns, B.; Weller, M.; Tonn, J.C.; Nabors, L.B.; Stupp, R. Cilengitide: An RGD pentapeptide ανβ3 and ανβ5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol., 2011, 7(3), 339-354.
[http://dx.doi.org/10.2217/fon.11.8] [PMID: 21417900]
[60]
Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer, 2008, 8(8), 579-591.
[http://dx.doi.org/10.1038/nrc2403] [PMID: 18596824]
[61]
Zhang, W-M.; Zhou, J.; Ye, Q-J. Endothelin-1 enhances proliferation of lung cancer cells by increasing intracellular free Ca2+. Life Sci., 2008, 82(13-14), 764-771.
[http://dx.doi.org/10.1016/j.lfs.2008.01.008] [PMID: 18294657]
[62]
Schlessinger, J.; Plotnikov, A.N.; Ibrahimi, O.A.; Eliseenkova, A.V.; Yeh, B.K.; Yayon, A.; Linhardt, R.J.; Mohammadi, M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell, 2000, 6(3), 743-750.
[http://dx.doi.org/10.1016/S1097-2765(00)00073-3] [PMID: 11030354]
[63]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[64]
Merino, D.; Lok, S.W.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene, 2016, 35(15), 1877-1887.
[http://dx.doi.org/10.1038/onc.2015.287] [PMID: 26257067]
[65]
Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004, 30(2), 193-204.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.007] [PMID: 15023437]
[66]
Wakaskar, R.R. Passive and active targeting in tumor microenvironment. Int. J. Drug Dev. Res., 2017, 9(2), 37-41.
[67]
Modi, S.; Prakash Jain, J.; Domb, A.J.; Kumar, N. Exploiting EPR in polymer drug conjugate delivery for tumor targeting. Curr. Pharm. Des., 2006, 12(36), 4785-4796.
[http://dx.doi.org/10.2174/138161206779026272] [PMID: 17168778]
[68]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[69]
Sindhwani, S.; Syed, A.M.; Ngai, J.; Kingston, B.R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y.; Rajesh, N.U.; Hoang, T.; Wu, J.L.Y.; Wilhelm, S.; Zilman, A.; Gadde, S.; Sulaiman, A.; Ouyang, B.; Lin, Z.; Wang, L.; Egeblad, M.; Chan, W.C.W. The entry of nanoparticles into solid tumours. Nat. Mater., 2020, 19(5), 566-575.
[http://dx.doi.org/10.1038/s41563-019-0566-2] [PMID: 31932672]
[70]
Perry, J.L.; Reuter, K.G.; Luft, J.C.; Pecot, C.V.; Zamboni, W.; DeSimone, J.M. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett., 2017, 17(5), 2879-2886.
[http://dx.doi.org/10.1021/acs.nanolett.7b00021] [PMID: 28287740]
[71]
Bort, G.; Lux, F.; Dufort, S.; Crémillieux, Y.; Verry, C.; Tillement, O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles. Theranostics, 2020, 10(3), 1319-1331.
[http://dx.doi.org/10.7150/thno.37543] [PMID: 31938067]
[72]
Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev., 2020, 157, 142-160.
[http://dx.doi.org/10.1016/j.addr.2020.06.005] [PMID: 32553783]
[73]
Thomson, A.H.; Vasey, P.A.; Murray, L.S.; Cassidy, J.; Fraier, D.; Frigerio, E.; Twelves, C. Population pharmacokinetics in phase I drug development: A phase I study of PK1 in patients with solid tumours. Br. J. Cancer, 1999, 81(1), 99-107.
[http://dx.doi.org/10.1038/sj.bjc.6690657] [PMID: 10487619]
[74]
Schoemaker, N.E.; van Kesteren, C.; Rosing, H.; Jansen, S.; Swart, M.; Lieverst, J.; Fraier, D.; Breda, M.; Pellizzoni, C.; Spinelli, R.; Grazia Porro, M.; Beijnen, J.H.; Schellens, J.H.; ten Bokkel Huinink, W.W. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br. J. Cancer, 2002, 87(6), 608-614.
[http://dx.doi.org/10.1038/sj.bjc.6600516] [PMID: 12237769]
[75]
Miller, K.; Eldar-Boock, A.; Polyak, D.; Segal, E.; Benayoun, L.; Shaked, Y.; Satchi-Fainaro, R. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol. Pharm., 2011, 8(4), 1052-1062.
[http://dx.doi.org/10.1021/mp200083n] [PMID: 21545170]
[76]
Singer, J.W. Paclitaxel poliglumex (XYOTAX, CT-2103): A macromolecular taxane. J. Control. Release, 2005, 109(1-3), 120-126.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.033] [PMID: 16297482]
[77]
Van, S.; Das, S.K.; Wang, X.; Feng, Z.; Jin, Y.; Hou, Z.; Chen, F.; Pham, A.; Jiang, N.; Howell, S.B.; Yu, L. Synthesis, characterization, and biological evaluation of poly(L-γ-glutamyl-glutamine)- paclitaxel nanoconjugate. Int. J. Nanomedicine, 2010, 5, 825-837.
[http://dx.doi.org/10.2147/IJN.S13482] [PMID: 21042550]
[78]
Aggarwal, C.; Cohen, R.B.; Yu, E.; Hwang, W-T.; Bauml, J.M.; Alley, E.; Evans, T.L.; Langer, C.J. Etirinotecan pegol (NKTR-102) in third-line treatment of patients with metastatic or recurrent non–small-cell lung cancer: Results of a phase II study. Clin. Lung Cancer, 2018, 19(2), 157-162.
[http://dx.doi.org/10.1016/j.cllc.2017.10.007] [PMID: 29129435]
[79]
Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S.S.; Ojima, I. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug. Chem., 2010, 21(5), 979-987.
[http://dx.doi.org/10.1021/bc9005656] [PMID: 20429547]
[80]
Mattheolabakis, G.; Milane, L.; Singh, A.; Amiji, M.M. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J. Drug Target., 2015, 23(7-8), 605-618.
[http://dx.doi.org/10.3109/1061186X.2015.1052072] [PMID: 26453158]
[81]
Järvinen, T.A.; Liu, E.T. Simultaneous amplification of HER-2 (ERBB2) and topoisomerase IIalpha (TOP2A) genes--molecular basis for combination chemotherapy in cancer. Curr. Cancer Drug Targets, 2006, 6(7), 579-602.
[http://dx.doi.org/10.2174/156800906778742497] [PMID: 17100565]
[82]
Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C.M.; Molina, A.M.; Torres, A.; Milián, M.; Griebenow, K. Smart targeting to improve cancer therapeutics. Drug Des. Devel. Ther., 2019, 13, 3753-3772.
[http://dx.doi.org/10.2147/DDDT.S219489] [PMID: 31802849]
[83]
Rodrigues, F.C.; Devi, N.; Thakur, G. Role of targeted drug delivery in cancer therapeutics.Advances and Challenges in Pharmaceutical Technology; Elsevier, 2021, pp. 327-354.
[http://dx.doi.org/10.1016/B978-0-12-820043-8.00008-6]
[84]
Yousefpour, P.; Atyabi, F.; Vasheghani-Farahani, E.; Movahedi, A-A.M.; Dinarvand, R. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab. Int. J. Nanomedicine, 2011, 6, 1977-1990.
[PMID: 21976974]
[85]
Jeong, Y.I.; Kim, S.T.; Jin, S.G.; Ryu, H.H.; Jin, Y.H.; Jung, T.Y.; Kim, I.Y.; Jung, S. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J. Pharm. Sci., 2008, 97(3), 1268-1276.
[http://dx.doi.org/10.1002/jps.21103] [PMID: 17674407]
[86]
Zhang, L.; Yao, J.; Zhou, J.; Wang, T.; Zhang, Q. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int. J. Pharm., 2013, 441(1-2), 654-664.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.030] [PMID: 23117024]
[87]
Luo, Y.; Bernshaw, N.J.; Lu, Z-R.; Kopecek, J.; Prestwich, G.D. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm. Res., 2002, 19(4), 396-402.
[http://dx.doi.org/10.1023/A:1015170907274] [PMID: 12033370]
[88]
Manju, S.; Sreenivasan, K. Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J. Colloid Interface Sci., 2012, 368(1), 144-151.
[http://dx.doi.org/10.1016/j.jcis.2011.11.024] [PMID: 22200330]
[89]
Pichert, A.; Samsonov, S.A.; Theisgen, S.; Thomas, L.; Baumann, L.; Schiller, J.; Beck-Sickinger, A.G.; Huster, D.; Pisabarro, M.T. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology, 2012, 22(1), 134-145.
[http://dx.doi.org/10.1093/glycob/cwr120] [PMID: 21873605]
[90]
Wang, J.; Zhao, W.; Chen, H.; Qin, A.; Zhu, P. Anti-tumor study of chondroitin sulfate-methotrexate Nanogels. Nanoscale Res. Lett., 2017, 12(1), 572.
[http://dx.doi.org/10.1186/s11671-017-2324-1] [PMID: 29067569]
[91]
Zhang, H.; Li, F.; Yi, J.; Gu, C.; Fan, L.; Qiao, Y.; Tao, Y.; Cheng, C.; Wu, H. Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery. Eur. J. Pharm. Sci., 2011, 42(5), 517-526.
[http://dx.doi.org/10.1016/j.ejps.2011.02.006] [PMID: 21352909]
[92]
She, W.; Li, N.; Luo, K.; Guo, C.; Wang, G.; Geng, Y.; Gu, Z. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials, 2013, 34(9), 2252-2264.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.017] [PMID: 23298778]
[93]
Wang, Y.; Xin, D.; Liu, K.; Zhu, M.; Xiang, J. Heparin-paclitaxel conjugates as drug delivery system: Synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug. Chem., 2009, 20(12), 2214-2221.
[http://dx.doi.org/10.1021/bc8003809] [PMID: 19950889]
[94]
Yang, M.; Ding, J.; Zhang, Y.; Chang, F.; Wang, J.; Gao, Z.; Zhuang, X.; Chen, X. Activated macrophage-targeted dextran-methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(12), 2102-2113.
[http://dx.doi.org/10.1039/C5TB02479J] [PMID: 32263177]
[95]
Nakamura, J.; Nakajima, N.; Matsumura, K.; Hyon, S-H. Water-soluble taxol conjugates with dextran and targets tumor cells by folic acid immobilization. Anticancer Res., 2010, 30(3), 903-909.
[PMID: 20393013]
[96]
Chittasupho, C.; Jaturanpinyo, M.; Mangmool, S. Pectin nanoparticle enhances cytotoxicity of methotrexate against HepG2 cells. Drug Deliv., 2013, 20(1), 1-9.
[http://dx.doi.org/10.3109/10717544.2012.739214] [PMID: 23216416]
[97]
Li, L.; Yang, Q.; Zhou, Z.; Zhong, J.; Huang, Y. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials, 2014, 35(19), 5171-5187.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.027] [PMID: 24702960]
[98]
David, A.; Kopecková, P.; Minko, T.; Rubinstein, A.; Kopeček, J. Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer-doxorubicin conjugates to human colon cancer cells. Eur. J. Cancer, 2004, 40(1), 148-157.
[http://dx.doi.org/10.1016/j.ejca.2003.07.001] [PMID: 14687799]
[99]
Guan, H.; McGuire, M.J.; Li, S.; Brown, K.C. Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of α(v)β(6)-positive cancers. Bioconjug. Chem., 2008, 19(9), 1813-1821.
[http://dx.doi.org/10.1021/bc800154f] [PMID: 18710273]
[100]
Maya, S.; Sarmento, B.; Lakshmanan, V-K.; Menon, D.; Jayakumar, R. Actively targeted cetuximab conjugated γ-poly(glutamic acid)-docetaxel nanomedicines for epidermal growth factor receptor over expressing colon cancer cells. J. Biomed. Nanotechnol., 2014, 10(8), 1416-1428.
[http://dx.doi.org/10.1166/jbn.2014.1841] [PMID: 25016642]
[101]
Nam, J-P.; Lee, K-J.; Choi, J-W.; Yun, C-O.; Nah, J-W. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2015, 133, 254-262.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.018] [PMID: 26117805]
[102]
Das, S.; Kudale, P.; Dandekar, P.; Devarajan, P.V. Asialoglycoprotein receptor and targeting strategies.Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis; Springer, 2019, pp. 353-381.
[http://dx.doi.org/10.1007/978-3-030-29168-6_12]
[103]
Scomparin, A.; Salmaso, S.; Bersani, S.; Satchi-Fainaro, R.; Caliceti, P. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur. J. Pharm. Sci., 2011, 42(5), 547-558.
[http://dx.doi.org/10.1016/j.ejps.2011.02.012] [PMID: 21371555]
[104]
Omelyanenko, V.; Kopečková, P.; Gentry, C.; Shiah, J-G.; Kopeček, J. HPMA copolymer-anticancer drug-OV-TL-TL16 antibody conjugates. 1. Influence of the method of synthesis on the biding affinity to OVCAR-3 ovarian carcinoma cells In vitro. J. Drug Target., 2003, 11(5), 295-309.
[http://dx.doi.org/10.1080/10611860310001636548]
[105]
Ulbrich, K.; Etrych, T.; Chytil, P.; Jelínková, M.; Ríhová, B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target., 2004, 12(8), 477-489.
[http://dx.doi.org/10.1080/10611860400011869] [PMID: 15621674]
[106]
Shi, J.; Liu, S.; Yu, Y.; He, C.; Tan, L.; Shen, Y-M. RGD peptide-decorated micelles assembled from polymer-paclitaxel conjugates towards gastric cancer therapy. Colloids Surf. B Biointerfaces, 2019, 180, 58-67.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.042] [PMID: 31028965]
[107]
Borgman, M.P.; Aras, O.; Geyser-Stoops, S.; Sausville, E.A.; Ghandehari, H. Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery. Mol. Pharm., 2009, 6(6), 1836-1847.
[http://dx.doi.org/10.1021/mp900134c] [PMID: 19743884]
[108]
Liu, Y.; Yang, B.; Zhao, X.; Xi, M.; Yin, Z. E-Selectin-binding peptide-modified bovine serum albumin nanoparticles for the treatment of acute lung injury. AAPS PharmSciTech, 2019, 20(7), 270.
[http://dx.doi.org/10.1208/s12249-019-1403-2] [PMID: 31363872]
[109]
Yoo, H.S.; Park, T.G. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release, 2004, 96(2), 273-283.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.003] [PMID: 15081218]
[110]
Paul, A.; Vicent, M.J.; Duncan, R. Using small-angle neutron scattering to study the solution conformation of N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates. Biomacromolecules, 2007, 8(5), 1573-1579.
[http://dx.doi.org/10.1021/bm060925s] [PMID: 17419585]
[111]
Peng, Z-H.; Kopeček, J. Enhancing accumulation and penetration of HPMA copolymer–doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. J. Am. Chem. Soc., 2015, 137(21), 6726-6729.
[http://dx.doi.org/10.1021/jacs.5b00922] [PMID: 25963409]
[112]
Rajora, A.K.; Ravishankar, D.; Osborn, H.M.; Greco, F. Impact of the enhanced permeability and retention (EPR) effect and cathepsins levels on the activity of polymer-drug conjugates. Polymers (Basel), 2014, 6(8), 2186-2220.
[http://dx.doi.org/10.3390/polym6082186]
[113]
Canal, F.; Sanchis, J.; Vicent, M. J. Polymer--drug conjugates as nano-sized medicines. Curr. Opin. Biotechnol., 2011, 22(6), 894-900.
[http://dx.doi.org/10.1016/j.copbio.2011.06.003] [PMID: 21724381]
[114]
Iqbal, J.; Anwar, F.; Afridi, S. Targeted drug delivery systems and their therapeutic applications in cancer and immune pathological conditions. Infect. Disord. Drug Targets, 2017, 17(3), 149-159.
[115]
Plummer, R.; Wilson, R.H.; Calvert, H.; Boddy, A.V.; Griffin, M.; Sludden, J.; Tilby, M.J.; Eatock, M.; Pearson, D.G.; Ottley, C.J.; Matsumura, Y.; Kataoka, K.; Nishiya, T. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer, 2011, 104(4), 593-598.
[http://dx.doi.org/10.1038/bjc.2011.6] [PMID: 21285987]
[116]
Rademaker-Lakhai, J.M.; Terret, C.; Howell, S.B.; Baud, C.M.; De Boer, R.F.; Pluim, D.; Beijnen, J.H.; Schellens, J.H.; Droz, J-P. A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res., 2004, 10(10), 3386-3395.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0315] [PMID: 15161693]
[117]
Nowotnik, P.D. AP5346 (ProLindac™), A DACH platinum polymer conjugate in phase II trials against ovarian cancer. Curr. Bioact. Compd., 2011, 7(1), 21-26.
[http://dx.doi.org/10.2174/157340711795163794]
[118]
Yang, D.; Yu, L.; Van, S. Clinically relevant anticancer polymer Paclitaxel therapeutics. Cancers (Basel), 2010, 3(1), 17-42.
[http://dx.doi.org/10.3390/cancers3010017] [PMID: 24212604]
[119]
Grossi, F.V.; Bedwell, P.; Deschatelets, P.; Edis, L.; Francois, C.G.; Johnson, P.J.; Richardson, H.J.; Tan, L.; Vega, C.A.; Lickliter, J. APL-2, a complement C3 inhibitor for the potential treatment of paroxysmal nocturnal hemoglobinuria (PNH): Phase I data from two completed studies in healthy volunteers; American Society of Hematology Washington: DC, 2016.
[120]
Swami, R.; Kumar, D.; Khan, W.; Sistla, R.; Shastri, N. Polymer–drug conjugate in focal drug delivery.Focal Controlled Drug Delivery; Springer, 2014, pp. 117-147.
[http://dx.doi.org/10.1007/978-1-4614-9434-8_5]
[121]
Ding, Y.; Zhou, Y.Y.; Chen, H.; Geng, D.D.; Wu, D.Y.; Hong, J.; Shen, W.B.; Hang, T.J.; Zhang, C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials, 2013, 34(38), 10217-10227.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.008] [PMID: 24055524]
[122]
Fontaine, S.D.; Hann, B.; Reid, R.; Ashley, G.W.; Santi, D.V. Species-specific optimization of PEG~SN-38 prodrug pharmacokinetics and antitumor effects in a triple-negative BRCA1-deficient xenograft. Cancer Chemother. Pharmacol., 2019, 84(4), 729-738.
[http://dx.doi.org/10.1007/s00280-019-03903-5] [PMID: 31321449]
[123]
Eldon, M.; Staschen, C-M.; Viegas, T.; Bentley, M. NKTR-102, a novel PEGylated irinotecan, results in sustained tumor growth suppression in mouse models of human colorectal and lung tumors that correlates with increased and sustained tumor SN38 exposure. Mol. Cancer Ther., 2007, 6(11-suppl), C157.
[124]
Calvo, E.; Hoch, U.; Maslyar, D.; Tolcher, A. Dose-escalation phase I study of NKTR-105, a novel pegylated form of docetaxel. J. Clin. Oncol., 2010, 28(15)(Suppl.), TPS160-TPS160.
[http://dx.doi.org/10.1200/jco.2010.28.15_suppl.tps160]
[125]
Yurkovetskiy, A.V.; Fram, R.J. XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv. Drug Deliv. Rev., 2009, 61(13), 1193-1202.
[http://dx.doi.org/10.1016/j.addr.2009.01.007] [PMID: 19682517]
[126]
Youn, Y.S.; Bae, Y.H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev., 2018, 130, 3-11.
[http://dx.doi.org/10.1016/j.addr.2018.05.008] [PMID: 29778902]
[127]
Lever, R.; Page, C.P. Novel drug development opportunities for heparin. Nat. Rev. Drug Discov., 2002, 1(2), 140-148.
[http://dx.doi.org/10.1038/nrd724] [PMID: 12120095]
[128]
Kelly, B. D.; McLeod, V.; Walker, R.; Schreuders, J.; Jackson, S.; Giannis, M.; Dietinger, C.; Reitano, P.; athak, R.; Xia, S. Anticancer activity of the taxane nanoparticles, DEP® docetaxel and DEP® cabazitaxel. Cancer Res., 2020, 80(16-suppl), 1716.
[129]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[130]
Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268.
[http://dx.doi.org/10.1093/annonc/mdl104] [PMID: 16740598]
[131]
Alconcel, S.N.; Baas, A.S.; Maynard, H.D. FDA-approved poly (ethylene glycol)–protein conjugate drugs. Polym. Chem., 2011, 2(7), 1442-1448.
[http://dx.doi.org/10.1039/c1py00034a]
[132]
Li, Z.; Xiao, C.; Yong, T.; Li, Z.; Gan, L.; Yang, X. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem. Soc. Rev., 2020, 49(8), 2273-2290.
[http://dx.doi.org/10.1039/C9CS00575G] [PMID: 32215407]
[133]
Kermanizadeh, A.; Jacobsen, N.R.; Murphy, F.; Powell, L.; Parry, L.; Zhang, H.; Møller, P. A review of the current state of nanomedicines for targeting and treatment of cancers: Achievements and future challenges. Adv. Ther. (Weinh.), 2021, 4(2), 2000186.
[http://dx.doi.org/10.1002/adtp.202000186]
[134]
Gao, X.; Li, L.; Cai, X.; Huang, Q.; Xiao, J.; Cheng, Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials, 2021, 265, 120404.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120404] [PMID: 32987273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy