Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Computational Design of Molecularly Imprinted Polymers in Drug Delivery Systems: A Comprehensive Review

Author(s): Gurpreet Singh, Pooja A. Chawla*, Abdul Faruk, Viney Chawla and Anmoldeep Kaur

Volume 20, Issue 1, 2023

Published on: 21 July, 2022

Page: [75 - 88] Pages: 14

DOI: 10.2174/1567201819666220427134549

Price: $65

Abstract

Background: Nowadays, biomedical research has been focusing on the design and development of new drug delivery systems that provide efficient drug targeting. The molecularly imprinted polymers (MIPs) have attracted wide interest and play an indispensable role as a drug carrier. Drug delivery systems based on MIPs have been frequently cited in the literature. They are cross-linked polymers that contain binding sites according to the complementary structure of the template molecules. They possess distinctive features of structure predictability and site recognition specificity. Versatile applications of MIPs include purification, biosensing, bioseparation, artificial antibodies, and drug delivery. An ideal MIPs should include features such as biocompatibility, biodegradability, and stability.

Objective: In this article, we elaborate on the historic growth, synthesis, and preparation of different MIPs and present an updated summary of recent advances in the development of new drug delivery systems which are based on this technique. Their potential to deliver drugs in a controlled and targeted manner will also be discussed.

Conclusion: MIPs possess unique advantages, such as lower toxicity, fewer side effects, and good therapeutic potential. They offer administration of drugs by different routes, i.e., oral, ocular or transdermal. Despite several advantages, biomedical companies are hesitant to invest in MIPs based drug delivery systems due to the limited availability of chemical compounds.

Keywords: Molecular imprinted polymers, methacrylic acid, density functional theory, polymerization process, drug delivery, polymers.

Graphical Abstract

[1]
Orowitz, T.E.; Ana Sombo, P.P.A.A.; Rahayu, D.; Hasanah, A.N. Microsphere polymers in molecular imprinting: Current and future perspectives. Molecules, 2020, 25(14), E3256.
[http://dx.doi.org/10.3390/molecules25143256] [PMID: 32708849]
[2]
Guan, G.; Liu, B.; Wang, Z.; Zhang, Z. Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors (Basel), 2008, 8(12), 8291-8320.
[http://dx.doi.org/10.3390/s8128291] [PMID: 27873989]
[3]
Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci., 2011, 12(9), 5908-5945.
[http://dx.doi.org/10.3390/ijms12095908] [PMID: 22016636]
[4]
Rutkowska, M.; Płotka-Wasylka, J.; Morrison, C.; Wieczorek, P.P.; Namieśnik, J.; Marć, M. Application of molecularly imprinted polymers in analytical chiral separations and analysis. Trends Analyt. Chem., 2018, 102, 10291-102.
[http://dx.doi.org/10.1016/j.trac.2018.01.011]
[5]
Vaneckova, T.; Bezdekova, J.; Han, G.; Adam, V.; Vaculovicova, M. Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomater., 2020, 101, 444-458.
[http://dx.doi.org/10.1016/j.actbio.2019.11.007] [PMID: 31706042]
[6]
Mayes, A.G.; Whitcombe, M.J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev., 2005, 57(12), 1742-1778.
[http://dx.doi.org/10.1016/j.addr.2005.07.011] [PMID: 16225958]
[7]
Takeuchi, T.; Sunayama, H. Molecularly Imprinted Polymers. In: Encyclopedia of Polymeric Nanomaterials; Kobayashi, S.; Müllen, K., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2021; pp. 1-5.
[8]
Bedwell, T.S.; Whitcombe, M.J. Analytical applications of MIPs in diagnostic assays: Future perspectives. Anal. Bioanal. Chem., 2016, 408(7), 1735-1751.
[http://dx.doi.org/10.1007/s00216-015-9137-9] [PMID: 26590560]
[9]
Zaidi, S.A. Molecular imprinted polymers as drug delivery vehicles. Drug Deliv., 2016, 23(7), 2262-2271.
[http://dx.doi.org/10.3109/10717544.2014.970297] [PMID: 25317753]
[10]
Bodoki, A.E.; Iacob, B.C.; Bodoki, E. Perspectives of molecularly imprinted polymer-based drug delivery systems in cancer therapy. Polymers (Basel), 2019, 11(12), E2085.
[http://dx.doi.org/10.3390/polym11122085] [PMID: 31847103]
[11]
Khodadadian, M.; Ahmadi, F. Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of aceta-zolamide from human plasma prior to its voltammetric determination. Talanta, 2010, 81(4-5), 1446-1453.
[http://dx.doi.org/10.1016/j.talanta.2010.02.049] [PMID: 20441921]
[12]
Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly imprinted polymer based sensors for medical applications. Sensors (Basel), 2019, 19(6), E1279.
[http://dx.doi.org/10.3390/s19061279] [PMID: 30871280]
[13]
Parisi, O.I.; Ruffo, M.; Malivindi, R.; Vattimo, A.F.; Pezzi, V.; Puoci, F. Molecularly Imprinted Polymers (MIPs) as theranostic systems for sunitinib controlled release and self-monitoring in cancer therapy. Pharmaceutics, 2020, 12(1), E41.
[http://dx.doi.org/10.3390/pharmaceutics12010041] [PMID: 31947815]
[14]
Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett., 1973, 14(44), 4329-4332.
[http://dx.doi.org/10.1016/S0040-4039(01)87213-0]
[15]
Wulff, G. The role of binding-site interactions in the molecular imprinting of polymers. Trends Biotechnol., 1993, 11(3), 85-87.
[http://dx.doi.org/10.1016/0167-7799(93)90056-F] [PMID: 7763512]
[16]
Mosbach, K. The promise of molecular imprinting. Sci. Am., 2006, 295(4), 86-91.
[http://dx.doi.org/10.1038/scientificamerican1006-86] [PMID: 16989485]
[17]
Xu, S.; Lu, H.; Zheng, X.; Chen, L. Stimuli-responsive molecularly imprinted polymers: Versatile functional materials. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(29), 4406-4422.
[http://dx.doi.org/10.1039/c3tc30496e]
[18]
Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Iemma, F.; Picci, N. Molecularly imprinted polymers in drug delivery: State of art and future perspectives. Expert Opin. Drug Deliv., 2011, 8(10), 1379-1393.
[http://dx.doi.org/10.1517/17425247.2011.609166] [PMID: 21933031]
[19]
Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev., 2011, 40(5), 2922-2942.
[http://dx.doi.org/10.1039/c0cs00084a] [PMID: 21359355]
[20]
Sellergren, B.; Hall, A.J. Molecularly imprinted polymers. In: Supramolecular Chemistry: From Molecules to Nanomaterials; Gate, P.A.; Steed, J.W., Eds.; Wiley: Chichester, West Sussex, 2012.
[http://dx.doi.org/10.1002/9780470661345.smc137]
[21]
El-Schich, Z.; Zhang, Y.; Feith, M.; Beyer, S.; Sternbæk, L.; Ohlsson, L.; Stollenwerk, M.; Wingren, A.G. Molecularly imprinted polymers in biological applications. Biotechniques, 2020, 69(6), 406-419.
[http://dx.doi.org/10.2144/btn-2020-0091] [PMID: 33000637]
[22]
Fresco-Cala, B.; Batista, A.D.; Cárdenas, S. Molecularly imprinted polymer micro- and nano-particles. A review. Molecules, 2020, 25(20), E4740.
[http://dx.doi.org/10.3390/molecules25204740] [PMID: 33076552]
[23]
Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211.
[http://dx.doi.org/10.1039/C6CS00061D] [PMID: 26936282]
[24]
Kan, X.; Geng, Z.; Zhao, Y.; Wang, Z.; Zhu, J.J. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release. Nanotechnology, 2009, 20(16), 165601.
[http://dx.doi.org/10.1088/0957-4484/20/16/165601] [PMID: 19420571]
[25]
Wulff, G.; Vesper, W.; Grobe-Einsler, R.; Sarhan, A. Enzyme-analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol. Chem., 1977, 178(10), 2799-2816.
[http://dx.doi.org/10.1002/macp.1977.021781004]
[26]
Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors (Basel), 2014, 14(8), 13863-13912.
[http://dx.doi.org/10.3390/s140813863] [PMID: 25196110]
[27]
Yan, H.; Row, K.H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci., 2006, 7(5), 155-178.
[http://dx.doi.org/10.3390/i7050155]
[28]
Kotrotsiou, O.; Kiparissides, C. Chapter 7 - Water treatment by molecularly imprinted materials. In: Nanoscale Materials in Water Purification; Thomas, S.; Pasquini, D.; Leu, S-Y.; Gopakumar, D.A., Eds.; Elsevier: Amsterdam, 2019; pp. 179-230.
[http://dx.doi.org/10.1016/B978-0-12-813926-4.00012-4]
[29]
Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem., 2017, 8(4), 666-673.
[http://dx.doi.org/10.1039/C6PY01853J] [PMID: 28496524]
[30]
McCluskey, A.; Holdsworth, C.I.; Bowyer, M.C. Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity? Org. Biomol. Chem., 2007, 5(20), 3233-3244.
[http://dx.doi.org/10.1039/b708660a] [PMID: 17912377]
[31]
Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Anal. Chim. Acta, 2007, 584(1), 112-121.
[http://dx.doi.org/10.1016/j.aca.2006.11.004] [PMID: 17386593]
[32]
Ravve, A. Photosensitizers and Photoinitiators. In: Light-Associated Reactions of Synthetic Polymers; Ravve, A., Ed.; Springer New York: New York, NY, 2006; pp. 23-122.
[http://dx.doi.org/10.1007/0-387-36414-5_2]
[33]
Schwalm, R. Photoinitiators and Photopolymerization. In: Encyclopedia of Materials: Science and Technology; Buschow, K.H.J.; Cahn, R.W.; Flemings, M.C.; Ilschner, B.; Kramer, E.J.; Mahajan, S.; Veyssière, P., Eds.; Elsevier: Oxford, 2001; pp. 6946-6951.
[http://dx.doi.org/10.1016/B0-08-043152-6/01230-4]
[34]
Zhang, B.; Fan, X.; Zhao, D. Computer-aided design of molecularly imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Polymers (Basel), 2018, 11(1), E17.
[http://dx.doi.org/10.3390/polym11010017] [PMID: 30960001]
[35]
Attallah, O.A.; Al-Ghobashy, M.A.; Ayoub, A.T.; Tuszynski, J.A.; Nebsen, M. Computer-aided design of magnetic molecularly imprinted polymer nanoparticles for solid-phase extraction and determination of levetiracetam in human plasma. RSC Advances, 2018, 8(26), 14280-14292.
[http://dx.doi.org/10.1039/C8RA02379D]
[36]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[37]
Khan, M.S.; Wate, P.S.; Krupadam, R.J. Combinatorial screening of polymer precursors for preparation of benzo[α] pyrene imprinted pol-ymer: An ab initio computational approach. J. Mol. Model., 2012, 18(5), 1969-1981.
[http://dx.doi.org/10.1007/s00894-011-1218-x] [PMID: 21877152]
[38]
Wungu, T.D.K.; Marsha, S.E.; Widayani, Suprijadi Density Functional Theory (DFT) study of Molecularly Imprinted Polymer (MIP) Methacrylic Acid (MAA) with D-glucose. IOP Conf. Series Mater. Sci. Eng., 2017, 214, 012004.
[http://dx.doi.org/10.1088/1757-899X/214/1/012004]
[39]
Ren, X.; Yang, L.; Li, Y.; Cheshari, E.C.; Li, X. The integration of molecular imprinting and surface-enhanced Raman scattering for highly sensitive detection of lysozyme biomarker aided by density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117764.
[http://dx.doi.org/10.1016/j.saa.2019.117764] [PMID: 31727516]
[40]
Abdel Ghani, N.T.; Mohamed El Nashar, R.; Abdel-Haleem, F.M.; Madbouly, A. Computational design, synthesis and application of a new selective molecularly imprinted polymer for electrochemical detection. Electroanalysis, 2016, 28(7), 1530-1538.
[http://dx.doi.org/10.1002/elan.201501130]
[41]
Sanadgol, N.; Wackerlig, J. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: A short review. Pharmaceutics, 2020, 12(9), E831.
[http://dx.doi.org/10.3390/pharmaceutics12090831] [PMID: 32878127]
[42]
Huang, Y.; Zhu, Q. Computational modeling and theoretical calculations on the interactions between spermidine and functional monomer (Methacrylic Acid) in a molecularly imprinted polymer. J. Chem., 2015, 2015216983, 1-9.
[http://dx.doi.org/10.1155/2015/216983]
[43]
Nicholls, I.A.; Adbo, K.; Andersson, H.S.; Andersson, P.O.; Ankarloo, J.; Hedin-Dahlström, J.; Jokela, P.; Karlsson, J.G.; Olofsson, L.; Rosengren, J.; Shoravi, S.; Svenson, J.; Wikman, S. Can we rationally design molecularly imprinted polymers? Anal. Chim. Acta, 2001, 435(1), 9-18.
[http://dx.doi.org/10.1016/S0003-2670(01)00932-1]
[44]
Gholivand, M.B.; Khodadadian, M.; Ahmadi, F. Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma. Anal. Chim. Acta, 2010, 658(2), 225-232.
[http://dx.doi.org/10.1016/j.aca.2009.11.019] [PMID: 20103099]
[45]
Li, X.F.; Zhong, S.A.; Chen, L.; Whittaker, A. Computer simulation and preparation of molecularly imprinted polymer membranes with chlorogenic acid as template. Polym. Int., 2011, 60(4), 592-598.
[http://dx.doi.org/10.1002/pi.2985]
[46]
Tabandeh, M.; Ghassamipour, S.; Aqababa, H.; Tabatabaei, M.; Hasheminejad, M. Computational design and synthesis of molecular imprinted polymers for selective extraction of allopurinol from human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 898, 24-31.
[http://dx.doi.org/10.1016/j.jchromb.2012.04.009] [PMID: 22565062]
[47]
Ahmadi, F.; Rezaei, H.; Tahvilian, R. Computational-aided design of molecularly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography. J. Chromatogr. A, 2012, 1270, 9-19.
[http://dx.doi.org/10.1016/j.chroma.2012.10.038] [PMID: 23159198]
[48]
Tahir, I.; Wijaya, K.; Islam, A.K.M.; Ahmad, M. Computer aided design of molecular imprinted polymer for selective recognition of capsaicin. Indones. J. Chem., 2014, 1485(1), 85-93.
[http://dx.doi.org/10.22146/ijc.21272]
[49]
Wang, Y.; Liu, J-B.; Tang, S-S.; Jin, R-F. Preparation of melamine molecularly imprinted polymer by computer-aided design. J. Sep. Sci., 2015, 38(15), 2647-2654.
[http://dx.doi.org/10.1002/jssc.201500375] [PMID: 25964122]
[50]
Krishnan, H.; Islam, K.M.S.; Hamzah, Z.; Ahmad, M.N. Rational computational design for the development of andrographolide molecularly imprinted polymer. AIP Conf. Proc., 2017, 1891(1), 020083.
[http://dx.doi.org/10.1063/1.5005416]
[51]
Huang, X.; Zhang, W.; Wu, Z.; Li, H.; Yang, C.; Ma, W.; Hui, A.; Zeng, Q.; Xiong, B.; Xian, Z. Computer simulation aided preparation of molecularly imprinted polymers for separation of bilobalide. J. Mol. Model., 2020, 26(8), 198.
[http://dx.doi.org/10.1007/s00894-020-04460-y] [PMID: 32632503]
[52]
Zhang, Y.; Huang, W.; Yin, X.; Sarpong, K.A.; Zhang, L.; Li, Y.; Zhao, S.; Zhou, H.; Yang, W.; Xu, W. Computer-aided design and synthesis of molecular imprinting polymers based on doubly oriented functional multiwalled carbon nanotubes for electrochemically sensing bisphenol A. React. Funct. Polym., 2020, 157, 104767.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104767]
[53]
Boysen, R.I. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J. Sep. Sci., 2019, 42(1), 51-71.
[http://dx.doi.org/10.1002/jssc.201800945] [PMID: 30411488]
[54]
Joke Chow, A.L.; Bhawani, S.A. Synthesis and characterization of molecular imprinting polymer microspheres of cinnamic acid: Extraction of cinnamic acid from spiked blood plasma. Int. J. Polym. Sci., 2016, 2016, 2418915.
[http://dx.doi.org/10.1155/2016/2418915]
[55]
Shadabfar, M.; Abdouss, M.; Khonakdar, H.A. Synthesis, characterization, and evaluation of a magnetic molecular imprinted polymer for 5-fluorouracil as an intelligent drug delivery system for breast cancer treatment. J. Mater. Sci., 2020, 55(26), 12287-12304.
[http://dx.doi.org/10.1007/s10853-020-04887-x]
[56]
Chen, Q.; Liu, X.; Yang, H.; Zhang, S.; Song, H.; Zhu, X. Preparation and evaluation of magnetic graphene oxide molecularly imprinted polymers (MIPs-GO-Fe3O4@SiO2) for the analysis and separation of tripterine. React. Funct. Polym., 2021, 169, 105055.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105055]
[57]
Kushwaha, A.; Singh, S.; Gupta, N.; Singh, A.K.; Singh, M. Synthesis and characterization of antipyrine-imprinted polymers and their application for sustained release. Polym. Bull., 2018, 75(11), 5235-5252.
[http://dx.doi.org/10.1007/s00289-018-2326-x]
[58]
Umpleby, R.J., II; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Anal. Chem., 2001, 73(19), 4584-4591.
[http://dx.doi.org/10.1021/ac0105686] [PMID: 11605834]
[59]
Nishitani, S.; Sakata, T. Potentiometric adsorption isotherm analysis of a molecularly imprinted polymer interface for small-biomolecule recognition. ACS Omega, 2018, 3(5), 5382-5389.
[http://dx.doi.org/10.1021/acsomega.8b00627] [PMID: 30023917]
[60]
Baggiani, C.; Giraudi, G.; Giovannoli, C.; Tozzi, C.; Anfossi, L. Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template: Indirect evidence of the formation of template clusters in the binding site. Anal. Chim. Acta, 2004, 504(1), 43-52.
[http://dx.doi.org/10.1016/S0003-2670(03)00671-8]
[61]
González, G.P.; Hernando, P.F.; Alegría, J.S.D. A morphological study of molecularly imprinted polymers using the scanning electron microscope. Anal. Chim. Acta, 2006, 557(1), 179-183.
[http://dx.doi.org/10.1016/j.aca.2005.10.034] [PMID: 17386663]
[62]
Chen, X.; Ye, N. A graphene oxide surface-molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples. RSC Adv., 2017, 7(54), 34077-34085.
[http://dx.doi.org/10.1039/C7RA02985C]
[63]
Roland, R.M.; Bhawani, S.A.; Wahi, R.; Ibrahim, M.N.M. Synthesis, characterization, and application of molecular imprinting polymer for extraction of melamine from spiked milk, water, and blood serum. J. Liq. Chromatogr. Relat. Technol., 2020, 43(3-4), 94-105.
[http://dx.doi.org/10.1080/10826076.2019.1672077]
[64]
Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules, 2021, 26(18), 5612.
[http://dx.doi.org/10.3390/molecules26185612] [PMID: 34577083]
[65]
Awokoya, K.N.; Okoya, A.A.; Elujulo, O. Preparation, characterization and evaluation of a styrene-based molecularly imprinted polymer for capturing pyridine and pyrrole from crude oil. Sci. Afr., 2021, 13, e00947.
[http://dx.doi.org/10.1016/j.sciaf.2021.e00947]
[66]
Scorrano, S.; Mergola, L.; Del Sole, R.; Vasapollo, G. Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. Int. J. Mol. Sci., 2011, 12(3), 1735-1743.
[http://dx.doi.org/10.3390/ijms12031735] [PMID: 21673919]
[67]
Svenson, J.; Zheng, N.; Föhrman, U.; Nicholls, I.A. The role of functional monomer-template complexation on the performance of atrazine molecularly imprinted polymers. Anal. Lett., 2005, 38(1), 57-69.
[http://dx.doi.org/10.1081/AL-200043443]
[68]
Madikizela, L. M.; Zunngu, S. S.; Mlunguza, N. Y.; Tavengwa, N. T.; Mdluli, P. S.; Chimuka, L. Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA, 2018, 44(3), 406-418.
[http://dx.doi.org/10.4314/wsa.v44i3.08]
[69]
Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly imprinted polymers-potential and challenges in analytical chemistry. Anal. Chim. Acta, 2005, 534(1), 31-39.
[http://dx.doi.org/10.1016/j.aca.2004.07.043]
[70]
Chen, W.; Tian, X.; He, W.; Li, J.; Feng, Y.; Pan, G. Emerging functional materials based on chemically designed molecular recognition. BMC Materials, 2020, 2(1), 1.
[http://dx.doi.org/10.1186/s42833-019-0007-1]
[71]
Ansell, R.J.; Ramström, O.; Mosbach, K. Towards artificial antibodies prepared by molecular imprinting. Clin. Chem., 1996, 42(9), 1506-1512.
[http://dx.doi.org/10.1093/clinchem/42.9.1506] [PMID: 8787721]
[72]
Zaidi, S.A. Molecular imprinting: A useful approach for drug delivery. Mater. Sci. Energy Technol., 2020, 3, 372-377.
[http://dx.doi.org/10.1016/j.mset.2019.10.012]
[73]
He, Y.; Zeng, S.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Kalekristos Yohannes, W.; Khan, M.; She, Y. Development of water-compatible molecularly imprinted polymers based on functionalized β-cyclodextrin for controlled release of atropine. Polymers (Basel), 2020, 12(1), E130.
[http://dx.doi.org/10.3390/polym12010130] [PMID: 31935897]
[74]
Zheng, L.; Wang, H.; Cheng, X. Molecularly imprinted polymer nanocarriers for recognition and sustained release of diclofenac. Polym. Adv. Technol., 2018, 29(5), 1360-1371.
[http://dx.doi.org/10.1002/pat.4247]
[75]
Liu, X.L.; Yao, H.F.; Chai, M.H.; He, W.; Huang, Y.P.; Liu, Z.S. Green synthesis of carbon nanotubes-reinforced molecularly imprinted polymer composites for drug delivery of fenbufen. AAPS PharmSciTech, 2018, 19(8), 3895-3906.
[http://dx.doi.org/10.1208/s12249-018-1192-z] [PMID: 30324359]
[76]
Bakhshpour, M.; Yavuz, H.; Denizli, A. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 946-954.
[http://dx.doi.org/10.1080/21691401.2018.1439840]
[77]
Ruela, A.L.; de Figueiredo, E.C.; de Araújo, M.B.; Carvalho, F.C.; Pereira, G.R. Molecularly imprinted microparticles in lipid-based formulations for sustained release of donepezil. Eur. J. Pharm. Sci., 2016, 93, 114-122.
[http://dx.doi.org/10.1016/j.ejps.2016.08.019] [PMID: 27519666]
[78]
Mohebali, A.; Abdouss, M.; Mazinani, S.; Zahedi, P. Synthesis and characterization of poly(methacrylic acid)-based molecularly imprinted polymer nanoparticles for controlled release of trinitroglycerin. Polym. Adv. Technol., 2016, 27(9), 1164-1171.
[http://dx.doi.org/10.1002/pat.3778]
[79]
Trotta, F.; Caldera, F.; Cavalli, R.; Soster, M.; Riedo, C.; Biasizzo, M.; Uccello Barretta, G.; Balzano, F.; Brunella, V. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: Perspectives for the treatment of Parkinson’s disease. Expert Opin. Drug Deliv., 2016, 13(12), 1671-1680.
[http://dx.doi.org/10.1080/17425247.2017.1248398] [PMID: 27737572]
[80]
Jafary Omid, N.; Morovati, H.; Amini, M.; Dehpour, A.R.; Partoazar, A.; Rafiee-Tehrani, M.; Dorkoosh, F. Development of molecularly imprinted olanzapine nano-particles: In vitro characterization and in vivo evaluation. AAPS PharmSciTech, 2016, 17(6), 1457-1467.
[http://dx.doi.org/10.1208/s12249-016-0480-8] [PMID: 26831447]
[81]
Sheybani, S.; Hosseinifar, T.; Abdouss, M.; Mazinani, S. Mesoporous molecularly imprinted polymer nanoparticles as a sustained release system of azithromycin. RSC Adv., 2015, 5(120), 98880-98891.
[http://dx.doi.org/10.1039/C5RA11970G]
[82]
Haq, I.; Mujahid, A.; Afzal, A.; Iqbal, N.; Bajwa, S.Z.; Hussain, T.; Shehzad, K.; Ashraf, H. Developing imprinted polymer nanoparticles for the selective separation of antidiabetic drugs. J. Sep. Sci., 2015, 38(19), 3469-3476.
[http://dx.doi.org/10.1002/jssc.201500506] [PMID: 26179897]
[83]
Ruela, A.L.M.; Figueiredo, E.C.; Pereira, G.R. Molecularly imprinted polymers as nicotine transdermal delivery systems. Chem. Eng. J., 2014, 248, 2481-2488.
[http://dx.doi.org/10.1016/j.cej.2013.12.106]
[84]
Barde, L.N.; Ghule, M.M.; Roy, A.A.; Mathur, V.B.; Shivhare, U.D. Development of molecularly imprinted polymer as sustain release drug carrier for propranolol HCL. Drug Dev. Ind. Pharm., 2013, 39(8), 1247-1253.
[http://dx.doi.org/10.3109/03639045.2012.710236] [PMID: 22871098]
[85]
Mirzaei, M.; Najafabadi, S.A.H.; Abdouss, M.; Azodi-Deilami, S.; Asadi, E.; Hosseini, M.R.M.; Piramoon, M. Preparation and utilization of microporous molecularly imprinted polymer for sustained release of tetracycline. J. Appl. Polym. Sci., 2013, 128(3), 1557-1562.
[http://dx.doi.org/10.1002/app.3831]
[86]
Javanbakht, M.; Mohammadi, S.; Esfandyari-Manesh, M.; Abdouss, M. Molecularly imprinted polymer microspheres with nanopore cavities prepared by precipitation polymerization as new carriers for the sustained release of dipyridamole. J. Appl. Polym. Sci., 2011, 119(3), 1586-1593.
[http://dx.doi.org/10.1002/app.32798]
[87]
Azodi-Deilami, S.; Abdouss, M.; Javanbakht, M. The syntheses and characterization of molecularly imprinted polymers for the controlled release of bromhexine. Appl. Biochem. Biotechnol., 2011, 164(2), 133-147.
[http://dx.doi.org/10.1007/s12010-010-9121-y] [PMID: 21076945]
[88]
Abdouss, M.; Asadi, E.; Azodi-Deilami, S.; Beik-mohammadi, N.; Aslanzadeh, S.A. Development and characterization of molecularly imprinted polymers for controlled release of citalopram. J. Mater. Sci. Mater. Med., 2011, 22(10), 2273-2281.
[http://dx.doi.org/10.1007/s10856-011-4395-3] [PMID: 21833610]
[89]
da Silva, M.S.; Nobrega, F.L.; Aguiar-Ricardo, A.; Cabrita, E.J.; Casimiro, T. Development of molecularly imprinted co-polymeric devices for controlled delivery of flufenamic acid using supercritical fluid technology. J. Supercrit. Fluids, 2011, 58(1), 150-157.
[http://dx.doi.org/10.1016/j.supflu.2011.05.010]
[90]
Cirillo, G.; Parisi, O.I.; Curcio, M.; Puoci, F.; Iemma, F.; Spizzirri, U.G.; Picci, N. Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. J. Pharm. Pharmacol., 2010, 62(5), 577-582.
[http://dx.doi.org/10.1211/jpp.62.05.0003] [PMID: 20609058]
[91]
Azodi-Deilamia, S.; Abdoussa, M.; Rezvaneh Seyedib, S. Synthesis and characterization of molecularly imprinted polymer for controlled release of tramadol. Open Chem., 2010, 8(3), 687-695.
[http://dx.doi.org/10.2478/s11532-010-0035-x]
[92]
Del Sole, R.; Lazzoi, M.R.; Vasapollo, G. Synthesis of nicotinamide-based molecularly imprinted microspheres and in vitro controlled release studies. Drug Deliv., 2010, 17(3), 130-137.
[http://dx.doi.org/10.3109/10717541003587418] [PMID: 20163194]
[93]
Cirillo, G.; Iemma, F.; Puoci, F.; Parisi, O.I.; Curcio, M.; Spizzirri, U.G.; Picci, N. Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. J. Drug Target., 2009, 17(1), 72-77.
[http://dx.doi.org/10.1080/10611860802455813] [PMID: 19016107]
[94]
Puoci, F.; Cirillo, G.; Curcio, M.; Iemma, F.; Parisi, O.I.; Castiglione, M.; Picci, N. Molecularly imprinted polymers for alpha-tocopherol delivery. Drug Deliv., 2008, 15(4), 253-258.
[http://dx.doi.org/10.1080/10717540802006724] [PMID: 18446571]
[95]
Khorrami, A.R.; Mehrseresht, S. Synthesis and evaluation of a selective molecularly imprinted polymer for the contraceptive drug levonorgestrel. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 867(2), 264-269.
[http://dx.doi.org/10.1016/j.jchromb.2008.04.017] [PMID: 18456579]
[96]
Suedee, R.; Srichana, T.; Martin, G.P. Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of beta-blockers. J. Control. Release, 2000, 66(2-3), 135-147.
[http://dx.doi.org/10.1016/S0168-3659(99)00261-8] [PMID: 10742575]
[97]
Sedghi, R.; Ashrafzadeh, S.; Heidari, B. pH-sensitive molecularly imprinted polymer based on graphene oxide for stimuli actuated controlled release of curcumin. J. Alloys Compd., 2021, 857, 157603.
[http://dx.doi.org/10.1016/j.jallcom.2020.157603]
[98]
Cegłowski, M.; Jerca, V.V.; Jerca, F.A.; Hoogenboom, R. Reduction-responsive molecularly imprinted poly(2-isopropenyl-2-oxazoline) for controlled release of anticancer agents. Pharmaceutics, 2020, 12(6), E506.
[http://dx.doi.org/10.3390/pharmaceutics12060506] [PMID: 32498326]
[99]
Javanbakht, S.; Saboury, A.; Shaabani, A.; Mohammadi, R.; Ghorbani, M. Doxorubicin imprinted photoluminescent polymer as a pH-responsive nanocarrier. ACS Appl. Bio Mater., 2020, 3(7), 4168-4178.
[http://dx.doi.org/10.1021/acsabm.0c00254] [PMID: 35025419]
[100]
Varela-Garcia, A.; Gomez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C. Imprinted contact lenses for ocular administration of antiviral drugs. Polymers (Basel), 2020, 12(9), E2026.
[http://dx.doi.org/10.3390/polym12092026] [PMID: 32899893]
[101]
Cegłowski, M.; Kurczewska, J.; Ruszkowski, P.; Schroeder, G. Application of paclitaxel-imprinted microparticles obtained using two different cross-linkers for prolonged drug delivery. Eur. Polym. J., 2019, 118, 118328-118336.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.06.010]
[102]
Mo, C.E.; Chai, M.H.; Zhang, L.P.; Ran, R.X.; Huang, Y.P.; Liu, Z.S. Floating molecularly imprinted polymers based on liquid crystalline and polyhedral oligomeric silsesquioxanes for capecitabine sustained release. Int. J. Pharm., 2019, 557, 293-303.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.070] [PMID: 30599225]
[103]
Liu, L.; Li, N.; Chen, M.; Yang, H.; Tang, Q.; Gong, C. Visible-light-responsive surface molecularly imprinted polymer for acyclovir through chicken skin tissue. ACS Appl. Bio Mater., 2018, 1(3), 845-852.
[http://dx.doi.org/10.1021/acsabm.8b00275] [PMID: 34996176]
[104]
Zhang, L.; Chen, L.; Zhang, H.; Yang, Y.; Liu, X. Recognition of 5-fluorouracil by thermosensitive magnetic surface molecularly imprinted microspheres designed using a computational approach. J. Appl. Polym. Sci., 2017, 134(43), 45468.
[http://dx.doi.org/10.1002/app.45468]
[105]
Hemmati, K.; Masoumi, A.; Ghaemy, M. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr. Polym., 2016, 136, 630-640.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.006] [PMID: 26572395]
[106]
Kazemi, S.; Sarabi, A.A.; Abdouss, M. Synthesis and characterization of magnetic molecularly imprinted polymer nanoparticles for controlled release of letrozole. Korean J. Chem. Eng., 2016, 33(11), 3289-3297.
[http://dx.doi.org/10.1007/s11814-016-0171-x]
[107]
Karimi, A.R.; Khodadadi, A.; Hadizadeh, M. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: An injectable and pH-stimuli responsive system for effective cancer therapy. RSC Adv., 2016, 6(94), 91445-91452.
[http://dx.doi.org/10.1039/C6RA17064A]
[108]
Li, L.; Chen, L.; Liu, W.; Yang, Y.; Liu, X.; Chen, Y. Preparation and characterization of 5-fluorouracil surface-imprinted thermosensitive magnetic microspheres. Monatsh. Chem., 2015, 146(3), 441-447.
[http://dx.doi.org/10.1007/s00706-014-1335-1]
[109]
Li, B.; Xu, J.; Hall, A.J.; Haupt, K.; Tse Sum Bui, B. Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid. J. Mol. Recognit., 2014, 27(9), 559-565.
[http://dx.doi.org/10.1002/jmr.2383] [PMID: 25042710]
[110]
Türkmen, D.; Bereli, N.; Çorman, M.E.; Shaikh, H.; Akgöl, S.; Denizli, A. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C. Artif. Cells Nanomed. Biotechnol., 2014, 42(5), 316-322.
[http://dx.doi.org/10.3109/21691401.2013.823094] [PMID: 23937455]
[111]
Puoci, F.; Hampel, S.; Parisi, O.i.; Hassan, A.; Cirillo, G.; Picci, N. Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drug-delivery systems. J. Appl. Polym. Sci., 2013, 130(2), 829-834.
[http://dx.doi.org/10.1002/app.39212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy