Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Alternative Splicing and LncRNA Genes in Brain Tissues of Fetal Mice at Different Developmental Stages

Author(s): Fang Fu*, Kun Du*, Ying-Si Li*, Lu-Shan Li, Yang Xin, Dan Wang, Ting-Ying Lei, Qiong Deng, Qiu-Xia Yu and Can Liao

Volume 26, Issue 1, 2023

Published on: 02 June, 2022

Page: [58 - 82] Pages: 25

DOI: 10.2174/1386207325666220408091206

Price: $65

Abstract

Background: Brain development is an extremely complex and precisely regulated process, with about one-third of genes expressed and precisely regulated during brain development.

Objective: This study aims to explore the molecular mechanisms involved in brain development.

Methods: We first established the expression profile of long non-coding RNAs (lncRNAs) and mRNAs in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d through high-throughput sequencing. Second, the associated functions, pathways, and networks of the co-differentially expressed lncRNAs and mRNAs were identified via Gene Ontology (GO), pathway analysis, and PPI network. After bioinformatic analysis and screening, 8 differentially expressed lncRNAs and mRNAs with the same genetic origin were verified by RT-qPCR analysis in brain tissues of fetal mice at different developmental stages.

Results: The data revealed that there were 972 co-differentially expressed lncRNAs and 992 codifferentially expressed mRNAs in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d. And we discovered 125 differentially expressed lncRNAs and mRNAs, which have the same genetic origin, in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d through sequencing results and bioinformatics analysis. Besides, we proved that 8 lncRNAs, which have had the same genetic origin as differentially expressed mRNAs, were prominently downregulated, while their maternal genes were upregulated during brain development in fetal mice.

Conclusion: Our results preliminarily illustrated the differentially expressed lncRNAs and mRNAs, both of which were derived from the same parent genes, during brain development in fetal mice, which suggests that alternative splicing of lncRNA exists during brain development. Besides, our study provides a perspective on critical genes for brain development, which might be the underlying therapeutic targets for developmental brain diseases in children.

Keywords: Brain development, long non-coding RNAs, mRNAs, alternative splicing, high-throughput sequencing, fetal mice.

Graphical Abstract

[1]
Qian, X.; Song, H.; Ming, G.L. Brain organoids: Advances, applications and challenges. Development, 2019, 146(8), dev166074.
[http://dx.doi.org/10.1242/dev.166074] [PMID: 30992274]
[2]
Vasung, L.; Abaci Turk, E.; Ferradal, S.L.; Sutin, J.; Stout, J.N.; Ahtam, B.; Lin, P.Y.; Grant, P.E. Exploring early human brain development with structural and physiological neuroim-aging. Neuroimage, 2019, 187, 226-254.
[http://dx.doi.org/10.1016/j.neuroimage.2018.07.041] [PMID: 30041061]
[3]
Bohlen, C.J.; Friedman, B.A.; Dejanovic, B.; Sheng, M. Mi-croglia in brain development, homeostasis, and neurodegen-eration. Annu. Rev. Genet., 2019, 53, 263-288.
[http://dx.doi.org/10.1146/annurev-genet-112618-043515] [PMID: 31518519]
[4]
Parrini, E.; Conti, V.; Dobyns, W.B.; Guerrini, R. Genetic basis of brain malformations. Mol. Syndromol., 2016, 7(4), 220-233.
[http://dx.doi.org/10.1159/000448639] [PMID: 27781032]
[5]
Abou Al Hassan, S.; Cutinha, D.; Mattar, L. The impact of COMT, BDNF and 5-HTT brain-genes on the development of anorexia nervosa: A systematic review. Eat. Weight Disord., 2021, 26(5), 1323-1344.
[PMID: 32783113]
[6]
Chuye, L.B.; Dimitri, A.; Desai, A.; Handelmann, C.; Bae, Y.; Johari, P.; Jornet, J.M.; Klejbor, I.; Stachowiak, M.K.; Stachowiak, E.K. Brain organoids: Expanding our under-standing of human development and disease. Results Probl. Cell Differ., 2018, 66, 183-206.
[http://dx.doi.org/10.1007/978-3-319-93485-3_8] [PMID: 30209660]
[7]
Gilmore, J.H.; Knickmeyer, R.C.; Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci., 2018, 19(3), 123-137.
[http://dx.doi.org/10.1038/nrn.2018.1] [PMID: 29449712]
[8]
Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci., 2016, 17(10), 652-666.
[http://dx.doi.org/10.1038/nrn.2016.111] [PMID: 27640984]
[9]
Panni, S.; Lovering, R.C.; Porras, P.; Orchard, S. Non-coding RNA regulatory networks. Biochim. Biophys. Acta. Gene Regul. Mech., 2020, 1863(6), 194417.
[http://dx.doi.org/10.1016/j.bbagrm.2019.194417] [PMID: 31493559]
[10]
Nigita, G.; Marceca, G.P.; Tomasello, L.; Distefano, R.; Calore, F.; Veneziano, D.; Romano, G.; Nana-Sinkam, S.P.; Acunzo, M.; Croce, C.M. ncRNA editing: Functional charac-terization and computational resources. Methods Mol. Biol., 2019, 1912, 133-174.
[http://dx.doi.org/10.1007/978-1-4939-8982-9_6] [PMID: 30635893]
[11]
Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[12]
Jathar, S.; Kumar, V.; Srivastava, J.; Tripathi, V. Technologi-cal developments in lncRNA biology. Adv. Exp. Med. Biol., 2017, 1008, 283-323.
[http://dx.doi.org/10.1007/978-981-10-5203-3_10] [PMID: 28815544]
[13]
Kumar, M.M.; Goyal, R. LncRNA as a therapeutic target for angiogenesis. Curr. Top. Med. Chem., 2017, 17(15), 1750-1757.
[http://dx.doi.org/10.2174/1568026617666161116144744] [PMID: 27848894]
[14]
Ali, T.; Grote, P. Beyond the RNA-dependent function of LncRNA genes. eLife, 2020, 9, e60583.
[http://dx.doi.org/10.7554/eLife.60583] [PMID: 33095159]
[15]
Kopp, F.; Mendell, J.T. Functional classification and experi-mental dissection of long noncoding RNAs. Cell, 2018, 172(3), 393-407.
[http://dx.doi.org/10.1016/j.cell.2018.01.011] [PMID: 29373828]
[16]
Robinson, E.K.; Covarrubias, S.; Carpenter, S. The how and why of lncRNA function: An innate immune perspective. Biochim. Biophys. Acta. Gene Regul. Mech., 2020, 1863(4), 194419.
[http://dx.doi.org/10.1016/j.bbagrm.2019.194419] [PMID: 31487549]
[17]
Ang, C.E.; Trevino, A.E.; Chang, H.Y. Diverse lncRNA mech-anisms in brain development and disease. Curr. Opin. Genet. Dev., 2020, 65, 42-46.
[http://dx.doi.org/10.1016/j.gde.2020.05.006] [PMID: 32554106]
[18]
Nie, J.H.; Li, T.X.; Zhang, X.Q.; Liu, J. Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA, 2019, 5(2), 36.
[http://dx.doi.org/10.3390/ncrna5020036] [PMID: 31052326]
[19]
Shi, C.; Zhang, L.; Qin, C. Long non-coding RNAs in brain development, synaptic biology, and Alzheimer’s disease. Brain Res. Bull., 2017, 132, 160-169.
[http://dx.doi.org/10.1016/j.brainresbull.2017.03.010] [PMID: 28347717]
[20]
Wu, P.; Zuo, X.; Deng, H.; Liu, X.; Liu, L.; Ji, A. Roles of long noncoding RNAs in brain development, functional diver-sification and neurodegenerative diseases. Brain Res. Bull., 2013, 97, 69-80.
[http://dx.doi.org/10.1016/j.brainresbull.2013.06.001] [PMID: 23756188]
[21]
Qian, X.; Zhao, J.; Yeung, P.Y.; Zhang, Q.C.; Kwok, C.K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem. Sci., 2019, 44(1), 33-52.
[http://dx.doi.org/10.1016/j.tibs.2018.09.012] [PMID: 30459069]
[22]
Clark, B.S.; Blackshaw, S. Understanding the role of lncRNAs in nervous system development. Adv. Exp. Med. Biol., 2017, 1008, 253-282.
[http://dx.doi.org/10.1007/978-981-10-5203-3_9] [PMID: 28815543]
[23]
Goodall, G.J.; Wickramasinghe, V.O. RNA in cancer. Nat. Rev. Cancer, 2021, 21(1), 22-36.
[http://dx.doi.org/10.1038/s41568-020-00306-0] [PMID: 33082563]
[24]
Baralle, F.E.; Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol., 2017, 18(7), 437-451.
[http://dx.doi.org/10.1038/nrm.2017.27] [PMID: 28488700]
[25]
Ule, J.; Blencowe, B.J. Alternative splicing regulatory net-works: Functions, mechanisms, and evolution. Mol. Cell, 2019, 76(2), 329-345.
[http://dx.doi.org/10.1016/j.molcel.2019.09.017] [PMID: 31626751]
[26]
Chen, J.; Liu, Y.; Min, J.; Wang, H.; Li, F.; Xu, C.; Gong, A.; Xu, M. Alternative splicing of lncRNAs in human diseases. Am. J. Cancer Res., 2021, 11(3), 624-639.
[PMID: 33791145]
[27]
Liu, Y.; Liu, X.; Lin, C.; Jia, X.; Zhu, H.; Song, J.; Zhang, Y. Noncoding RNAs regulate alternative splicing in Cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 11.
[http://dx.doi.org/10.1186/s13046-020-01798-2] [PMID: 33407694]
[28]
Soreq, L.; Guffanti, A.; Salomonis, N.; Simchovitz, A.; Israel, Z.; Bergman, H.; Soreq, H. Long non-coding RNA and alter-native splicing modulations in Parkinson’s leukocytes identi-fied by RNA sequencing. PLOS Comput. Biol., 2014, 10(3), e1003517.
[http://dx.doi.org/10.1371/journal.pcbi.1003517] [PMID: 24651478]
[29]
Barry, G.; Briggs, J.A.; Vanichkina, D.P.; Poth, E.M.; Beve-ridge, N.J.; Ratnu, V.S.; Nayler, S.P.; Nones, K.; Hu, J.; Bredy, T.W.; Nakagawa, S.; Rigo, F.; Taft, R.J.; Cairns, M.J.; Black-shaw, S.; Wolvetang, E.J.; Mattick, J.S. The long non-coding RNA Gomafu is acutely regulated in response to neuronal ac-tivation and involved in schizophrenia-associated alternative splicing. Mol. Psychiatry, 2014, 19(4), 486-494.
[http://dx.doi.org/10.1038/mp.2013.45] [PMID: 23628989]
[30]
Lei, H.; Montessuit, S.; Herzig, S.; Martinou, J.C. Feasibility of neurochemically profiling mouse embryonic brain and its development in utero using 1 H MRS at 14.1 T. NMR Biomed., 2019, 32(11), e4163.
[http://dx.doi.org/10.1002/nbm.4163] [PMID: 31424145]
[31]
Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embry-onic brain. Mol. Autism, 2017, 8, 33.
[http://dx.doi.org/10.1186/s13229-017-0149-5] [PMID: 28670439]
[32]
Luna, R.L.; Kay, V.R.; Rätsep, M.T.; Khalaj, K.; Bidarimath, M.; Peterson, N.; Carmeliet, P.; Jin, A.; Croy, B.A. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Mol. Hum. Reprod., 2016, 22(2), 130-142.
[http://dx.doi.org/10.1093/molehr/gav069] [PMID: 26646502]
[33]
Wang, Y.; Zhang, H.; Lu, Y.; Wang, F.; Liu, L.; Liu, J.; Liu, X. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with Spring Viremia of Carp Virus (SVCV). Fish Shellfish Immunol., 2017, 69, 35-45.
[http://dx.doi.org/10.1016/j.fsi.2017.07.055] [PMID: 28757199]
[34]
de Kovel, C.G.F.; Lisgo, S.N.; Francks, C. Transcriptomic analysis of left-right differences in human embryonic fore-brain and midbrain. Sci. Data, 2018, 5, 180164.
[http://dx.doi.org/10.1038/sdata.2018.164] [PMID: 30179233]
[35]
Shen, S.; Kong, J.; Qiu, Y.; Yang, X.; Wang, W.; Yan, L. Iden-tification of core genes and outcomes in hepatocellular carci-noma by bioinformatics analysis. J. Cell. Biochem., 2019, 120(6), 10069-10081.
[http://dx.doi.org/10.1002/jcb.28290] [PMID: 30525236]
[36]
Klopfenstein, D.V.; Zhang, L.; Pedersen, B.S.; Ramírez, F.; Warwick Vesztrocy, A.; Naldi, A.; Mungall, C.J.; Yunes, J.M.; Botvinnik, O.; Weigel, M.; Dampier, W.; Dessimoz, C.; Flick, P.; Tang, H. GOATOOLS: A python library for gene ontology analyses. Sci. Rep., 2018, 8(1), 10872.
[http://dx.doi.org/10.1038/s41598-018-28948-z] [PMID: 30022098]
[37]
Wang, Z.; Shang, P.; Li, Q.; Wang, L.; Chamba, Y.; Zhang, B.; Zhang, H.; Wu, C. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Sci. Rep., 2017, 7, 46717.
[http://dx.doi.org/10.1038/srep46717] [PMID: 28436483]
[38]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association net-works, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[39]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene ex-pression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[40]
Damoiseaux, J.S. Effects of aging on functional and structural brain connectivity. Neuroimage, 2017, 160, 32-40.
[http://dx.doi.org/10.1016/j.neuroimage.2017.01.077] [PMID: 28159687]
[41]
Pagán, O.R. The brain: A concept in flux. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2019, 374(1774), 20180383.
[http://dx.doi.org/10.1098/rstb.2018.0383] [PMID: 31006364]
[42]
Li, J.; Lin, X.; Wang, M.; Hu, Y.; Xue, K.; Gu, S.; Lv, L.; Huang, S.; Xie, W. Potential role of genomic imprinted genes and brain developmental related genes in autism. BMC Med. Genomics, 2020, 13(1), 54.
[http://dx.doi.org/10.1186/s12920-020-0693-2] [PMID: 32216802]
[43]
Renier, N.; Adams, E.L.; Kirst, C.; Wu, Z.; Azevedo, R.; Kohl, J.; Autry, A.E.; Kadiri, L.; Umadevi Venkataraju, K.; Zhou, Y.; Wang, V.X.; Tang, C.Y.; Olsen, O.; Dulac, C.; Osten, P.; Tessier-Lavigne, M. Mapping of brain activity by automated volume analysis of immediate early genes. Cell, 2016, 165(7), 1789-1802.
[http://dx.doi.org/10.1016/j.cell.2016.05.007] [PMID: 27238021]
[44]
Wu, T.; Du, Y. LncRNAs: From basic research to medical application. Int. J. Biol. Sci., 2017, 13(3), 295-307.
[http://dx.doi.org/10.7150/ijbs.16968] [PMID: 28367094]
[45]
Puvvula, P.K. LncRNAs regulatory networks in cellular se-nescence. Int. J. Mol. Sci., 2019, 20(11), 2615.
[http://dx.doi.org/10.3390/ijms20112615] [PMID: 31141943]
[46]
Ma, L.; Cao, J.; Liu, L.; Du, Q.; Li, Z.; Zou, D.; Bajic, V.B.; Zhang, Z. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res., 2019, 47(D1), D128-D134.
[http://dx.doi.org/10.1093/nar/gky960] [PMID: 30329098]
[47]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[48]
Zhu, J.; Chen, S.; Yang, B.; Mao, W.; Yang, X.; Cai, J. Molec-ular mechanisms of lncRNAs in regulating cancer cell radio-sensitivity. Biosci. Rep., 2019, 39(8), BSR20190590.
[http://dx.doi.org/10.1042/BSR20190590] [PMID: 31391206]
[49]
Subhramanyam, C.S.; Hu, Q. Non-coding RNA in brain de-velopment and disorder. Curr. Med. Chem., 2017, 24(18), 1983-1997.
[http://dx.doi.org/10.2174/0929867324666170124151436] [PMID: 28120708]
[50]
Liu, C.; Peng, Z.; Li, P.; Fu, H.; Feng, J.; Zhang, Y.; Liu, T.; Liu, Y.; Liu, Q.; Liu, Q.; Li, D.; Wu, M. lncRNA RMST sup-pressed GBM cell mitophagy through enhancing FUS SUMOylation. Mol. Ther. Nucleic Acids, 2020, 19, 1198-1208.
[http://dx.doi.org/10.1016/j.omtn.2020.01.008] [PMID: 32069702]
[51]
Zhang, L.; Xue, Z.; Yan, J.; Wang, J.; Liu, Q.; Jiang, H. LncRNA riken-201 and Riken-203 modulates neural devel-opment by regulating the Sox6 through sequestering miRNAs. Cell Prolif., 2019, 52(3), e12573.
[http://dx.doi.org/10.1111/cpr.12573] [PMID: 30667104]
[52]
Zhu, L.Y.; Zhu, Y.R.; Dai, D.J.; Wang, X.; Jin, H.C. Epigenetic regulation of alternative splicing. Am. J. Cancer Res., 2018, 8(12), 2346-2358.
[PMID: 30662796]
[53]
Romero-Barrios, N.; Legascue, M.F.; Benhamed, M.; Ariel, F.; Crespi, M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res., 2018, 46(5), 2169-2184.
[http://dx.doi.org/10.1093/nar/gky095] [PMID: 29425321]
[54]
Parikshak, N.N.; Swarup, V.; Belgard, T.G.; Irimia, M.; Ramaswami, G.; Gandal, M.J.; Hartl, C.; Leppa, V.; Ubieta, L.T.; Huang, J.; Lowe, J.K.; Blencowe, B.J.; Horvath, S.; Geschwind, D.H. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature, 2016, 540(7633), 423-427.
[http://dx.doi.org/10.1038/nature20612] [PMID: 27919067]
[55]
Zhang, X.; Tang, X.; Liu, K.; Hamblin, M.H.; Yin, K.J. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J. Neurosci., 2017, 37(7), 1797-1806.
[http://dx.doi.org/10.1523/JNEUROSCI.3389-16.2017] [PMID: 28093478]
[56]
Li, Z.X.; Zhu, Q.N.; Zhang, H.B.; Hu, Y.; Wang, G.; Zhu, Y.S. MALAT1: A potential biomarker in cancer. Cancer Manag. Res., 2018, 10, 6757-6768.
[http://dx.doi.org/10.2147/CMAR.S169406] [PMID: 30584369]
[57]
Zhang, X.; Hamblin, M.H.; Yin, K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological func-tions. RNA Biol., 2017, 14(12), 1705-1714.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy