Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Pan-Cancer Analysis of Histone Methyltransferase KMT2D with Potential Implications for Prognosis and Immunotherapy in Human Cancer

Author(s): Guoning Chen, Peijie Chen, Jianwen Zhou and Guangcheng Luo*

Volume 26, Issue 1, 2023

Published on: 17 May, 2022

Page: [83 - 92] Pages: 10

DOI: 10.2174/1386207325666220221092318

Price: $65

Abstract

Background: Pan-cancer analysis is an efficient tool to obtain a panoramic view of cancer- related genes and identify their oncogenic processes, facilitating the development of new therapeutic targets. Lysine methyltransferase 2D (KMT2D), acting as a major enhancer coactivator for mammalian cells, is one of the most frequently mutated genes across various cancer types and is considered an oncogene and a rationale for epigenetic therapeutic targets.

Objective: This study was designed to explore the potential role of KMT2D in human cancer through a pan-cancer analysis.

Methods: The expression of KMT2D was assessed in normal tissues and cell lines, and pancancers from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTE) datasets were used to explore its correlation with prognosis, immune cell infiltration, tumor mutation burden, microsatellite instability, and mismatch repair.

Results: KMT2D expression was heterogeneous across different cancer types. Increased KMT2D indicated a worse prognosis in adrenocortical carcinoma (ACC), brain lower-grade glioma (LGG), and mesothelioma (MESO), while patients with high KMT2D expression showed better outcomes in renal clear cell carcinoma (KIRC). Moreover, KMT2D expression was positively correlated with immune cell infiltration and negative tumor mutation burden in multiple cancers. In addition, a significant correlation between KMT2D and immune checkpoint-related genes or mismatch repair genes was identified.

Conclusions: These findings support the hypothesis that KMT2D is not only a potential biomarker for prognosis and immunotherapy response prediction but also an essential immune regulator in human cancer.

Keywords: KMT2D, pan-cancer analysis, prognosis, overall survival, immunotherapy, lower-grade glioma (LGG).

« Previous
Graphical Abstract

[1]
IARC, W. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Globocan, 2012.
[2]
Tarver, T. Cancer facts & figures 2012; American Cancer Society (ACS) Atlanta: Atlanta, GA, 2012, pp.66.
[3]
Underwood, T. ICGC/TCGA Pan-cancer analysis of whole genomes consortium. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793), 82-93.
[http://dx.doi.org/10.1038/s41586-020-1969-6] [PMID: 32025007]
[4]
Das, T.; Andrieux, G.; Ahmed, M.; Chakraborty, S. Integration of online omics-data resources for cancer research. Front. Genet., 2020, 11, 578345.
[http://dx.doi.org/10.3389/fgene.2020.578345] [PMID: 33193699]
[5]
Lavery, W.J.; Barski, A.; Wiley, S.; Schorry, E.K.; Lindsley, A.W. KMT2C/D COMPASS complex-associated diseases [KCDCOM-ADs]: An emerging class of congenital regulopathies. Clin. Epigenetics, 2020, 12(1), 10.
[http://dx.doi.org/10.1186/s13148-019-0802-2] [PMID: 31924266]
[6]
Calo, E.; Wysocka, J. Modification of enhancer chromatin: What, how, and why? Mol. Cell, 2013, 49(5), 825-837.
[http://dx.doi.org/10.1016/j.molcel.2013.01.038] [PMID: 23473601]
[7]
Froimchuk, E.; Jang, Y.; Ge, K. Histone H3 lysine 4 methyltransferase KMT2D. Gene, 2017, 627, 337-342.
[http://dx.doi.org/10.1016/j.gene.2017.06.056] [PMID: 28669924]
[8]
Ait-Si-Ali, S.; Ramirez, S.; Barre, F.X.; Dkhissi, F.; Magnaghi-Jaulin, L.; Girault, J.A.; Robin, P.; Knibiehler, M.; Pritchard, L.L.; Du-commun, B.; Trouche, D.; Harel-Bellan, A. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and onco-protein E1A. Nature, 1998, 396(6707), 184-186.
[http://dx.doi.org/10.1038/24190] [PMID: 9823900]
[9]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sand-er, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1-pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[10]
Alam, H.; Tang, M.; Maitituoheti, M.; Dhar, S.S.; Kumar, M.; Han, C.Y.; Ambati, C.R.; Amin, S.B.; Gu, B.; Chen, T-Y. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell, 2020, 37(4), 599-617.
[11]
Toska, E.; Osmanbeyoglu, H.U.; Castel, P.; Chan, C.; Hendrickson, R.C.; Elkabets, M.; Dickler, M.N.; Scaltriti, M.; Leslie, C.S.; Arm-strong, S.A.; Baselga, J. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 2017, 355(6331), 1324-1330.
[http://dx.doi.org/10.1126/science.aah6893] [PMID: 28336670]
[12]
Pagès, F.; Galon, J.; Dieu-Nosjean, M.C.; Tartour, E.; Sautès-Fridman, C.; Fridman, W.H. Immune infiltration in human tumors: A prog-nostic factor that should not be ignored. Oncogene, 2010, 29(8), 1093-1102.
[http://dx.doi.org/10.1038/onc.2009.416] [PMID: 19946335]
[13]
Zhang, S-C.; Hu, Z-Q.; Long, J-H.; Zhu, G-M.; Wang, Y.; Jia, Y.; Zhou, J.; Ouyang, Y.; Zeng, Z. Clinical implications of tumor-infiltrating immune cells in breast cancer. J. Cancer, 2019, 10(24), 6175-6184.
[http://dx.doi.org/10.7150/jca.35901] [PMID: 31762828]
[14]
Klempner, S.J.; Fabrizio, D.; Bane, S.; Reinhart, M.; Peoples, T.; Ali, S.M.; Sokol, E.S.; Frampton, G.; Schrock, A.B.; Anhorn, R.; Reddy, P. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: A review of current evidence. Oncologist, 2020, 25(1), e147-e159.
[http://dx.doi.org/10.1634/theoncologist.2019-0244] [PMID: 31578273]
[15]
Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J. Cancer genome atlas research network. Nat. Genet., 2013, 45(10), 1113-1120.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[16]
Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 2018, 173(2), 291-304.
[17]
Ding, L.; Bailey, M.H.; Porta-Pardo, E.; Thorsson, V.; Colaprico, A.; Bertrand, D.; Gibbs, D.L.; Weerasinghe, A.; Huang, K-l.; Tokheim, C. Per-spective on oncogenic processes at the end of the beginning of cancer genomics. Cell, 2018, 173(2), 305-320.
[http://dx.doi.org/10.1016/j.cell.2018.03.033]
[18]
Sanchez-Vega, F.; Mina, M.; Marra, M. Pathways, oncogenic signaling cancer, the atlas, genome. Cell, 2019, 173, 321-337.
[http://dx.doi.org/10.1016/j.cell.2018.03.035] [PMID: 29625050]
[19]
Lv, S-D.; Wang, H-Y.; Yu, X-P.; Zhai, Q-L.; Wu, Y-B.; Wei, Q.; Huang, W-H. Integrative molecular characterization of Chinese prostate cancer specimens. Asian J. Androl., 2020, 22(2), 162-168.
[http://dx.doi.org/10.4103/aja.aja_36_19] [PMID: 31134918]
[20]
Lv, S.; Ji, L.; Chen, B.; Liu, S.; Lei, C.; Liu, X.; Qi, X.; Wang, Y.; Lai-Han Leung, E.; Wang, H.; Zhang, L.; Yu, X.; Liu, Z.; Wei, Q.; Lu, L. Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene, 2018, 37(10), 1354-1368.
[http://dx.doi.org/10.1038/s41388-017-0026-x] [PMID: 29269867]
[21]
Lv, S.; Wen, H.; Shan, X.; Li, J.; Wu, Y.; Yu, X.; Huang, W.; Wei, Q. Loss of KMT2D induces prostate cancer ROS-mediated DNA dam-age by suppressing the enhancer activity and DNA binding of antioxidant transcription factor FOXO3. Epigenetics, 2019, 14(12), 1194-1208.
[http://dx.doi.org/10.1080/15592294.2019.1634985] [PMID: 31232159]
[22]
Ortega-Molina, A.; Boss, I.W.; Canela, A.; Pan, H.; Jiang, Y.; Zhao, C.; Jiang, M.; Hu, D.; Agirre, X.; Niesvizky, I.; Lee, J.E.; Chen, H.T.; Ennishi, D.; Scott, D.W.; Mottok, A.; Hother, C.; Liu, S.; Cao, X.J.; Tam, W.; Shaknovich, R.; Garcia, B.A.; Gascoyne, R.D.; Ge, K.; Shilatifard, A.; Elemento, O.; Nussenzweig, A.; Melnick, A.M.; Wendel, H.G. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med., 2015, 21(10), 1199-1208.
[http://dx.doi.org/10.1038/nm.3943] [PMID: 26366710]
[23]
Sun, P.; Wu, T.; Sun, X.; Cui, Z.; Zhang, H.; Xia, Q.; Zhang, D. KMT2D inhibits the growth and metastasis of bladder cancer cells by maintaining the tumor suppressor genes. Biomed. Pharmacother., 2019, 115, 108924.
[http://dx.doi.org/10.1016/j.biopha.2019.108924] [PMID: 31100540]
[24]
Koutsioumpa, M.; Hatziapostolou, M.; Polytarchou, C.; Tolosa, E.J.; Almada, L.L.; Mahurkar-Joshi, S.; Williams, J.; Tirado-Rodriguez, A.B.; Huerta-Yepez, S.; Karavias, D.; Kourea, H.; Poultsides, G.A.; Struhl, K.; Dawson, D.W.; Donahue, T.R.; Fernández-Zapico, M.E.; Iliopoulos, D. Lysine methyltransferase 2D regulates pancreatic carcinogenesis through metabolic reprogramming. Gut, 2019, 68(7), 1271-1286.
[http://dx.doi.org/10.1136/gutjnl-2017-315690] [PMID: 30337373]
[25]
Dawkins, J.B.; Wang, J.; Maniati, E.; Heward, J.A.; Koniali, L.; Kocher, H.M.; Martin, S.A.; Chelala, C.; Balkwill, F.R.; Fitzgibbon, J.; Grose, R.P. Reduced expression of histone methyltransferases KMT2C and KMT2D correlates with improved outcome in pancreatic duc-tal adenocarcinoma. Cancer Res., 2016, 76(16), 4861-4871.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0481] [PMID: 27280393]
[26]
Lee, J-E; Wang, C; Xu, S; Cho, Y-W; Wang, L; Feng, X; Baldridge, A; Sartorelli, V; Zhuang, L; Peng, W H3K4 mono-and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. elife 2013, 2, e01503.
[27]
Dorighi, K.M.; Swigut, T.; Henriques, T.; Bhanu, N.V.; Scruggs, B.S.; Nady, N.; Still, C.D., II; Garcia, B.A.; Adelman, K.; Wysocka, J. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Molecular cell, 2017, 66(4), 568-576.
[http://dx.doi.org/10.1016/j.molcel.2017.04.018]
[28]
Esfahani, K.; Buhlaiga, N.; Thébault, P.; Lapointe, R.; Johnson, N.A.; Miller, W.H. Jr Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N. Engl. J. Med., 2019, 380(24), 2375-2376.
[http://dx.doi.org/10.1056/NEJMc1903064] [PMID: 31189042]
[29]
Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol., 2020, 17(8), 807-821.
[http://dx.doi.org/10.1038/s41423-020-0488-6] [PMID: 32612154]
[30]
Placek, K.; Cui, K.; Hu, G.; Lee, J-E.; Wang, C.; Konkel, J.; Zhang, D.; Chen, W.; Ge, K.; Zhao, K. KMT2D histone methyltransferase modulates chromatin accessibility during regulatory T cell development (LYM6P. 714). Am Assoc Immnol, 2015, 194(1), 135.
[31]
Chen, D.; Jin, C.; Dong, X.; Wen, J.; Xia, E.; Wang, Q.; Wang, O. Pan-cancer analysis of the prognostic and immunological role of PSMB8. Sci. Rep., 2021, 11(1), 20492.
[http://dx.doi.org/10.1038/s41598-021-99724-9] [PMID: 34650125]
[32]
Chen, F.; Fan, Y.; Cao, P.; Liu, B.; Hou, J.; Zhang, B.; Tan, K. Pan-cancer analysis of the prognostic and immunological role of HSF1: A po-tential target for survival and immunotherapy. Oxid. Med. Cell. Longev., 2021, 2021, 5551036.
[http://dx.doi.org/10.1155/2021/5551036]
[33]
Cheng, X.; Wang, X.; Nie, K.; Cheng, L.; Zhang, Z.; Hu, Y.; Peng, W. Systematic pan-cancer analysis identifies TREM2 as an immunologi-cal and prognostic biomarker. Front. Immunol., 2021, 12, 646523.
[http://dx.doi.org/10.3389/fimmu.2021.646523] [PMID: 33679809]
[34]
Wang, G.; Chow, R.D.; Zhu, L.; Bai, Z.; Ye, L.; Zhang, F.; Renauer, P.A.; Dong, M.B.; Dai, X.; Zhang, X.; Du, Y.; Cheng, Y.; Niu, L.; Chu, Z.; Kim, K.; Liao, C.; Clark, P.; Errami, Y.; Chen, S. CRISPR-GEMM pooled mutagenic screening identifies KMT2D as a major modulator of immune checkpoint blockade. Cancer Discov., 2020, 10(12), 1912-1933.
[http://dx.doi.org/10.1158/2159-8290.CD-19-1448] [PMID: 32887696]
[35]
Kantidakis, T.; Saponaro, M.; Mitter, R.; Horswell, S.; Kranz, A.; Boeing, S.; Aygün, O.; Kelly, G.P.; Matthews, N.; Stewart, A.; Stewart, A.F.; Svejstrup, J.Q. Mutation of cancer driver MLL2 results in transcription stress and genome instability. Genes Dev., 2016, 30(4), 408-420.
[http://dx.doi.org/10.1101/gad.275453.115] [PMID: 26883360]
[36]
Ray Chaudhuri, A.; Callen, E.; Ding, X.; Gogola, E.; Duarte, A.A.; Lee, J-E.; Wong, N.; Lafarga, V.; Calvo, J.A.; Panzarino, N.J.; John, S.; Day, A.; Crespo, A.V.; Shen, B.; Starnes, L.M.; de Ruiter, J.R.; Daniel, J.A.; Konstantinopoulos, P.A.; Cortez, D.; Cantor, S.B.; Fernandez-Capetillo, O.; Ge, K.; Jonkers, J.; Rottenberg, S.; Sharan, S.K.; Nussenzweig, A. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016, 535(7612), 382-387.
[http://dx.doi.org/10.1038/nature18325] [PMID: 27443740]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy