Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances in Epidermal Growth Factor Receptor Inhibitors (EGFRIs) and their Role in the Treatment of Cancer: A Review

Author(s): Aziz Unnisa, Ananda Kumar Chettupalli, Talib Hussain and Mohammad Amjad Kamal*

Volume 22, Issue 20, 2022

Published on: 16 August, 2022

Page: [3370 - 3381] Pages: 12

DOI: 10.2174/1871520622666220408090541

Price: $65

Abstract

Tyrosine kinases are known to play a role in tumour growth and proliferation, and they have become common drug targets. Tyrosine kinase inhibitors (TKIs) prohibit associated kinases from phosphorylating tyrosine residues in their substrates, preventing downstream signaling pathways from being activated. Multiple robust and well-tolerated TKIs targeting single or multiple targets, including EGFR, ALK, ROS1, HER2, NTRK, VEGFR, RET, MET, MEK, FGFR, PDGFR, and KIT, have been developed over the last two decades, contributing to our understanding of precision cancer medicine based on a patient's genetic alteration profile. The epidermal growth factor receptor (EGFR) family consists of four transmembrane tyrosine kinases (EGFR1/ErbB1, Her2/ErbB2, Her3/ErbB3, and Her4/ErbB4) and thirteen polypeptide ligands produced by them. Multiple solid tumours, including breast, pancreatic, head and neck, kidney, vaginal, renal, colon, and non-small cell lung cancer, overexpress EGFRs. Overexpression of these genes stimulates downstream signaling channels, causing cell proliferation, differentiation, cell cycle progression, angiogenesis, cell motility, and apoptosis inhibition. EGFRs' high expression and/or adaptive activation coincide with the pathogenesis and development of many tumours, making them appealing candidates for both diagnosis and therapy. Several strategies for targeting these receptors and/or the EGFR-mediated effects in cancer cells have been established. The majority of methods include the development of anti-EGFR antibodies and/or small-molecule EGFR inhibitors. This review presents the recent advances in EGFR TKIs and their role in the treatment of cancer.

Keywords: EGFRIs, Cancer, p38α MAP Kinase Inhibitors, EAI001, EAI045, Tyrosin kinase

Graphical Abstract

[1]
Chan, D.L.H.; Segelov, E.; Wong, R.S.H.; Smith, A.; Herbertson, R.A.; Li, B.T.; Tebbutt, N.; Price, T.; Pavlakis, N. Epidermal growth fac-tor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst. Rev., 2017, 6, CD007047.
[http://dx.doi.org/10.1002/14651858.CD007047.pub2] [PMID: 28654140]
[2]
Grünwald, V.; Hidalgo, M. Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J. Natl. Cancer Inst., 2003, 95(12), 851-867.
[http://dx.doi.org/10.1093/jnci/95.12.851] [PMID: 12813169]
[3]
Song, Z.; Ge, Y.; Wang, C.; Huang, S.; Shu, X.; Liu, K.; Zhou, Y.; Ma, X. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer. J. Med. Chem., 2016, 59(14), 6580-6594.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00840] [PMID: 26882288]
[4]
Harari, P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer, 2004, 11(4), 689-708.
[http://dx.doi.org/10.1677/erc.1.00600] [PMID: 15613446]
[5]
Woodburn, J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther., 1999, 82(2-3), 241-250.
[http://dx.doi.org/10.1016/S0163-7258(98)00045-X] [PMID: 10454201]
[6]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[7]
Modjtahedi, H.; Essapen, S. Epidermal growth factor receptor inhibitors in cancer treatment: Advances, challenges and opportunities. Anticancer Drugs, 2009, 20(10), 851-855.
[http://dx.doi.org/10.1097/CAD.0b013e3283330590] [PMID: 19826350]
[8]
Ciardiello, F. Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol., 2005, 1(2), 221-234.
[http://dx.doi.org/10.1517/14796694.1.2.221] [PMID: 16555994]
[9]
Yu, Z.; Dee, E.C.; Bach, D.Q.; Mostaghimi, A.; LeBoeuf, N.R. Evaluation of a comprehensive skin toxicity program for patients treated with epidermal growth factor receptor inhibitors at a cancer treatment center. JAMA Dermatol., 2020, 156(10), 1079-1085.
[http://dx.doi.org/10.1001/jamadermatol.2020.1795] [PMID: 32609305]
[10]
Martinelli, E.; Ciardiello, D.; Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.P.; Normanno, N.; Rachiglio, A.M.; Maiello, E.; Latiano, T.; De Vita, F.; Ciardiello, F. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: Challenges and future perspectives. Ann. Oncol., 2020, 31(1), 30-40.
[http://dx.doi.org/10.1016/j.annonc.2019.10.007] [PMID: 31912793]
[11]
Dziadziuszko, R.; Jassem, J. Epidermal growth factor receptor (EGFR) inhibitors and derived treatments. Ann. Oncol., 2012, 23(Suppl. 10), x193-x196.
[http://dx.doi.org/10.1093/annonc/mds351] [PMID: 22987961]
[12]
Bonello, M.; Sims, A.H.; Langdon, S.P. Human epidermal growth factor receptor targeted inhibitors for the treatment of ovarian cancer. Cancer Biol. Med., 2018, 15(4), 375-388.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0062] [PMID: 30766749]
[13]
Khandekar, M.J.; Piotrowska, Z.; Willers, H.; Sequist, L.V. Role of epidermal growth factor receptor (EGFR) inhibitors and radiation in the management of brain metastases from EGFR mutant lung cancers. Oncologist, 2018, 23(9), 1054-1062.
[http://dx.doi.org/10.1634/theoncologist.2017-0557] [PMID: 29703765]
[14]
Kılıçkap, S. Epidermal growth factor receptor inhibitors in treatment of non-small cell lung cancer. Nobel Med., 2018, 23(14), 5-8.
[http://dx.doi.org/10.1007/978-1-60761-524-8_10]
[15]
Shear, N. Epidermal Growth Factor Receptor (Egfr) Inhibitors.Litt’s Drug Eruption and Reaction Manual; Taylor & Francis: UK, 2020, pp. 462-464.
[http://dx.doi.org/10.1201/b17996-157]
[16]
Corchado-Cobos, R.; García-Sancha, N.; González-Sarmiento, R.; Pérez-Losada, J.; Cañueto, J. Cutaneous squamous cell carcinoma: From biology to therapy. Int. J. Mol. Sci., 2020, 21(8), E2956.
[http://dx.doi.org/10.3390/ijms21082956] [PMID: 32331425]
[17]
Masood, A.; Kancha, R.K.; Subramanian, J. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer harboring uncommon EGFR mutations: Focus on afatinib. Semin. Oncol., 2019, 46(3), 271-283.
[http://dx.doi.org/10.1053/j.seminoncol.2019.08.004] [PMID: 31558282]
[18]
Al Olayan, A.; Al Hussaini, H.; Jazieh, A.R.; Jazieh, A.R.; Al Hadab, A.; Hebshi, A.; Abdulwarith, A.; Bamousa, A.; Saadeddin, A.; Al Olayan, A.; Al Fayae, T.; Al Dayel, F.; Al Husaini, H.; Al Jahdali, H.; Bamefleh, H.; Al Kattan, K.; Rajab, M.H.; Al Ghanim, S.; Shukri, L.; Bahadur, Y.; Khankan, A. The roles of epidermal growth factor receptor (EGFR) inhibitors in the management of lung cancer. J. Infect. Public Health, 2012, 5(5), S50-S60.
[http://dx.doi.org/10.1016/j.jiph.2012.09.004] [PMID: 23244189]
[19]
Aaronson, S.A. Growth factors and cancer. Science (80-.), 1991, 254(5035), 1146-1153.
[http://dx.doi.org/10.1126/science.1659742]
[20]
Witsch, E.; Sela, M.; Yarden, Y. Roles for growth factors in cancer progression. Physiology (Bethesda), 2010, 25(2), 85-101.
[http://dx.doi.org/10.1152/physiol.00045.2009] [PMID: 20430953]
[21]
Burgess, A.W. Growth factors and cancer. Aust. N. Z. J. Surg., 1985, 55(2), 105-110.
[http://dx.doi.org/10.1111/j.1445-2197.1985.tb00868.x] [PMID: 2994617]
[22]
Mendelsohn, J. Blockade of receptors for growth factors: An anticancer therapy--the fourth annual Joseph H. Burchenal American Associ-ation of Cancer Research Clinical Research Award Lecture. Clin. Cancer Res., 2000, 6(3), 747-753.
[PMID: 10741693]
[23]
Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer, 2001, 8(1), 3-9.
[http://dx.doi.org/10.1677/erc.0.0080003] [PMID: 11350723]
[24]
Sporn, M.B.; Todaro, G.J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med., 1980, 303(15), 878-880.
[http://dx.doi.org/10.1056/NEJM198010093031511] [PMID: 7412807]
[25]
Alroy, I.; Yarden, Y. The ErbB signaling network in embryogenesis and oncogenesis: Signal diversification through combinatorial ligand-receptor interactions. FEBS Lett., 1997, 410(1), 83-86.
[http://dx.doi.org/10.1016/S0014-5793(97)00412-2] [PMID: 9247128]
[26]
Ciardiello, F.; Tortora, G. A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor. Clin. Cancer Res., 2001, 7(10), 2958-2970.
[PMID: 11595683]
[27]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor re-ceptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[28]
Attili, I.; Karachaliou, N.; Conte, P.; Bonanno, L.; Rosell, R. Therapeutic approaches for T790M mutation positive non-small-cell lung cancer. Expert Rev. Anticancer Ther., 2018, 18(10), 1021-1030.
[http://dx.doi.org/10.1080/14737140.2018.1508347] [PMID: 30079781]
[29]
Engel, J.; Richters, A.; Getlik, M.; Tomassi, S.; Keul, M.; Termathe, M.; Lategahn, J.; Becker, C.; Mayer-Wrangowski, S.; Grütter, C.; Uh-lenbrock, N.; Krüll, J.; Schaumann, N.; Eppmann, S.; Kibies, P.; Hoffgaard, F.; Heil, J.; Menninger, S.; Ortiz-Cuaran, S.; Heuckmann, J.M.; Tinnefeld, V.; Zahedi, R.P.; Sos, M.L.; Schultz-Fademrecht, C.; Thomas, R.K.; Kast, S.M.; Rauh, D. Targeting drug resistance in EGFR with covalent inhibitors: A structure-based design approach. J. Med. Chem., 2015, 58(17), 6844-6863.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01082] [PMID: 26275028]
[30]
Liu, Y.; Zhang, Y.; Feng, G.; Niu, Q.; Xu, S.; Yan, Y.; Li, S.; Jing, M. Comparison of effectiveness and adverse effects of gefitinib, erlo-tinib and icotinib among patients with non-small cell lung cancer: A network meta-analysis. Exp. Ther. Med., 2017, 14(5), 4017-4032.
[http://dx.doi.org/10.3892/etm.2017.5094] [PMID: 29104622]
[31]
Zhang, Y.; Sheng, J.; Yang, Y.; Fang, W.; Kang, S.; He, Y.; Hong, S.; Zhan, J.; Zhao, Y.; Xue, C.; Ma, Y.; Zhou, T.; Ma, S.; Gao, F.; Qin, T.; Hu, Z.; Tian, Y.; Hou, X.; Huang, Y.; Zhou, N.; Zhao, H.; Zhang, L. Optimized selection of three major EGFR-TKIs in advanced EGFR-positive non-small cell lung cancer: A network meta-analysis. Oncotarget, 2016, 7(15), 20093-20108.
[http://dx.doi.org/10.18632/oncotarget.7713] [PMID: 26933807]
[32]
Kim, D.W.; Garon, E.B.; Jatoi, A.; Keefe, D.M.; Lacouture, M.E.; Sonis, S.; Gernhardt, D.; Wang, T.; Giri, N.; Doherty, J.P.; Nadanaciva, S.; O’Connell, J.; Sbar, E.; Cho, B.C. Impact of a planned dose interruption of dacomitinib in the treatment of advanced non-small-cell lung cancer (ARCHER 1042). Lung Cancer, 2017, 106, 76-82.
[http://dx.doi.org/10.1016/j.lungcan.2017.01.021] [PMID: 28285698]
[33]
Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med., 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076] [PMID: 28149837]
[34]
Bryce, A.H.; Rao, R.; Sarkaria, J.; Reid, J.M.; Qi, Y.; Qin, R.; James, C.D.; Jenkins, R.B.; Boni, J.; Erlichman, C.; Haluska, P. Phase I study of temsirolimus in combination with EKB-569 in patients with advanced solid tumors. Invest. New Drugs, 2012, 30(5), 1934-1941.
[http://dx.doi.org/10.1007/s10637-011-9742-1] [PMID: 21881915]
[35]
Sakuma, Y.; Yamazaki, Y.; Nakamura, Y.; Yoshihara, M.; Matsukuma, S.; Nakayama, H.; Yokose, T.; Kameda, Y.; Koizume, S.; Miyagi, Y. WZ4002, a third-generation EGFR inhibitor, can overcome anoikis resistance in EGFR-mutant lung adenocarcinomas more efficiently than Src inhibitors. Lab. Invest., 2012, 92(3), 371-383.
[http://dx.doi.org/10.1038/labinvest.2011.187] [PMID: 22157722]
[36]
Carlisle, J.W.; Ramalingam, S.S. Role of osimertinib in the treatment of EGFR-mutation positive non-small-cell lung cancer. Future Oncol., 2019, 15(8), 805-816.
[http://dx.doi.org/10.2217/fon-2018-0626] [PMID: 30657347]
[37]
Patel, H.; Pawara, R.; Ansari, A.; Surana, S. Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance. Eur. J. Med. Chem., 2017, 142, 32-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.027] [PMID: 28526474]
[38]
Wang, H.; Zhang, L.; Hu, P.; Zheng, X.; Si, X.; Zhang, X.; Wang, M. Penetration of the blood-brain barrier by avitinib and its control of intra/extra-cranial disease in non-small cell lung cancer harboring the T790M mutation. Lung Cancer, 2018, 122, 1-6.
[http://dx.doi.org/10.1016/j.lungcan.2018.05.010] [PMID: 30032814]
[39]
Tan, D.S.W.; Leighl, N.B.; Riely, G.J.; Yang, J.C.H.; Sequist, L.V.; Wolf, J.; Seto, T.; Felip, E.; Aix, S.P.; Jonnaert, M.; Pan, C.; Tan, E.Y.; Ko, J.; Moody, S.E.; Kim, D.W. Safety and efficacy of nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: A multicentre, open-label, phase 1 study. Lancet Respir. Med., 2020, 8(6), 561-572.
[http://dx.doi.org/10.1016/S2213-2600(19)30267-X] [PMID: 31954624]
[40]
Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3R,4R)-3-[(5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yloxy)methyl]-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a potent, WT Sparing, irreversible inhibitor of T790M-containing EGFR mutants. J. Med. Chem., 2016, 59(5), 2005-2024.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01633] [PMID: 26756222]
[41]
Wan, S.; Yan, R.; Jiang, Y.; Li, Z.; Zhang, J.; Wu, X. Insight into binding mechanisms of EGFR allosteric inhibitors using molecular dy-namics simulations and free energy calculations. J. Biomol. Struct. Dyn., 2019, 37(16), 4384-4394.
[http://dx.doi.org/10.1080/07391102.2018.1552197] [PMID: 30499387]
[42]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L. Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica. Erlotinib Versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol., 2012, 13(3), 239-246.
[http://dx.doi.org/10.1016/S1470-2045(11)70393-X] [PMID: 22285168]
[43]
Yang, J.C.H.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; Lu, S.; Huang, Y.; Geater, S.L.; Lee, K.Y.; Tsai, C.M.; Gorbunova, V.; Hirsh, V.; Bennouna, J.; Orlov, S.; Mok, T.; Boyer, M.; Su, W.C.; Lee, K.H.; Kato, T.; Massey, D.; Shahidi, M.; Zazulina, V.; Sequist, L.V. Afatinib Versus cisplatin-based chemotherapy for EGFR mutation-positive lung ade-nocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol., 2015, 16(2), 141-151.
[http://dx.doi.org/10.1016/S1470-2045(14)71173-8] [PMID: 25589191]
[44]
Soria, J.C.; Wu, Y.L.; Nakagawa, K.; Kim, S.W.; Yang, J.J.; Ahn, M.J.; Wang, J.; Yang, J.C.H.; Lu, Y.; Atagi, S.; Ponce, S.; Lee, D.H.; Liu, Y.; Yoh, K.; Zhou, J.Y.; Shi, X.; Webster, A.; Jiang, H.; Mok, T.S.K. Gefitinib plus chemotherapy versus placebo plus chemotherapy in egfr-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): A phase 3 randomised trial. Lancet Oncol., 2015, 16(8), 990-998.
[http://dx.doi.org/10.1016/S1470-2045(15)00121-7] [PMID: 26159065]
[45]
Ma, C.; Huang, C.; Tang, D.; Ye, X.; Li, Z.; Liu, R.; Mu, N.; Li, J.; Jiang, R.; Zhang, J. Afatinib for advanced non-small cell lung cancer in a case with an uncommon epidermal growth factor receptor mutation (G719A) identified in the cerebrospinal fluid. Front. Oncol., 2019, 9, 628.
[http://dx.doi.org/10.3389/fonc.2019.00628] [PMID: 31396478]
[46]
Zhou, Q.; Zhang, X.C.; Chen, Z.H.; Yin, X.L.; Yang, J.J.; Xu, C.R.; Yan, H.H.; Chen, H.J.; Su, J.; Zhong, W.Z.; Yang, X.N.; An, S.J.; Wang, B.C.; Huang, Y.S.; Wang, Z.; Wu, Y.L. Relative abundance of EGFR mutations predicts benefit from gefitinib treatment for advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(24), 3316-3321.
[http://dx.doi.org/10.1200/JCO.2010.33.3757] [PMID: 21788562]
[47]
Wang, S.; Song, Y.; Liu, D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett., 2017, 385, 51-54.
[http://dx.doi.org/10.1016/j.canlet.2016.11.008] [PMID: 27840244]
[48]
Cataldo, V.D.; Gibbons, D.L.; Pérez-Soler, R.; Quintás-Cardama, A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med., 2011, 364(10), 947-955.
[http://dx.doi.org/10.1056/NEJMct0807960] [PMID: 21388312]
[49]
Miyazaki, K.; Tamura, T.; Kaburagi, T.; Saito, K.; Inagaki, M.; Yamashita, T.; Ichimura, H.; Nawa, T.; Endo, T.; Hayashihara, K.; Kimura, M.; Kurishima, K.; Nakamura, H.; Furukawa, K.; Kikuchi, N.; Satoh, H.; Hizawa, N. Real clinical practice of using afatinib therapy in NSCLC patients with an acquired EGFR T790M mutation. Anticancer Res., 2018, 38(9), 5409-5415.
[http://dx.doi.org/10.21873/anticanres.12871] [PMID: 30194196]
[50]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[51]
Wang, S.; Luo, L.M.; Shi, J.; Zan, X.; Zhu, X.Y.; Luo, G.N.; Wu, Y.C. Effect of mechanical alloying on the microstructure and properties of W–Ti alloys fabricated by spark plasma sintering. Powder Technol., 2016, 302, 1-7.
[http://dx.doi.org/10.1016/j.powtec.2016.08.039]
[52]
Sos, M.L.; Rode, H.B.; Heynck, S.; Peifer, M.; Fischer, F.; Klüter, S.; Pawar, V.G.; Reuter, C.; Heuckmann, J.M.; Weiss, J.; Ruddigkeit, L.; Rabiller, M.; Koker, M.; Simard, J.R.; Getlik, M.; Yuza, Y.; Chen, T.H.; Greulich, H.; Thomas, R.K.; Rauh, D. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res., 2010, 70(3), 868-874.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3106] [PMID: 20103621]
[53]
Ou, S.H.I. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): A better mousetrap? A review of the clinical evidence. Crit. Rev. Oncol. Hematol., 2012, 83(3), 407-421.
[http://dx.doi.org/10.1016/j.critrevonc.2011.11.010] [PMID: 22257651]
[54]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11(8), 473-481.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[55]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K.K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in pre-clinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109] [PMID: 18408761]
[56]
Yu, H.A.; Pao, W. Targeted therapies: Afatinib--new therapy option for EGFR-mutant lung cancer. Nat. Rev. Clin. Oncol., 2013, 10(10), 551-552.
[http://dx.doi.org/10.1038/nrclinonc.2013.154] [PMID: 23959269]
[57]
Grivas, P.D.; Day, K.C.; Karatsinides, A.; Paul, A.; Shakir, N.; Owainati, I.; Liebert, M.; Kunju, L.P.; Thomas, D.; Hussain, M.; Day, M.L. Evaluation of the antitumor activity of dacomitinib in models of human bladder cancer. Mol. Med., 2013, 19(1), 367-376.
[http://dx.doi.org/10.2119/molmed.2013.00108] [PMID: 24166682]
[58]
Giri, N.; Masters, J.C.; Plotka, A.; Liang, Y.; Boutros, T.; Pardo, P.; O’Connell, J.; Bello, C. Investigation of the impact of hepatic impair-ment on the pharmacokinetics of dacomitinib. Invest. New Drugs, 2015, 33(4), 931-941.
[http://dx.doi.org/10.1007/s10637-015-0256-0] [PMID: 26048096]
[59]
Ruiz-Garcia, A.; Giri, N.; LaBadie, R.R.; Ni, G.; Boutros, T.; Richie, N.; Kocinsky, H.S.; Checchio, T.M.; Bello, C.L. A phase I open-label study to investigate the potential drug-drug interaction between single-dose dacomitinib and steady-state paroxetine in healthy volunteers. J. Clin. Pharmacol., 2014, 54(5), 555-562.
[http://dx.doi.org/10.1002/jcph.243] [PMID: 24293056]
[60]
Martin, M.; Bonneterre, J.; Geyer, C.E., Jr; Ito, Y.; Ro, J.; Lang, I.; Kim, S.B.; Germa, C.; Vermette, J.; Wang, K.; Wang, K.; Awada, A. A phase two randomised trial of neratinib monotherapy Versus lapatinib plus capecitabine combination therapy in patients with HER2+ ad-vanced breast cancer. Eur. J. Cancer, 2013, 49(18), 3763-3772.
[http://dx.doi.org/10.1016/j.ejca.2013.07.142] [PMID: 23953056]
[61]
Zhao, X.Q.; Xie, J.D.; Chen, X.G.; Sim, H.M.; Zhang, X.; Liang, Y.J.; Singh, S.; Talele, T.T.; Sun, Y.; Ambudkar, S.V.; Chen, Z.S.; Fu, L.W. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol. Pharmacol., 2012, 82(1), 47-58.
[http://dx.doi.org/10.1124/mol.111.076299] [PMID: 22491935]
[62]
Tao, Z.; Li, S.X.; Shen, K.; Zhao, Y.; Zeng, H.; Ma, X. Safety and efficacy profile of neratinib: A systematic review and meta-analysis of 23 prospective clinical trials. Clin. Drug Investig., 2019, 39(1), 27-43.
[http://dx.doi.org/10.1007/s40261-018-0719-0] [PMID: 30370488]
[63]
To, K.K.W.; Poon, D.C.; Wei, Y.; Wang, F.; Lin, G.; Fu, L. Pelitinib (EKB-569) targets the up-regulation of ABCB1 and ABCG2 induced by hyperthermia to eradicate lung cancer. Br. J. Pharmacol., 2015, 172(16), 4089-4106.
[http://dx.doi.org/10.1111/bph.13189] [PMID: 25988710]
[64]
Hegedüs, C.; Truta-Feles, K.; Antalffy, G.; Várady, G.; Német, K.; Özvegy-Laczka, C.; Kéri, G.; Orfi, L.; Szakács, G.; Settleman, J.; Váradi, A.; Sarkadi, B. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: Im-plications for the emergence and reversal of cancer drug resistance. Biochem. Pharmacol., 2012, 84(3), 260-267.
[http://dx.doi.org/10.1016/j.bcp.2012.04.010] [PMID: 22548830]
[65]
Goldberg, S.B.; Redman, M.W.; Lilenbaum, R.; Politi, K.; Stinchcombe, T.E.; Horn, L.; Chen, E.H.; Mashru, S.H.; Gettinger, S.N.; Melnick, M.A.; Herbst, R.S.; Baumgart, M.A.; Miao, J.; Moon, J.; Kelly, K.; Gandara, D.R. Randomized trial of afatinib plus cetuximab Versus afatinib alone for first-line treatment of EGFR-mutant non-small-cell lung cancer: Final results from SWOG S1403. J. Clin. Oncol., 2020, 38(34), 4076-4085.
[http://dx.doi.org/10.1200/JCO.20.01149] [PMID: 33021871]
[66]
Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.067] [PMID: 26968253]
[67]
Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; Engen, J.R.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009, 462(7276), 1070-1074.
[http://dx.doi.org/10.1038/nature08622] [PMID: 20033049]
[68]
Romu, A.A.; Lei, Z.; Zhou, B.; Chen, Z.S.; Korlipara, V. Design, synthesis and biological evaluation of WZ4002 analogues as EGFR in-hibitors. Bioorg. Med. Chem. Lett., 2017, 27(21), 4832-4837.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.048] [PMID: 28974338]
[69]
Lee, T.G.; Jeong, E.H.; Kim, S.Y.; Kim, H.R.; Kim, C.H. The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int. J. Cancer, 2015, 136(11), 2717-2729.
[http://dx.doi.org/10.1002/ijc.29320] [PMID: 25382705]
[70]
Hayakawa, D.; Takahashi, F.; Mitsuishi, Y.; Tajima, K.; Hidayat, M.; Winardi, W.; Ihara, H.; Kanamori, K.; Matsumoto, N.; Asao, T.; Ko, R.; Shukuya, T.; Takamochi, K.; Hayashi, T.; Suehara, Y.; Takeda Nakamura, I.; Ueno, T.; Kohsaka, S.; Mano, H.; Takahashi, K. Activa-tion of insulin-like growth factor-1 receptor confers acquired resistance to osimertinib in non-small cell lung cancer with EGFR T790M mutation. Thorac. Cancer, 2020, 11(1), 140-149.
[http://dx.doi.org/10.1111/1759-7714.13255] [PMID: 31758670]
[71]
Xie, L.; Nagpal, S.; Wakelee, H.A.; Li, G.; Soltys, S.G.; Neal, J.W. Osimertinib for EGFR-mutant lung cancer with brain metastases: Re-sults from a single-center retrospective study. Oncologist, 2019, 24(6), 836-843.
[http://dx.doi.org/10.1634/theoncologist.2018-0264] [PMID: 30126856]
[72]
Akamatsu, H.; Toi, Y.; Hayashi, H.; Fujimoto, D.; Tachihara, M.; Furuya, N.; Otani, S.; Shimizu, J.; Katakami, N.; Azuma, K.; Miura, N.; Nishino, K.; Hara, S.; Teraoka, S.; Morita, S.; Nakagawa, K.; Yamamoto, N. Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with EGFR T790M-mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: West japan oncology group 8715L phase 2 randomized clinical trial. JAMA Oncol., 2021, 7(3), 386-394.
[http://dx.doi.org/10.1001/jamaoncol.2020.6758] [PMID: 33410885]
[73]
Zhong, J.; Zhang, J.; Yu, X.; Zhang, X.; Dian, L. Olmutinib reverses doxorubicin resistance in ETS1-overexpressing leukemia cells. Med. Sci. Monit., 2020, 26, e924922.
[http://dx.doi.org/10.12659/MSM.924922] [PMID: 32830792]
[74]
Zhang, W.; Fan, Y.F.; Cai, C.Y.; Wang, J.Q.; Teng, Q.X.; Lei, Z.N.; Zeng, L.; Gupta, P.; Chen, Z.S. Olmutinib (BI1482694/HM61713), a novel epidermal growth factor receptor tyrosine kinase inhibitor, reverses ABCG2-mediated multidrug resistance in cancer cells. Front. Pharmacol., 2018, 9(OCT), 1097.
[http://dx.doi.org/10.3389/fphar.2018.01097] [PMID: 30356705]
[75]
Noh, Y.S.; Yoon, S.; Kim, S.R.; Lee, K.T.; Jang, I.J.A. A safety, pharmacokinetic, pharmacogenomic and population pharmacokinetic analysis of the third-generation EGFR TKI, olmutinib (HM61713), after single oral administration in healthy volunteers. Basic Clin. Pharmacol. Toxicol., 2019, 125(4), 370-381.
[http://dx.doi.org/10.1111/bcpt.13262] [PMID: 31125491]
[76]
Ke, E.E.; Wu, Y.L. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: Where do we stand now? Trends Pharmacol. Sci., 2016, 37(11), 887-903.
[http://dx.doi.org/10.1016/j.tips.2016.09.003] [PMID: 27717507]
[77]
Ulivi, P.; Chiadini, E.; Dazzi, C.; Dubini, A.; Costantini, M.; Medri, L.; Puccetti, M.; Capelli, L.; Calistri, D.; Verlicchi, A.; Gamboni, A.; Papi, M.; Mariotti, M.; De Luigi, N.; Scarpi, E.; Bravaccini, S.; Turolla, G.M.; Amadori, D.; Crinò, L.; Delmonte, A. Nonsquamous, non-small-cell lung cancer patients who carry a double mutation of EGFR, EML4-ALK or KRAS: Frequency, clinical-pathological characteris-tics, and response to therapy. Clin. Lung Cancer, 2016, 17(5), 384-390.
[http://dx.doi.org/10.1016/j.cllc.2015.11.004] [PMID: 26712101]
[78]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[79]
Maity, S.; Pai, K.S.R.; Nayak, Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep., 2020, 72(4), 799-813.
[http://dx.doi.org/10.1007/s43440-020-00131-0] [PMID: 32666476]
[80]
Zhao, P.; Yao, M.Y.; Zhu, S.J.; Chen, J.Y.; Yun, C.H. Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. Biochem. Biophys. Res. Commun., 2018, 502(3), 332-337.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.154] [PMID: 29802850]
[81]
Zhao, H.Y.; Yang, X.Y.; Lei, H.; Xi, X.X.; Lu, S.M.; Zhang, J.J.; Xin, M.; Zhang, S.Q. Discovery of potent small molecule PROTACs tar-geting mutant EGFR. Eur. J. Med. Chem., 2020, 208, 112781.
[http://dx.doi.org/10.1016/j.ejmech.2020.112781] [PMID: 32883633]
[82]
He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X. Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg. Med. Chem. Lett., 2020, 30(12), 127167.
[http://dx.doi.org/10.1016/j.bmcl.2020.127167] [PMID: 32317208]
[83]
Zhang, B.; Liu, Z.; Xia, S.; Liu, Q.; Gou, S. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur. J. Med. Chem., 2021, 216, 113300.
[http://dx.doi.org/10.1016/j.ejmech.2021.113300] [PMID: 33640672]
[84]
Kumar, C.B.P.; Raghu, M.S.; Prathibha, B.S.; Prashanth, M.K.; Kanthimathi, G.; Kumar, K.Y.; Parashuram, L.; Alharthi, F.A. Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorg. Med. Chem. Lett., 2021, 44, 128118.
[http://dx.doi.org/10.1016/j.bmcl.2021.128118] [PMID: 34015505]
[85]
Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Anwar, M.M.; Nossier, E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem., 2021, 114, 105078.
[http://dx.doi.org/10.1016/j.bioorg.2021.105078] [PMID: 34161878]
[86]
Su, Z.; Yang, T.; Wang, J.; Lai, M.; Tong, L.; Wumaier, G.; Chen, Z.; Li, S.; Li, H.; Xie, H.; Zhao, Z. Design, synthesis and biological eval-uation of potent EGFR kinase inhibitors against 19D/T790M/C797S mutation. Bioorg. Med. Chem. Lett., 2020, 30(16), 127327.
[http://dx.doi.org/10.1016/j.bmcl.2020.127327] [PMID: 32631532]
[87]
Ornnork, N.; Kiriwan, D.; Lirdprapamongkol, K.; Choowongkomon, K.; Svasti, J.; Eurtivong, C. Molecular dynamics, MM/PBSA and in vitro validation of a novel quinazoline-based EGFR tyrosine kinase inhibitor identified using structure-based in silico screening. J. Mol. Graph. Model., 2020, 99, 107639.
[http://dx.doi.org/10.1016/j.jmgm.2020.107639] [PMID: 32534372]
[88]
Ibrahim, M.T.; Uzairu, A.; Shallangwa, G.A.; Uba, S. In-silico activity prediction and docking studies of some 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9h-purine derivatives as Anti-proliferative agents. Heliyon, 2020, 6(1), e03158.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03158] [PMID: 32042954]
[89]
Patel, H.M.; Ahmad, I.; Pawara, R.; Shaikh, M.; Surana, S. in silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): A combined approach of structure-based virtual screening and mo-lecular dynamics simulation. J. Biomol. Struct. Dyn., 2021, 39(4), 1491-1505.
[http://dx.doi.org/10.1080/07391102.2020.1734092] [PMID: 32102624]
[90]
Ahmad, I.; Shaikh, M.; Surana, S.; Ghosh, A.; Patel, H. p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): Emergence of fourth-generation EGFR inhibitor. J. Biomol. Struct. Dyn., 2020, 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1844801] [PMID: 33174519]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy