Generic placeholder image

Current Pharmacogenomics and Personalized Medicine

Editor-in-Chief

ISSN (Print): 1875-6921
ISSN (Online): 1875-6913

Research Article

Computational Pathways Analysis and Personalized Medicine in HER2-Positive Breast Cancer

Author(s): Maria Lui, Domenico Giosa, Orazio Romeo and Alessandra Bitto*

Volume 19, Issue 1, 2022

Published on: 08 June, 2022

Page: [40 - 52] Pages: 13

DOI: 10.2174/1875692119666220407114044

Price: $65

Abstract

Background: The heterogeneity of some diseases, such as cancer, makes the decisions on therapeutic strategy very challenging. In this context, pathway analysis can support the identification of the best treatment and indeed prevent the issues arising from the trial and error process, in terms of best overall efficacy and lowest toxicity, ultimately saving time and resources. In a pathway, each gene is represented by a node and the pathway analysis can be performed using algorithms that interpolate data from different sources (i.e., sequencing, microarray, drug efficacy and interactions).

Objective: The purpose of this study was to evaluate the effects of erbb2 amplification on HER2- positive breast cancer and to predict, with a pathway based computational approach, the efficacy of a therapy with Trastuzumab and Palbociclib, alone or in combination.

Methods: One of the available and most integrated algorithms is PHENSIM that was used in this study to evaluate the gene dysregulations caused by the erbb2 amplification on its related pathways and the effects of Trastuzumab and Palbociclib on these deregulations. The effects have been estimated considering the drugs alone or in a combination therapy.

Results: A reduction of the number of pro-proliferative signals has been observed for both drugs alone or in combination. Regarding genes involved in MAPK signaling pathway, a total of 69 nodes were activated by the erbb2 mutation. A simulated treatment with Palbociclib reduced the number of activated genes down to 60, while with Trastuzumab the activated nodes were only 53. The combined therapy revealed an intriguing result providing a significant and remarkable reduction of the activated genes from 69 to 33.

Conclusion: These results let us hypothesize that there could be an increased efficacy giving the combination therapy to subjects with HER2 positive breast cancer. Finally, pathway analysis could be specifically used to design clinical trials predicting the efficacy of combination therapies or untested drugs on a specific disease.

Keywords: Pathway analysis, gene expression, breast cancer, personalized medicine, bioinformatics algorithms, pharmacogenomics.

Graphical Abstract

[1]
de Brevern AG, Meyniel J-P, Fairhead C, Neuvéglise C, Malpertuy A. Trends in IT innovation to build a next generation bioinformatics solution to manage and analyse biological big data produced by NGS technologies. BioMed Res Int 2015; 2015: 904541.
[http://dx.doi.org/10.1155/2015/904541] [PMID: 26125026]
[2]
Ibrahim R, Pasic M, Yousef GM. Omics for personalized medicine: Defining the current we swim in. Expert Rev Mol Diagn 2016; 16(7): 719-22.
[http://dx.doi.org/10.1586/14737159.2016.1164601] [PMID: 26959799]
[3]
Hulsen T, Jamuar SS, Moody AR, et al. From big data to precision medicine. Front Med (Lausanne) 2019; 6: 34.
[http://dx.doi.org/10.3389/fmed.2019.00034] [PMID: 30881956]
[4]
Wang B, Li R, Perrizo W. Big data analytics in bioinformatics and healthcare. Hershey, PA: IGI Global 2015.
[http://dx.doi.org/10.4018/978-1-4666-6611-5]
[5]
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[6]
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44(D1): D457-62.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[7]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[8]
Cerami EG, Gross BE, Demir E, et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 2011; 39: D685-90.
[http://dx.doi.org/10.1093/nar/gkq1039]
[9]
Rodchenkov I, Babur O, Luna A, et al. Pathway commons 2019 update: Integration, analysis and exploration of pathway data. Nucleic Acids Res 2020; 48(D1): D489-97.
[http://dx.doi.org/10.1093/nar/gkz946] [PMID: 31647099]
[10]
Li X, Li C, Shang D, et al. The implications of relationships between human diseases and metabolic subpathways. PLoS One 2011; 6(6): e21131.
[http://dx.doi.org/10.1371/journal.pone.0021131] [PMID: 21695054]
[11]
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: Current approaches and outstanding challenges. PLOS Comput Biol 2012; 8(2): e1002375.
[http://dx.doi.org/10.1371/journal.pcbi.1002375] [PMID: 22383865]
[12]
Fukuda K, Takagi T. Knowledge representation of signal transduction pathways. Bioinformatics 2001; 17(9): 829-37.
[http://dx.doi.org/10.1093/bioinformatics/17.9.829] [PMID: 11590099]
[13]
Chao S-Y. Graph theory and analysis of biological data in computational biology In: Jayanthakumaran K, Ed Advanced Technologies London: IntechOpen 2009.
[http://dx.doi.org/10.5772/8205]
[14]
Fionda V. Networks in Biology In: Ranganathan S, Gribskov M, Nakai K, Schonbach C, Eds Encyclopedia of Bioinformatics and Computational Biology Amsterdam, Netherlands: Elsevier 2019; pp. 915-21.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.20420-2]
[15]
Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos GA. A guide to conquer the biological network era using graph theory. Front Bioeng Biotechnol 2020; 8: 34.
[http://dx.doi.org/10.3389/fbioe.2020.00034] [PMID: 32083072]
[16]
Kim Y-A, Wuchty S, Przytycka TM. Identifying causal genes and dysregulated pathways in complex diseases. PLOS Comput Biol 2011; 7(3): e1001095.
[http://dx.doi.org/10.1371/journal.pcbi.1001095] [PMID: 21390271]
[17]
Dezső Z, Nikolsky Y, Nikolskaya T, et al. Identifying disease-specific genes based on their topological significance in protein networks. BMC Syst Biol 2009; 3(1): 36.
[http://dx.doi.org/10.1186/1752-0509-3-36] [PMID: 19309513]
[18]
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther 2013; 138(3): 333-408.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.016] [PMID: 23384594]
[19]
Pratanwanich N, Lió P. Pathway-based Bayesian inference of drug-disease interactions. Mol Biosyst 2014; 10(6): 1538-48.
[http://dx.doi.org/10.1039/C4MB00014E] [PMID: 24695945]
[20]
Rajkumar T. Personalized medicine: FAQs. Indian J Med Paediatr Oncol 2010; 31(2): 72-4.
[http://dx.doi.org/10.4103/0971-5851.71661] [PMID: 21209770]
[21]
Li C, Shang D, Wang Y, et al. Characterizing the network of drugs and their affected metabolic subpathways. PLoS One 2012; 7(10): e47326.
[http://dx.doi.org/10.1371/journal.pone.0047326] [PMID: 23112813]
[22]
Gannon LM, Cotter MB, Quinn CM. The classification of invasive carcinoma of the breast. Expert Rev Anticancer Ther 2013; 13(8): 941-54.
[http://dx.doi.org/10.1586/14737140.2013.820577] [PMID: 23984896]
[23]
Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch 2014; 465(1): 1-14.
[http://dx.doi.org/10.1007/s00428-014-1593-7] [PMID: 24878755]
[24]
Barzaman K, Karami J, Zarei Z, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84: 106535.
[http://dx.doi.org/10.1016/j.intimp.2020.106535] [PMID: 32361569]
[25]
Zhang D-H, Salto-Tellez M, Chiu L-L, Shen L, Koay ES-C. Tissue microarray study for classification of breast tumors. Life Sci 2003; 73(25): 3189-99.
[http://dx.doi.org/10.1016/j.lfs.2003.05.006] [PMID: 14561524]
[26]
Menche J, Guney E, Sharma A, et al. Integrating personalized gene expression profiles into predictive disease-associated gene pools. NPJ Syst Biol Appl 2017; 3(1): 10.
[http://dx.doi.org/10.1038/s41540-017-0009-0]
[27]
Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984; 309(5967): 418-25.
[http://dx.doi.org/10.1038/309418a0] [PMID: 6328312]
[28]
Coussens L, Yang-Feng TL, Liao Y-C, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985; 230(4730): 1132-9.
[http://dx.doi.org/10.1126/science.2999974] [PMID: 2999974]
[29]
Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989; 86(23): 9193-7.
[http://dx.doi.org/10.1073/pnas.86.23.9193] [PMID: 2687875]
[30]
Plowman GD, Whitney GS, Neubauer MG, et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci USA 1990; 87(13): 4905-9.
[http://dx.doi.org/10.1073/pnas.87.13.4905] [PMID: 2164210]
[31]
Ménard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene 2003; 22(42): 6570-8.
[http://dx.doi.org/10.1038/sj.onc.1206779] [PMID: 14528282]
[32]
Badache A, Gonçalves A. The ErbB2 signaling network as a target for breast cancer therapy. J Mammary Gland Biol Neoplasia 2006; 11(1): 13-25.
[http://dx.doi.org/10.1007/s10911-006-9009-1] [PMID: 16947083]
[33]
Yu D, Hung M-C. Role of erbB2 in breast cancer chemosensitivity. BioEssays 2000; 22(7): 673-80.
[http://dx.doi.org/10.1002/1521-1878(200007)22:7<673:AID-BIES10>3.0.CO;2-A] [PMID: 10878580]
[34]
Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353(16): 1659-72.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[35]
Albanell J, Codony J, Rovira A, Mellado B, Gascón P. Mechanism of action of Anti-Her2 monoclonal antibodies: Scientific update on Trastuzumab and 2c4 In: Llombart-Bosch A, Felipo V, Eds New Trends in Cancer for the 21st Century Advances in Experimental Medicine and Biology Boston, MA: Springer 2003; pp. 253-68.
[http://dx.doi.org/10.1007/978-1-4615-0081-0_21]
[36]
Dhillon S. Palbociclib: First global approval. Drugs 2015; 75(5): 543-51.
[http://dx.doi.org/10.1007/s40265-015-0379-9] [PMID: 25792301]
[37]
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94(12): 1313-26.
[http://dx.doi.org/10.1007/s00109-016-1475-3] [PMID: 27695879]
[38]
Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3(11): 1427-38.
[PMID: 15542782]
[39]
Wilson FR, Varu A, Mitra D, Cameron C, Iyer S. Systematic review and network meta-analysis comparing palbociclib with chemotherapy agents for the treatment of postmenopausal women with HR-positive and HER2-negative advanced/metastatic breast cancer. Breast Cancer Res Treat 2017; 166(1): 167-77.
[http://dx.doi.org/10.1007/s10549-017-4404-4] [PMID: 28752187]
[40]
Beaver JA, Amiri-Kordestani L, Charlab R, et al. FDA Approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 2015; 21(21): 4760-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1185] [PMID: 26324739]
[41]
Rocca A, Schirone A, Maltoni R, et al. Progress with palbociclib in breast cancer: Latest evidence and clinical considerations. Ther Adv Med Oncol 2017; 9(2): 83-105.
[http://dx.doi.org/10.1177/1758834016677961] [PMID: 28203301]
[42]
Finn RS, Dering J, Conklin D, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 2009; 11(5): R77.
[http://dx.doi.org/10.1186/bcr2419] [PMID: 19874578]
[43]
Griffith M, Spies NC, Krysiak K, et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 2017; 49(2): 170-4.
[http://dx.doi.org/10.1038/ng.3774] [PMID: 28138153]
[44]
Alaimo S, Rapicavoli RV, Marceca GP, et al. PHENSIM: Phenotype simulator. PLOS Comput Biol 2021; 17(6): e1009069.
[http://dx.doi.org/10.1371/journal.pcbi.1009069] [PMID: 34166365]
[45]
Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: Concepts, methods, and prospects for future development. Trends Genet 2012; 28(7): 323-32.
[http://dx.doi.org/10.1016/j.tig.2012.03.004] [PMID: 22480918]
[46]
Hernansaiz-Ballesteros RD, Salavert F, Sebastián-León P, Alemán A, Medina I, Dopazo J. Assessing the impact of mutations found in next generation sequencing data over human signaling pathways. Nucleic Acids Res 2015; 43(W1): W270-5.
[http://dx.doi.org/10.1093/nar/gkv349] [PMID: 25883139]
[47]
Pomyen Y, Segura M, Ebbels TMD, Keun HC. Over-representation of correlation analysis (ORCA): A method for identifying associations between variable sets. Bioinformatics 2015; 31(1): 102-8.
[http://dx.doi.org/10.1093/bioinformatics/btu589] [PMID: 25183485]
[48]
García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway analysis: State of the art. Front Physiol 2015; 6: 383.
[http://dx.doi.org/10.3389/fphys.2015.00383] [PMID: 26733877]
[49]
Joshi P, Wang H, Basso B, Hong S-H, Giardina C, Shin D-G. A framework for route based pathway analysis of gene expression data. In: 2020 4th International Conference on Computational Biology and Bioinformatics; 2020 Dec 27-29; Bali Island, Indonesia; pp. 20-6.
[http://dx.doi.org/10.1145/3449258.3449262]
[50]
Ma J, Shojaie A, Michailidis G. A comparative study of topology-based pathway enrichment analysis methods. BMC Bioinformatics 2019; 20(1): 546.
[http://dx.doi.org/10.1186/s12859-019-3146-1] [PMID: 31684881]
[51]
Mitrea C, Taghavi Z, Bokanizad B, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 2013; 4: 278.
[http://dx.doi.org/10.3389/fphys.2013.00278] [PMID: 24133454]
[52]
Draghici S, Khatri P, Tarca AL, et al. A systems biology approach for pathway level analysis. Genome Res 2007; 17(10): 1537-45.
[http://dx.doi.org/10.1101/gr.6202607] [PMID: 17785539]
[53]
Alaimo S, Giugno R, Acunzo M, Veneziano D, Ferro A, Pulvirenti A. Post-transcriptional knowledge in pathway analysis increases the accuracy of phenotypes classification. Oncotarget 2016; 7(34): 54572-82.
[http://dx.doi.org/10.18632/oncotarget.9788] [PMID: 27275538]
[54]
Alaimo S, Marceca G, Ferro A, Pulvirenti A. Detecting disease specific pathway substructures through an integrated systems biology approach. ncRNA 2017; 3(2): 20.
[http://dx.doi.org/10.3390/ncrna3020020]
[55]
Tarca AL, Draghici S, Khatri P, et al. A novel signaling pathway impact analysis. Bioinformatics 2009; 25(1): 75-82.
[http://dx.doi.org/10.1093/bioinformatics/btn577] [PMID: 18990722]
[56]
Wishart DS, Knox C, Guo AC, et al. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668-72.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[57]
Wishart DS, Knox C, Guo AC, et al. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Suppl. 1): D901-6.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[58]
Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: A systematic review. JAMA 2001; 286(18): 2270-9.
[http://dx.doi.org/10.1001/jama.286.18.2270] [PMID: 11710893]
[59]
Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans 2008; 36(Pt 6): 1224-31.
[http://dx.doi.org/10.1042/BST0361224] [PMID: 19021530]
[60]
Xu W, Sun D, Wang Y, et al. Inhibitory effect of MicroRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway. Bosn J Basic Med Sci 2019.
[http://dx.doi.org/10.17305/bjbms.2019.4216] [PMID: 31621555]
[61]
Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 2000; 60(13): 3384-8.
[PMID: 10910043]
[62]
Nuti M, Bellati F, Visconti V, et al. Immune effects of trastuzumab. J Cancer 2011; 2: 317-23.
[http://dx.doi.org/10.7150/jca.2.317] [PMID: 21716848]
[63]
Vu T, Claret FX. Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Front Oncol 2012; 2: 62.
[http://dx.doi.org/10.3389/fonc.2012.00062] [PMID: 22720269]
[64]
Baudot A, de la Torre V, Valencia A. Mutated genes, pathways and processes in tumours. EMBO Rep 2010; 11(10): 805-10.
[http://dx.doi.org/10.1038/embor.2010.133] [PMID: 20847737]
[65]
Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004; 4(12): 937-47.
[http://dx.doi.org/10.1038/nrc1503] [PMID: 15573115]
[66]
Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling Mol Syst Biol 2005 1(1): 0010.
[http://dx.doi.org/10.1038/msb4100014] [PMID: 16729045]
[67]
Hynes NE, Lane HA. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat Rev Cancer 2005; 5(5): 341-54.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[68]
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3(1): 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[69]
Chappell WH, Steelman LS, Long JM, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2(3): 135-64.
[http://dx.doi.org/10.18632/oncotarget.240] [PMID: 21411864]
[70]
Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10(8): 789-99.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[71]
Maximiano S, Magalhães P, Guerreiro MP, Morgado M. Trastuzumab in the treatment of breast cancer. BioDrugs 2016; 30(2): 75-86.
[http://dx.doi.org/10.1007/s40259-016-0162-9] [PMID: 26892619]
[72]
Kauraniemi P, Hautaniemi S, Autio R, et al. Effects of herceptin treatment on global gene expression patterns in HER2-amplified and nonamplified breast cancer cell lines. Oncogene 2004; 23(4): 1010-3.
[http://dx.doi.org/10.1038/sj.onc.1207200] [PMID: 14647448]
[73]
Hsieh Y-T, Aggarwal P, Cirelli D, Gu L, Surowy T, Mozier NM. Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells. J Immunol Methods 2017; 441: 56-66.
[http://dx.doi.org/10.1016/j.jim.2016.12.002] [PMID: 27939300]
[74]
Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res 2009; 15(24): 7479-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0636] [PMID: 20008848]
[75]
Ciruelos E, Villagrasa P, Pascual T, et al. Palbociclib and trastuzumab in HER2-positive advanced breast cancer: Results from the phase ii solti-1303 patricia trial. Clin Cancer Res 2020; 26(22): 5820-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0844] [PMID: 32938620]
[76]
Ciruelos EM, Garcia AA, Cortés J, et al. 130Tip solti-1303 patricia 2 randomized phase ii trial of palbociclib plus trastuzumab and endocrine therapy (ET) versus Treatment of Physician’s Choice (TPC) in Metastatic HER2-positive and hormone receptor-positive (HER2+/HR+) Breast Cancer (BC) with PAM50 luminal intrinsic subtype. Ann Oncol 2021; 32: S77.
[http://dx.doi.org/10.1016/j.annonc.2021.03.144]
[77]
Barh D, Chaitankar V, Yiannakopoulou EC, et al. In Silico Models. In: Animal Biotechnology. Cambridge, Massachusetts: Academic Press 2014; pp. 385-404.
[http://dx.doi.org/10.1016/B978-0-12-416002-6.00021-3]
[78]
Verhaegh W, van Ooijen H, Inda MA, et al. Selection of personalized patient therapy through the use of knowledge-based computational models that identify tumor-driving signal transduction pathways. Cancer Res 2014; 74(11): 2936-45.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2515] [PMID: 24695361]
[79]
Aravalli RN, Steer CJ, Cressman ENK. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008; 48(6): 2047-63.
[http://dx.doi.org/10.1002/hep.22580] [PMID: 19003900]
[80]
Sanchez-Vega F, Mina M, Armenia J, et al. Cancer Genome Atlas Research Network. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018; 173(2): 321-337.e10.
[http://dx.doi.org/10.1016/j.cell.2018.03.035] [PMID: 29625050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy